JP2000294422A - Laminated inductive element - Google Patents

Laminated inductive element

Info

Publication number
JP2000294422A
JP2000294422A JP11100782A JP10078299A JP2000294422A JP 2000294422 A JP2000294422 A JP 2000294422A JP 11100782 A JP11100782 A JP 11100782A JP 10078299 A JP10078299 A JP 10078299A JP 2000294422 A JP2000294422 A JP 2000294422A
Authority
JP
Japan
Prior art keywords
layer
thick film
conductive thick
laminated
film line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11100782A
Other languages
Japanese (ja)
Inventor
Kyozo Ogawa
共三 小川
Shunichi Nishiyama
俊一 西山
Hirokazu Araki
博和 荒木
Takao Tani
恭男 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11100782A priority Critical patent/JP2000294422A/en
Publication of JP2000294422A publication Critical patent/JP2000294422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To have superior inductance and to strengthen against impairment noise by so connecting a conductive thick film line in a direction along which a current flows through the conductive thick film line having a facing part via a soft ferrite layer to be in an opposite direction at the facing parts each other. SOLUTION: A first layer on which a pattern made of ferrite 2 is laminated. One terminal of the pattern is connected with a land 6 with a conductive thick film line 3, another is connected with a terminal of both terminal part 5 and additionally with an outer electrode, the land 6 is connected with a through hole electrode 4 and the through hole electrode is connected with a land on a next second layer. The next second layer is connected with both terminals of the conductive thick film line 3, the one of the land 6 is connected with the through hole electrode 4 of the first layer, the other is connected with the through hole electrode 4 of this layer and additionally the through hole electrode of this layer is connected with the land 6 of a next third layer. The position of the through hole electrode 4 is made different from one of the previous layer (the second layer). Further, a next fourth layer is made the same as the previous previous layer (the second layer).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ソフトフェライト
を用い高周波伝送回路等のノイズ対策に使用する積層一
体焼結型の誘導素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated integrated sintering type induction element which uses soft ferrite and is used for noise suppression in high frequency transmission circuits and the like.

【0002】[0002]

【従来の技術】積層型の誘導素子は、ソフトフェライト
等を用いて形成したグリーンシート上に電極パターンす
なわち導電性厚膜線路と接続子すなわち例えばスルーホ
ールを形成し、これを積層したのち一体に焼成して得ら
れる小型の電子部品であり、低周波からマイクロ波帯域
まで広く用いられている。この積層型の誘導素子の最も
一般的なものは例えばコイルや変成器である。
2. Description of the Related Art In a laminated induction element, an electrode pattern, that is, a conductive thick film line and a connector, for example, a through hole, are formed on a green sheet formed by using soft ferrite or the like. It is a small electronic component obtained by firing, and is widely used from low frequency to microwave band. The most common of the stacked induction elements are, for example, coils and transformers.

【0003】積層型コイルの場合について説明すると、
まず一つの層にコイルの一部を導電性厚膜線路で形成
し、隣接する層には前記コイルを延長するようにコイル
の他の一部を導電性厚膜線路で形成しこれらをスルーホ
ールで接続する。この操作を繰返すとソレノイド状のコ
イルができる。
[0003] The case of a laminated coil will be described.
First, a part of the coil is formed by a conductive thick film line on one layer, and another part of the coil is formed by a conductive thick film line on an adjacent layer so as to extend the coil. Connect with. By repeating this operation, a solenoid-shaped coil is formed.

【0004】積層型変成器の場合について説明すると、
まず二つの層にコイルの一部を導電性厚膜線路でそれぞ
れ形成する。これらの各層に隣接する層には、それぞれ
一つ隔てた層のコイルを延長するようにコイルの他の一
部を導電性厚膜線路で形成し、これらをそれぞれ1層置
きにスルーホールで接続する。この操作を繰返すと1次
コイルと2次コイルを交互に積層した積層変成器(積層
トランスともいう)ができる。この積層変成器は1次コ
イルの一端と2次コイルの一端を入力側としそれぞれの
他端を出力側とすればコモンモードチョークにもなる。
[0004] The case of a laminated transformer will be described.
First, a part of the coil is formed on each of the two layers by a conductive thick film line. On the layer adjacent to each of these layers, another part of the coil is formed by a conductive thick film line so as to extend the coil of the layer separated by one, and these are connected to each other by through holes every other layer. I do. By repeating this operation, a laminated transformer (also referred to as a laminated transformer) in which primary coils and secondary coils are alternately laminated is completed. This laminated transformer also becomes a common mode choke if one end of the primary coil and one end of the secondary coil are set as the input side and the other ends are set as the output side.

