JP2000294398A - Surface polishing method for superconducting acceleration cavity - Google Patents

Surface polishing method for superconducting acceleration cavity

Info

Publication number
JP2000294398A
JP2000294398A JP10393399A JP10393399A JP2000294398A JP 2000294398 A JP2000294398 A JP 2000294398A JP 10393399 A JP10393399 A JP 10393399A JP 10393399 A JP10393399 A JP 10393399A JP 2000294398 A JP2000294398 A JP 2000294398A
Authority
JP
Japan
Prior art keywords
polishing
niobium
cavity
superconducting
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10393399A
Other languages
Japanese (ja)
Inventor
Kenji Saito
斉藤健治
Eiji Kako
加古永治
Shuhei Nomura
野村修平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Plating Co Ltd
Original Assignee
Nomura Plating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Plating Co Ltd filed Critical Nomura Plating Co Ltd
Priority to JP10393399A priority Critical patent/JP2000294398A/en
Priority to DE2000118244 priority patent/DE10018244A1/en
Publication of JP2000294398A publication Critical patent/JP2000294398A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • H05H7/20Cavities; Resonators with superconductive walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • C23F3/06Heavy metals with acidic solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel surface polishing method for realizing a low-cost and high-performance superconducting acceleration cavity stably exhibiting a high-acceleration electric field. SOLUTION: In this method of polishing a surface of a superconducting acceleration cavity that is a hollow body made of metal having opening parts on its both ends and having at least an inner surface made of niobium, a process for chemically polishing/removing the inner surface and then a process for electrochemically polishing/removing it are together used. The inner surface of the superconducting acceleration cavity is made up of a niobium material or a double layer of niobium and another metal having a thickness of 0.2 to 10 mm, the polished/removed thickness of niobium by the chemical polishing is 50 to 300 μm, and the polished/removed thickness of niobium by the subsequent electrolytic polishing is 5 to 100 μm. The polishing is performed while the hollow body is rotated on its axis with the axis set parallel to the ground.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、学術的用途のみ
ならず医学、工学、農学的な分野で利用される荷電粒子
を加速する為の高周波加速空洞、特に超伝導状態で利用
する超伝導加速空洞(以下単に「加速空洞」と称す)の
性能を低コストで飛躍的に高めることの出来る表面研磨
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency accelerating cavity for accelerating charged particles used not only in academic applications but also in medical, engineering and agricultural fields, and in particular, superconducting acceleration used in a superconducting state. The present invention relates to a surface polishing method capable of dramatically improving the performance of a cavity (hereinafter simply referred to as “acceleration cavity”) at low cost.

【0002】[0002]

【従来の技術】従来からニオブをその構成材料とする超
伝導加速空洞は、高い“Q値”での高い“加速電界”を
目的として空洞の表面、特にその内面を化学的に研磨し
たり(以下「化学研磨」と称す)、空洞を陽極とし、ア
ルミニウム材を陰極として電気化学的に研磨(以下「電
解研磨」と称す)するいずれかの方法により平滑化する
手法が一般的であった。
2. Description of the Related Art Conventionally, superconducting accelerating cavities using niobium as a constituent material have been known to chemically polish the surface of the cavity, particularly the inner surface thereof, for the purpose of achieving a high "Q value" and a high "acceleration electric field" ( In general, a method of performing smoothing by any of electrochemical polishing (hereinafter, referred to as “electropolishing”) using a cavity as an anode and an aluminum material as a cathode (hereinafter, referred to as “electropolishing”) is generally used.