【0005】これらの従来型の積層コイルや積層変成器
の基本構造は元々巻線型のコイルや変成器の構成と類似
性が高く、単に巻線型部品の手法を積層の手法に置き換
えたものであるといってもよい。各層のコイルを流れる
電流は互いに同方向であるからこれらの電流が発生する
磁場は共通の大きな磁束を形成し、各コイルが磁束を共
有することによって磁気的に強く結合する、あるいは自
己誘導や相互誘導効果を発揮し大きなインダクタンスが
得られると期待したものである。
[0005] The basic structure of these conventional laminated coils and transformers is very similar to the configuration of the originally wound coils and transformers, and simply replaces the method of winding parts with the method of lamination. It may be said. Since the currents flowing through the coils of each layer are in the same direction as each other, the magnetic field generated by these currents forms a common large magnetic flux, and the coils are strongly coupled magnetically by sharing the magnetic flux. It is expected that a large inductance can be obtained by exhibiting an inductive effect.

【0006】一方このような従来型の構造の積層部品に
は外部からの磁気的あるいは電気的な擾乱ノイズに対し
ては本質的に弱いという難点があった。すなわち上記電
流や磁束と同方向のノイズや磁界の影響を受け易い。こ
の難点は高周波になるほど顕著であった。すなわち、高
周波は波長が小さいので小型の電子部品と寸法的に同調
し易くかつまた、高周波ではフェライト材料の透磁率が
小さくなるので磁気シールド効果も少ないためである。
On the other hand, such a conventional laminated component has a drawback that it is inherently weak against external magnetic or electric disturbance noise. That is, it is susceptible to the effects of noise and magnetic fields in the same direction as the current and magnetic flux. This difficulty was more pronounced at higher frequencies. That is, since the high frequency has a small wavelength, it is easy to dimensionally tune with a small electronic component, and the high frequency has a small magnetic permeability because the magnetic permeability of the ferrite material is small.

【0007】このように外部からの擾乱に対して弱い構
造でありながら、さらに自己誘導・相互誘導という点で
も難点があった。すなわちソフトフェライトを用いた積
層コイルや積層変成器の場合コイルの各層間にはフェラ
イト層が存在するために、コイルで発生した磁束の大半
はコイル層の間のフェライト部を通過し、共通の磁気回
路を形成しづらいので磁気的な結合の弱い電子部品にな
り、インダクタンスの低いコイルや変換効率の悪い変成
器やコモンモードノイズを抑制する効果の少ないコモン
モードチョーク等々しか得にくい状況にあった。
[0007] Although the structure is weak against external disturbances as described above, there is also a problem in terms of self-induction and mutual induction. That is, in the case of a laminated coil or laminated transformer using soft ferrite, since the ferrite layer exists between the layers of the coil, most of the magnetic flux generated by the coil passes through the ferrite portion between the coil layers and Since it is difficult to form a circuit, it becomes an electronic component having weak magnetic coupling, and it has been difficult to obtain a coil having a low inductance, a transformer having a low conversion efficiency, a common mode choke having a small effect of suppressing common mode noise, and the like.

【0008】なお、外部擾乱に対して弱いという点につ
いてはこのような磁気回路上の事情を勘案して何らかの
方法で磁気的な結合を強くしても上述のような技術であ
る限りは解消されない。外部擾乱の電界や磁界は通常遠
方からすなわちほぼ1方向から到来し、局部的な磁気回
路には無関係に部品構造に応じた感度を有するからであ
る。
[0008] The fact that the magnetic coupling is weak against external disturbance is not solved even if the magnetic coupling is strengthened by any method in consideration of such a situation on the magnetic circuit as long as the above technique is used. . This is because the electric field or magnetic field of the external disturbance usually comes from a distance, that is, from almost one direction, and has a sensitivity according to the component structure regardless of a local magnetic circuit.

【0009】他方、積層電子部品以外の従来技術では上
記のような外部擾乱を回避する手段として、電線の誘導
を防止するために1本の電線の余剰部分を折り返して撚
り上げるという方法があった。この方法では外部擾乱で
誘導された電流は電気回路的に打ち消しあう。したがっ
て電線への誘導は少ない。この方法の難点は、自己誘導
もないので誘導素子にはならないということである。
On the other hand, in the prior art other than the multilayer electronic component, as a means for avoiding the external disturbance as described above, there is a method of folding and twisting an excess portion of one electric wire in order to prevent induction of the electric wire. . In this method, currents induced by external disturbances cancel each other out in an electric circuit. Therefore, there is little guidance to electric wires. The drawback of this method is that it does not become an inductive element because there is no self-induction.

【0010】以上説明したように従来、誘導性に優れか
つ擾乱ノイズに強い積層誘導素子はなく、この開発が待
たれていた。
As described above, conventionally, there is no laminated inductive element having excellent inductivity and high resistance to disturbance noise, and development of this element has been awaited.

【0011】[0011]

【発明が解決しようとする課題】そこで本発明が解決し
ようとする課題は、誘導性に優れかつ擾乱ノイズに強い
積層誘導素子を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laminated inductive element having excellent inductive properties and resistant to disturbance noise.

【0012】[0012]

【課題を解決するための手段】上述の課題を解決するた
め鋭意研究の結果、本発明者らは著しく構成や特性を改
善した積層誘導素子に想到したものである。すなわち本
願第1の発明は、ソフトフェライト層を介して対向する
部分を有する導電性厚膜線路に流れる電流の方向が当該
対向する部分において互いに逆方向となるように該導電
性厚膜線路を接続して構成した積層誘導素子である。
Means for Solving the Problems As a result of earnest studies to solve the above-mentioned problems, the present inventors have conceived of a laminated inductive element having a remarkably improved configuration and characteristics. That is, the first invention of the present application connects the conductive thick film lines so that the directions of currents flowing through the conductive thick film lines having the opposing portions via the soft ferrite layer are opposite to each other at the opposing portions. This is a laminated inductive element configured as follows.

【0013】この発明の最も新規で特徴的なところは、
トランス・変成器やコイルの導電性厚膜線路の平行に対
向する部分を流れる電流の方向が互いに逆方向となるよ
うに配置されている点、例えば導電性厚膜線路が実質的
に折り返しとなっている点である。この構成は専ら磁性
材料を素地とする積層誘導素子において有効であり、例
えば従来型の巻線変成器や巻線型コイルにこの構造を適
用したとしても特性の改善は見込めない。
The most novel and characteristic features of the present invention are:
The points where currents flowing in parallel opposing portions of the conductive thick-film line of the transformer / transformer or coil are arranged so that the directions of the currents are opposite to each other, for example, the conductive thick-film line becomes substantially folded. That is the point. This configuration is effective only in a laminated induction element mainly made of a magnetic material. For example, even if this structure is applied to a conventional winding transformer or a winding type coil, no improvement in characteristics can be expected.

【0014】すなわちこの構成においては上記対向する
導電性厚膜線路に挟まれた部分にはフェライト層が配置
されており、このフェライト層を介して磁束が短絡的に
回る構造となっている。一方外部擾乱電磁波によって誘
起される電流は上記対向する導電性厚膜線路には同方向
に流れるので打ち消し合い、結局外部擾乱電磁波の影響
を受けない。なお、本発明に言う電流は高周波であり、
本発明に言う電流の方向とは線路の接続方向を示す以外
の意味を持たない。
That is, in this configuration, a ferrite layer is disposed at a portion sandwiched between the opposing conductive thick film lines, and the magnetic flux turns short-circuited through the ferrite layer. On the other hand, the currents induced by the external disturbance electromagnetic waves cancel each other because they flow in the same direction in the opposing conductive thick film lines, and thus are not affected by the external disturbance electromagnetic waves. Note that the current referred to in the present invention has a high frequency,
The direction of the current referred to in the present invention has no meaning other than indicating the connection direction of the line.