【0003】化学研磨は、代表的には、濃リン酸、濃硝
酸、フッ化水素酸や濃リン酸の代わりに濃硫酸を用いた
液が用いられ、単純に液に浸漬するだけで研磨出来るこ
とや研磨速度が速い、水素吸蔵し難いなどの利点もある
が、空洞として高加速電界での加速性能はそれ程でもな
い。そして、化学研磨法による空洞性能の改善の為にニ
オブ材の高純度化などもなされているが、それでも性能
改善には限界がある。
[0003] In chemical polishing, typically, a solution using concentrated sulfuric acid instead of concentrated phosphoric acid, concentrated nitric acid, hydrofluoric acid or concentrated phosphoric acid is used, and polishing can be carried out simply by dipping in the solution. It also has advantages such as high polishing rate and difficulty in absorbing hydrogen, but the acceleration performance in a high acceleration electric field as a cavity is not so large. Although the purity of the niobium material has been improved to improve the cavity performance by the chemical polishing method, there is still a limit to the performance improvement.

【0004】一方、電解研磨の場合には、濃硫酸とフッ
化水素酸、フッ化水素酸とブタノールなどの研磨液を利
用するのが一般的で、研磨速度が遅い、複雑なジグを必
要とするだけでなく、水素吸蔵して性能劣化を起こし易
く、脱水素の為の真空焼鈍を必要とするなどの多くの難
点がある。中でも電解研磨の後、真空焼鈍を必須とする
ことが製造コストを押し上げる一要因とされ、汎用性に
欠けていたというのが実態であった。しかし、得られた
空洞の高加速電界でのQ値の低下がなく、この点が化学
研磨と比べて格段に優れていると言う大きな利点がある
(“SUPERIORITY OF ELECTROPOLISHING OVER CHEMICAL
POLISHING ON HIGH GRADIENTS ” Particle Accelerat
ors Vol. 60 pp. 193-217 )。
On the other hand, in the case of electrolytic polishing, a polishing solution such as concentrated sulfuric acid and hydrofluoric acid, or hydrofluoric acid and butanol is generally used, and a complicated jig having a low polishing rate is required. In addition to this, there are many disadvantages, such as performance degradation due to hydrogen storage and the need for vacuum annealing for dehydrogenation. Above all, indispensability of vacuum annealing after electropolishing was considered to be one factor that increased the production cost, and the reality was that it lacked versatility. However, there is no significant decrease in the Q value of the obtained cavity at a high accelerating electric field, and there is a great advantage that this point is much superior to chemical polishing (“SUPERIORITY OF ELECTROPOLISHING OVER CHEMICAL”).
POLISHING ON HIGH GRADIENTS ”Particle Accelerat
ors Vol. 60 pp. 193-217).

【0005】[0005]

【発明が解決しようとする課題】近年、増加する一方の
加速器建設コストやそのランニングコストの低減要求
や、高エネルギー加速器の建設要求に応える為に、高加
速電界でも安定したQ値を示す、いわゆる性能の良い加
速空洞の製作が不可欠となっている。その為には、ニオ
ブないしニオブクラッド材からなる加速空洞の表面研磨
技術の新規な開発が増々不可欠なものとなってきた。
In order to meet the increasing demands for increasing accelerator construction costs and running costs in recent years, and the demand for construction of high energy accelerators, a so-called stable Q value is exhibited even at a high accelerating electric field. It is indispensable to manufacture a high-performance acceleration cavity. To this end, new development of a technique for polishing the surface of the accelerating cavity made of niobium or niobium clad material has become increasingly indispensable.