【0015】本願第2の発明は前記第1の発明におい
て、前記導電性厚膜線路が対向する部分のソフトフェラ
イト層の厚さが、同一面上で対向する前記導電性厚膜線
路の線路間距離の0.5倍以下であるように構成した積
層誘導素子である。この発明は、上記第1の発明におい
て導体線路間のフェライト層を流れる磁束の比率をより
詳細に規定することで発明の内容をより具体的にしたも
のである。
According to a second aspect of the present invention, in the first aspect, the thickness of the soft ferrite layer at a portion where the conductive thick film line faces is equal to the distance between the lines of the conductive thick film line facing the same surface. This is a stacked inductive element configured to be 0.5 times or less the distance. In the present invention, the content of the present invention is made more specific by defining the ratio of the magnetic flux flowing through the ferrite layer between the conductor lines in the first invention in more detail.

【0016】さらに本願第3の発明は前記第1〜第2の
発明に記載の積層誘導素子で積層ノイズフィルターを構
成したものである。導電性厚膜線路間のフェライト層の
磁束は上記第1の発明と同様であるが、隣接するコイル
が直列に接続されてしかも逆方向なので強い自己誘導に
よる大きなインダクタンスが得られ、例えば折り返し構
造なので外部へのノイズ放射が少なく外部擾乱電磁波の
影響も受けにくい。
Further, a third invention of the present application is one in which a multilayer noise filter is constituted by the multilayer inductive element according to the first or second invention. The magnetic flux of the ferrite layer between the conductive thick film lines is the same as that of the first invention, but a large inductance is obtained by strong self-induction because the adjacent coils are connected in series and in the opposite direction. The noise emission to the outside is small and it is hardly affected by external disturbance electromagnetic waves.

【0017】[0017]

【発明の実施の形態】以下に発明の詳細を実施例に基づ
いて説明する。図1は、本発明を説明するための分解斜
視図である。図1においては本発明の導電性厚膜線路の
配置や磁気回路がよく分かるように以下の要領で描いて
いる。斜線部は導電性厚膜線路とスルーホール等導体部
分を示す。外部電極は省略している。各電極の厚さは図
示していない。フェライト層は実際には一体であるが積
層圧着する前に相当する位置で分割して描き、かつ部品
サイズに分割した大きさで描くことによって位置関係を
わかりやすくした。その他、各部の縮尺や個数に関し本
図に記載のものは1実施例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on embodiments. FIG. 1 is an exploded perspective view for explaining the present invention. In FIG. 1, the arrangement of the conductive thick film line and the magnetic circuit of the present invention are drawn in the following manner so as to be clearly understood. The hatched portion indicates a conductive portion such as a conductive thick film line and a through hole. External electrodes are omitted. The thickness of each electrode is not shown. Although the ferrite layer is actually integral, it is divided and drawn at a position corresponding to the position before lamination and pressure bonding, and the positional relationship is easily understood by drawing with a size divided into component sizes. In addition, what is shown in this figure regarding the scale and number of each part is only one example.

【0018】[0018]

【実施例】次に本発明の積層誘導素子の作成方法を実施
例に従って以下に述する。
Next, a method of manufacturing a laminated inductive element according to the present invention will be described below in accordance with embodiments.

【0019】(実施例1)市販のFe、Ni、Cu、C
o、Zn、Bi、Mn、Si等のそれぞれの酸化物粉末
を所定量秤量し、ボールミルでよく混合し、この混合粉
を800°Cの大気中で仮焼し、ボールミルで粉砕して
フェライトの粉末を得た。酸化物の種類と量を変えれば
磁気特性の異なる粉末が得られることは言うまでもな
い。
Example 1 Commercially available Fe, Ni, Cu, C
O, Zn, Bi, Mn, Si, etc., each oxide powder is weighed in a predetermined amount, mixed well with a ball mill, and this mixed powder is calcined in an atmosphere of 800 ° C., pulverized with a ball mill, and ferrite powder. A powder was obtained. It goes without saying that powders having different magnetic properties can be obtained by changing the type and amount of the oxide.