【0006】先に述べたように研磨速度が速く、手軽な
化学研磨法は、安定して高い加速電界を示す超伝導加速
空洞が得られないと言う問題があり、一方で高いQ値と
安定した加速電界を示す電解研磨法は、電解研磨後に脱
水素目的で、真空焼鈍しなければならないと言った制約
があった。しかし、一旦真空焼鈍すると雰囲気ガスの影
響もあって、空洞内表面の汚染と言う問題が付きまと
い、必然的に汚染を除去し得る程度の短時間の再電解研
磨処理を必須としている。従って、加速性能は良いけれ
ども真空焼鈍と再電解研磨と言う手間隙の掛かる工程を
取ると言うだけでなく、真空焼鈍するとニオブの強度劣
化につながるので、その分だけ余計な材料を必要とする
等、加速空洞の製作コストを大幅に引き上げる要因とな
っていた。
As described above, the chemical polishing method having a high polishing rate and a simple chemical polishing method has a problem that a superconducting accelerating cavity exhibiting a stable and high accelerating electric field cannot be obtained. The electropolishing method showing the accelerated electric field has a restriction that vacuum annealing must be performed for the purpose of dehydrogenation after electropolishing. However, once the vacuum annealing is performed, there is a problem of contamination of the inner surface of the cavity due to the influence of the atmospheric gas, and a short re-electropolishing treatment is required to remove the contamination inevitably. Therefore, although acceleration performance is good, not only does it take a process that requires a hand gap called vacuum annealing and reelectrolytic polishing, but vacuum annealing leads to deterioration of niobium strength, so extra materials are required by that much, etc. This was a factor that greatly increased the manufacturing cost of the accelerating cavity.

【0007】本発明は、低コストで高い加速電界を安定
的に示す高性能な超伝導加速空洞を実現する新しい表面
研磨方法を提供することを目的とする。加速空洞の性能
のアップは、取りも直さず高エネルギー状態での物質の
振る舞いを調査出来ると言う学術的な要求だけでなく、
同じエネルギーを付与する場合でも、少ない加速空洞台
数ですみ、その結果、加速器全体をコンパクトに出来る
ので、加速器の製作コストや建設コスト、また運転コス
トを著しく低減出来ると言う多大な経済効果を有する。
An object of the present invention is to provide a new surface polishing method for realizing a high-performance superconducting acceleration cavity which stably exhibits a high acceleration electric field at low cost. Improving the performance of the accelerating cavity is not only an academic requirement to be able to investigate the behavior of matter in a high energy state without repairing it,
Even when the same energy is applied, the number of accelerating cavities is small, and as a result, the entire accelerator can be made compact, so that there is a great economic effect that the manufacturing cost, construction cost, and operation cost of the accelerator can be significantly reduced.

【0008】[0008]

【課題を解決するための手段】本発明者らは、加速空洞
におけるニオブの表面状態と加速性能の問題を詳細に調
査・検討した結果、加速空洞の加工歪みや様々な表面欠
陥層が、加速空洞の性能を左右することが明らかとなっ
た。つまり、加速空洞は、図1の如く、中央部が膨らん
だ円筒形状を幾つも組み合わせた構造体となっており、
まず、板材圧延時の歪み(加工変質層)の生成や、その
後のパイプへの曲げ加工、皿状物とするためのプレス成
型加工で生ずる表面しわや傷、さらには表面亀裂の発生
と言った具合に加工歪みや様々な表面欠陥層が生ずる。
EPMA、ESCA、光学顕微鏡などによる表面観察や
X線的な観察、さらに実際の研磨溶解試験等の結果によ
れば、諸々の加工変質層は、ニオブ材の表層から30〜
200μm程度迄存在しており、ニオブの加工履歴によ
って、その加工変質層の厚みは30〜200μmの間で
ばらつくことも明らかとなった。そして、この欠陥層の
除去程度が加速空洞のQ値と加速電界の安定性に大きく
影響するのである。
Means for Solving the Problems The present inventors have investigated and examined in detail the problems of the surface state of niobium and acceleration performance in the accelerating cavity. It became clear that it affected the performance of the cavity. That is, as shown in FIG. 1, the accelerating cavity has a structure in which a number of cylindrical shapes with a bulged central portion are combined.
First of all, it was said that the generation of strain (deformed layer) during the rolling of the sheet material, the subsequent bending of the pipe, and the formation of surface wrinkles and scratches and the occurrence of surface cracks caused by the press forming for forming a dish-like object. In particular, processing distortion and various surface defect layers occur.
According to the results of surface observation and X-ray observation by EPMA, ESCA, optical microscope and the like, and further, actual polishing and dissolution test, various affected layers are 30 to 30
It exists up to about 200 μm, and it is also clear from the processing history of niobium that the thickness of the affected layer varies between 30 and 200 μm. The degree of removal of the defective layer greatly affects the Q value of the accelerating cavity and the stability of the accelerating electric field.