【0020】この粉末と分散剤、可塑剤、溶剤等をよく
混合してスラリー状とした。得られたスラリーはドクタ
ーブレード法で厚さ60μmのシートに成形した。この
焼成前のシートはグリーンシートと呼ばれるものであ
る。グリーンシートの所定の位置に直径0.2mmのス
ルーホールを穿孔し、さらにスクリーン印刷法で、市販
のAgペーストを用いて所定のパターンを形成した。パ
ターン形成と同時にスルーホール部にもAgが充填され
てスルーホール電極を形成している。
This powder was well mixed with a dispersant, a plasticizer, a solvent and the like to form a slurry. The obtained slurry was formed into a sheet having a thickness of 60 μm by a doctor blade method. The sheet before firing is called a green sheet. A through hole having a diameter of 0.2 mm was formed in a predetermined position of the green sheet, and a predetermined pattern was formed by a screen printing method using a commercially available Ag paste. Ag is also filled into the through-hole portion at the same time as the pattern is formed to form a through-hole electrode.

【0021】上記パターンを形成したグリーンシートを
順次積み重ねて加熱圧着し、これを所定の位置で縦幅
1.2mm横幅0.6mmに裁断し焼成前のチップを得
た。さらに焼成前のチップの両サイドと側面の外部電極
となる所定の位置にAgペーストを用い印刷法でAgを
塗布して大気中900°Cで焼成した。こうして得られ
た焼成チップの外部電極上にNi層を、さらにその外表
面に半田層をメッキで形成して完成部品とした。
The green sheets having the above-described patterns formed thereon were sequentially stacked and heated and pressed, and then cut at predetermined positions into a vertical width of 1.2 mm and a horizontal width of 0.6 mm to obtain chips before firing. Further, Ag was applied by a printing method using Ag paste to predetermined positions on both sides and side surfaces of the chip before firing, which were to be external electrodes, and fired at 900 ° C. in the air. A Ni layer was formed on the external electrodes of the fired chip thus obtained, and a solder layer was formed on the outer surface thereof by plating to obtain a finished part.

【0022】(実施例2)前記実施例1のパターンとス
ルーホール電極との形状と組み合わせを図1の通りと
し、他は実施例1に記載の通りとして積層誘導素子を作
成した。この積層誘導素子は積層ノイズフィルターであ
る。導電性厚膜電極は厚さ18μm、幅70μm、導電
性厚膜電極のフェライト層を介して対向する導電性厚膜
電極の間隔は35μm、導電性厚膜電極が同一面内で対
向する間隔は85μmである。
Example 2 A laminated inductive element was prepared as shown in FIG. 1 with the pattern of Example 1 and the shape and combination of the through-hole electrodes, and the others as described in Example 1. This laminated inductive element is a laminated noise filter. The thickness of the conductive thick film electrode is 18 μm, the width is 70 μm, the interval between the conductive thick film electrodes facing each other via the ferrite layer of the conductive thick film electrode is 35 μm, and the interval between the conductive thick film electrodes facing each other in the same plane is 85 μm.

【0023】ダミーシート(1)はフェライト(2)か
らなる無地の層である。このダミーシート(1)を1枚
以上(図1では2枚)積層し、次に最初のパターンを印
刷したシート(第1層)を積層する。このパターンはミ
アンダー型の導電性厚膜線路(3)で一方をランド
(6)に他方を両端部(5)の一端に接続し、さらに外
部電極(図示せず)に接続している。ランド(6)はス
ルーホール電極(4)に接続し、スルーホール電極は次
の層(第2層)のランドに接続している。
The dummy sheet (1) is a plain layer made of ferrite (2). One or more (two in FIG. 1) dummy sheets (1) are stacked, and then a sheet (first layer) on which the first pattern is printed is stacked. This pattern is a meander type conductive thick film line (3), one of which is connected to the land (6), the other is connected to one end of both ends (5), and further connected to external electrodes (not shown). The land (6) is connected to the through-hole electrode (4), and the through-hole electrode is connected to the land of the next layer (second layer).