【0009】それでは、化学研磨にしろ電解研磨にし
ろ、何故、表面欠陥層があれば、加速空洞の性能を悪化
させるのかと言うことになるが、諸々の実験の結果、こ
の層が研磨時の水素の吸蔵に大きく関与することが判明
した。図2は、化学研磨と電解研磨の手法の違いによる
水素吸蔵量を加熱温度と放出される水素量の関係で調査
したもので、ニオブ研磨除去量を90μm一定とした時
の水素吸蔵量の差異を明確に示している。
[0009] Then, regardless of whether chemical polishing or electrolytic polishing is used, the reason why the presence of a surface defect layer deteriorates the performance of the accelerating cavity is as follows. It has been found that it greatly contributes to the storage of hydrogen. Fig. 2 shows the relationship between the heating temperature and the amount of released hydrogen, based on the difference in the amount of hydrogen absorbed due to the difference between the methods of chemical polishing and electropolishing. Is clearly shown.

【0010】ここで、電解研磨と化学研磨とで著しく吸
蔵水素量が異なっているが、これは単純に研磨液に浸漬
されている時間の差、つまり研磨速度の差にあると考え
られる。一般に化学研磨によるニオブの研磨除去速度
は、電解研磨のそれと比べると10〜20倍も速いこと
が確かめられており、そしてこのことが、電解研磨後に
真空焼鈍を必須としている一つの理由であることを発見
した。
[0010] Here, the amount of stored hydrogen is significantly different between the electrolytic polishing and the chemical polishing. It is considered that this is simply due to the difference in the time of immersion in the polishing liquid, that is, the difference in the polishing rate. In general, it has been confirmed that the removal rate of niobium by chemical polishing is 10 to 20 times faster than that of electrolytic polishing, and this is one reason that vacuum annealing is essential after electrolytic polishing. Was found.

【0011】例えば、図3及び図4は、ニオブ製加速空
洞を従来のように電解研磨により100μm研磨した
後、700℃で真空焼鈍して、空洞性能を事前に確認し
た後、空洞そのものを容器としてSiCを研磨メディア
として、回転させながら内面のみを機械的に研磨して人
為的に表面欠陥層を作成し、図3は電解研磨により、図
4は化学研磨により、欠陥層が残るように20μm目標
で、ニオブを研磨除去して平滑化したものについて、性
能を測定した結果を示したものである。これらの結果に
よっても明らかなように、化学研磨でも電解研磨でも不
十分な研磨除去量であれば、不満足な空洞性能しか得ら
れないが、これらの空洞を真空焼鈍して、適切に後処理
すると、空洞性能が回復することを発見した。このこと
は、ニオブの吸蔵した水素が放出されて性能が回復した
ことを意昧している。
For example, FIGS. 3 and 4 show that a niobium accelerating cavity is polished by electropolishing to 100 μm in the conventional manner, then vacuum annealed at 700 ° C., the cavity performance is confirmed in advance, and the cavity itself is placed in a container. Using SiC as a polishing medium, only the inner surface is mechanically polished while rotating to form a surface defect layer artificially. FIG. 3 is electrolytically polished, FIG. 4 is chemically polished, and 20 μm so that the defect layer remains. The figure shows the results of measuring the performance of the target, which is obtained by polishing and removing niobium and smoothing the niobium. As is clear from these results, if the amount of removal is insufficient even by chemical polishing or electrolytic polishing, only unsatisfactory cavity performance can be obtained.However, if these cavities are vacuum-annealed and appropriately post-treated, , Found that the cavity performance was restored. This means that the hydrogen stored by niobium was released and the performance was restored.