【0024】次の層(第2層)はミアンダー型の導電性
厚膜線路(3)の両端にランド(6)を設けている。ラ
ンド(6)の一方は前層(第1層)の、他方はこの層
(第2層)のスルーホール電極(4)に接続しさらにこ
の層(第2層)のスルーホール電極(4)は次の層(第
3層)のランド(6)に接続している。
In the next layer (second layer), lands (6) are provided at both ends of the meander type conductive thick film line (3). One of the lands (6) is connected to the through-hole electrode (4) of the previous layer (first layer) and the other is connected to the through-hole electrode (4) of this layer (second layer). Is connected to the land (6) of the next layer (third layer).

【0025】次の層(第3層)も前層(第2層)と同様
の構成であるが、前層(第2層)とはスルーホール電極
(4)の位置が入れ替わる。さらに次の層(第4層)は
前々層(第2層)と同様である。さらに前層(第3層)
前々層(第2層)と同様の層を適宜回数(図1では0
回、本実施例2では0〜4回)繰返した後、最初のパタ
ーンと同じ要領で最終のパターンを形成し両端部(5)
の他端に接続し外部電極に接続する。最終のパターンを
形成した層(第5層)の次には適宜枚数(図1では1枚
のみ示す)のダミーシート(1)を配置する。上下のダ
ミーシート(1)の総数は全積層シート数が16層とな
るように、かつパターン形成層が中心付近となるように
配分して配置した。
The next layer (third layer) has the same structure as the previous layer (second layer), but the position of the through-hole electrode (4) is switched from that of the previous layer (second layer). The next layer (fourth layer) is the same as the layer before the second layer (second layer). Further front layer (third layer)
The same layer as the layer before the second layer (the second layer) is appropriately repeated (0 in FIG.
(0 to 4 times in the second embodiment), the final pattern is formed in the same manner as the first pattern, and both ends (5)
To the other end and to an external electrode. After the layer (fifth layer) on which the final pattern is formed, an appropriate number (only one is shown in FIG. 1) of dummy sheets (1) are arranged. The total number of upper and lower dummy sheets (1) was distributed so that the total number of laminated sheets would be 16 layers, and the pattern forming layer would be near the center.

【0026】実施例2は以上に説明した要領で各層の導
電性厚膜線路(3)とスルーホール電極(4)とを接続
するから、一つの層の導電性厚膜線路(3)を流れる電
流の方向(例えば方向A)は隣接する層の導電性厚膜線
路(3)の対向する部分を流れる電流の方向(例えば方
向B)とは逆方向になる。
In the second embodiment, the conductive thick film line (3) of each layer is connected to the through-hole electrode (4) in the manner described above, so that the current flows through the conductive thick film line (3) of one layer. The direction of the current (eg, direction A) is opposite to the direction (eg, direction B) of the current flowing through the opposing portion of the conductive thick film line (3) in the adjacent layer.

【0027】図2は実施例2における電流と磁束との方
向関係を説明するための、導電性厚膜線路(3)に直交
する断面の一部である。ただし図の縮尺は正確ではな
い。また図中の符号は図1と同様である。対向する一対
の導電性厚膜線路(3)を流れる電流が導電性厚膜線路
(3)間のフェライト(2)層に誘起する磁束の方向は
1方向に一致していることが分かる。
FIG. 2 is a part of a cross section orthogonal to the conductive thick film line (3) for explaining the directional relationship between the current and the magnetic flux in the second embodiment. However, the scale of the figure is not accurate. Reference numerals in the figure are the same as those in FIG. It can be seen that the direction of the magnetic flux induced by the current flowing through the pair of opposing conductive thick film lines (3) in the ferrite (2) layer between the conductive thick film lines (3) coincides with one direction.

【0028】上記と同じ工程、同じ要領であるが遇数層
(第2層,第4層…)についてはパターンを変更し図3
のように形成したものを比較例として作成した。フェラ
イトを介して対向する導電性厚膜電極を流れる電流の方
向は互いに同方向となっている。上記実施例2の積層誘
導素子と比較例で作成した積層誘導素子の特性をノイズ
フィルターとして評価し比較した結果を表1に示す。
In the same steps and in the same manner as described above, the pattern is changed for even number layers (second layer, fourth layer...)
What was formed like this was created as a comparative example. The directions of the currents flowing through the opposing conductive thick film electrodes via the ferrite are the same as each other. Table 1 shows the results of evaluating and comparing the characteristics of the multilayer induction element of Example 2 and the multilayer induction element prepared in the comparative example as a noise filter.

【0029】[0029]

【表1】 [Table 1]

【0030】表1において試料No1〜5は本発明の例
で、試料No6、7は上述の比較例である。表1によれ
ば同じ積層数でかつ一見よく似た構造のようであって
も、本実施例と比較例とは大差がある。すなわち周波数
1GHzにおけるインピーダンスの絶対値|Z|は本発
明の構造をとることによって約2倍となった。すなわち
大きな誘導性が得られている。また、共振周波数frは
ほぼ同程度である。このことから本願発明は部品の容量
成分を少なくする効果も有することが分かる。
In Table 1, samples Nos. 1 to 5 are examples of the present invention, and samples Nos. 6 and 7 are comparative examples described above. According to Table 1, there is a great difference between the present embodiment and the comparative example, even though the structures are apparently similar with the same number of layers. That is, the absolute value | Z | of the impedance at a frequency of 1 GHz was approximately doubled by employing the structure of the present invention. That is, a large inductivity is obtained. Further, the resonance frequencies fr are substantially the same. This indicates that the present invention also has the effect of reducing the capacitance component of the component.

【0031】実施例2で作成した本発明品と比較例の部
品を伝送線路に挿入して測定したノイズの減衰率は、本
発明品の方が比較例よりも3〜4dB大きく、ノイズ抑
制効果の改善が確認された。さらにおよそ3m遠方から
1GHzの電波を送信し、これらの試料部品の両端の電
圧は計を観測することで受信状態を調べた結果を表1の
擾乱の項に示す。
The attenuation factor of the noise measured by inserting the component of the present invention and the component of the comparative example prepared in Example 2 into the transmission line is 3 to 4 dB larger in the product of the present invention than in the comparative example, and the noise suppressing effect is obtained. Improvement was confirmed. Further, a radio wave of 1 GHz is transmitted from a distance of about 3 m, and the voltage at both ends of these sample parts is measured by observing a meter to check the reception state. The result of the disturbance shown in Table 1 is shown in Table 1.

【0032】表1に示す通り、比較例では受信感度が有
ったのに対して本願発明品では感度が無くかった。すな
わち本願発明品が外部からの擾乱に強いことが明らかと
なった。
As shown in Table 1, the comparative example had the receiving sensitivity, whereas the product of the present invention did not have the receiving sensitivity. In other words, it was clarified that the product of the present invention is resistant to external disturbance.

【0033】[0033]

【発明の効果】以上詳細に説明したように本発明によれ
ば誘導性に優れかつ擾乱ノイズに強い積層誘導素子が得
られた。
As described in detail above, according to the present invention, a laminated inductive element having excellent inductivity and resistant to disturbance noise can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に関る積層誘導素子の分解斜
視図である。
FIG. 1 is an exploded perspective view of a laminated inductive element according to an embodiment of the present invention.

【図2】本発明に関り、電流と磁束の関係を示す、部分
の断面図である。
FIG. 2 is a partial cross-sectional view showing a relationship between current and magnetic flux according to the present invention.

【図3】本発明の比較例に関る積層誘導素子の分解斜視
図である。
FIG. 3 is an exploded perspective view of a laminated inductive element according to a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

1 ダミーシート 2 フェライト 3 導電性厚膜線路 4 スルーホール電極 5 両端部 Reference Signs List 1 dummy sheet 2 ferrite 3 conductive thick film line 4 through-hole electrode 5 both ends

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 恭男 鳥取県鳥取市南栄町70番地2号日立金属株 式会社鳥取工場内 Fターム(参考) 5E043 AA08 AA09 AB09 BA01 5E070 AA01 AB01 AB03 AB10 BA12 CB03 CB13 CB17 CB20 EA01 EB03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuo Tani 70-2, Minamisakaemachi, Tottori City, Tottori Prefecture F-term in Hitachi Metals Co., Ltd. Tottori Plant 5E043 AA08 AA09 AB09 BA01 5E070 AA01 AB01 AB03 AB10 BA12 CB03 CB13 CB17 CB20 EA01 EB03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ソフトフェライト層を介して対向する部
分を有する導電性厚膜線路に流れる電流の方向が当該対
向する部分において互いに逆方向となるように該導電性
厚膜線路を接続して形成したことを特徴とする積層誘導
素子。
1. A conductive thick film line is formed by connecting conductive thick film lines so that the directions of currents flowing through the conductive thick film lines having opposing portions via a soft ferrite layer are opposite to each other at the opposing portions. A laminated induction element, characterized in that:
【請求項2】 前記誘導素子は前記導電性厚膜線路が対
向する部分のソフトフェライト層の厚さが同一面上で対
向する前記導電性厚膜線路の線路間距離の0.5倍以下
であるように構成したことを特徴とする請求項1に記載
の積層誘導素子。
2. The inductive element according to claim 1, wherein the thickness of the soft ferrite layer at a portion where the conductive thick film line faces is 0.5 times or less of a distance between the conductive thick film lines facing each other on the same surface. The laminated induction element according to claim 1, wherein the laminated induction element is configured as follows.
【請求項3】 前記積層誘導素子は積層ノイズフィルタ
ーであることを特徴とする請求項1または請求項2に記
載の積層誘導素子。
3. The multilayer induction element according to claim 1, wherein the multilayer induction element is a multilayer noise filter.
JP11100782A 1999-04-08 1999-04-08 Laminated inductive element Pending JP2000294422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11100782A JP2000294422A (en) 1999-04-08 1999-04-08 Laminated inductive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11100782A JP2000294422A (en) 1999-04-08 1999-04-08 Laminated inductive element

Publications (1)

Publication Number Publication Date
JP2000294422A true JP2000294422A (en) 2000-10-20

Family

ID=14283045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11100782A Pending JP2000294422A (en) 1999-04-08 1999-04-08 Laminated inductive element

Country Status (1)

Country Link
JP (1) JP2000294422A (en)

Similar Documents

Publication Publication Date Title
US6459351B1 (en) Multilayer component having inductive impedance
US9312062B2 (en) Common mode choke coil
JP3941508B2 (en) Multilayer impedance element
JP4706786B2 (en) Noise filter and electronic device using noise filter
US8773232B2 (en) High-frequency transformer, high-frequency component, and communication terminal device
CN208157197U (en) Coil build-in components
JP2001044037A (en) Laminated inductor
JP3791406B2 (en) Multilayer impedance element
WO2007049789A1 (en) Irreversible circuit element
JP3545701B2 (en) Common mode choke
WO2021044848A1 (en) Filter element
US6504464B2 (en) Choke coil
US7009485B2 (en) Laminate-type ceramic electronic component
JP2000182834A (en) Laminate inductance element and manufacture thereof
US8384490B2 (en) Non-reciprocal circuit and non-reciprocal circuit device, and central conductor assembly used therein
JP4479353B2 (en) Multilayer electronic components
JP2005259774A (en) Open magnetic circuit type laminated coil component
JP5553550B2 (en) Electronic components
JP2002175917A (en) Stacked inductor and its manufacturing method
JP2000294422A (en) Laminated inductive element
JP4423830B2 (en) Multilayer directional coupler
JPH05121241A (en) Inductance part and its manufacture
JP2010011519A (en) Laminated directional coupler
JP2000235919A (en) Laminated common mode choke coil element
JP5637282B2 (en) Electronic components