【0012】従って、ニオブ材の表面欠陥層を完全に除
去できれば、電解研磨のみでも水素吸蔵の問題をそれ程
気にしなても済むと言う可能性も残されてはいるが、何
分にも電解研磨は、研磨除去速度が著しく遅く、研磨時
間の長さが再びコストアップに繋がってしまうと言う難
点がある。
Therefore, if the surface defect layer of the niobium material can be completely removed, there is a possibility that it is not necessary to worry about the problem of hydrogen occlusion by electrolytic polishing alone. Polishing has a disadvantage that the polishing removal rate is extremely slow, and the length of polishing time leads to an increase in cost again.

【0013】以上の知見に基づいて、高加速性能を有す
る加速空洞を低コストで得る方法を種々検討した結果、
化学研磨と電解研磨とを組み合わせて二段階で研磨すれ
ば、両方法の利点が合算されて、短時間で、研磨後の真
空焼鈍を全く不要と出来るのみならず、高いQ値と加速
電界の優れた加速空洞の得られることを見出した。
Based on the above findings, as a result of various studies on low-cost methods for obtaining an acceleration cavity having high acceleration performance,
If polishing is performed in two stages by combining chemical polishing and electrolytic polishing, the advantages of both methods are combined, and in a short time, not only the vacuum annealing after polishing can be completely eliminated, but also the high Q value and acceleration electric field It has been found that an excellent acceleration cavity can be obtained.

【0014】すなわち、化学研磨で表面欠陥層の除去を
行い、続いて電解研磨を併用してニオブないしニオブク
ラッド製加速空洞を平滑化仕上げすることにより、真空
焼鈍や長時間に及ぶ電解研磨を行わなくても、短時間で
高性能な加速空洞を得ることが出来るので、製法から見
ても、加工時間の短縮効果から見ても、さらには真空焼
鈍することによる機械強度の低下もないので、強度保持
のための余分な材料の使用や加工を不要と出来るもので
あり、極めて有用な研磨方法であると言える。
That is, the surface defect layer is removed by chemical polishing, and subsequently, the accelerating cavity made of niobium or niobium cladding is smoothed and finished by using electrolytic polishing together, thereby performing vacuum annealing or electropolishing for a long time. Even if it is not necessary, a high-performance acceleration cavity can be obtained in a short time, so from the viewpoint of the manufacturing method and the effect of shortening the processing time, furthermore, there is no reduction in mechanical strength due to vacuum annealing, The use and processing of an extra material for maintaining strength can be made unnecessary, and it can be said that this is an extremely useful polishing method.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について説明する。まず、ニオブ板材を曲げ加工、プ
レス成型加工、電子ビーム溶接などを行うことによっ
て、加速空洞を整形し、機械的に内面を整備した後に、
まず、化学研磨によって50〜300μm研磨除去す
る。化学研磨によって除去するニオブ厚に50〜300
μmと幅を持たせてある理由は、空洞の製作方法によっ
て、若干表面欠陥層の深さが異なることによる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. First, after bending the niobium plate, press forming, electron beam welding, etc. to shape the accelerating cavity and mechanically maintain the inner surface,
First, 50 to 300 μm is removed by chemical polishing. 50-300 to the niobium thickness removed by chemical polishing
The reason for having a width of μm is that the depth of the surface defect layer is slightly different depending on the method of manufacturing the cavity.

【0016】化学研磨は、研磨液に空洞全体を浸漬して
も良く、あるいは空洞を容器として空洞内部にのみ研磨
液を注入して研磨を行っても良いが、最も均一に空洞内
表面を溶解除去し得るのは、空洞の軸心を地面と平行に
置いた状態で、円周方向に回転させながら、一方の開口
部から他方の開口部に向かって、温度コン卜ロールされ
た研磨液を流しながら研磨する方法が、最も良いことも
分かった。そして研磨が終了すれば、空洞から研磨液を
速やかに排出し、水洗した後、アルミニウム製の対極を
挿入して、電解研磨液を化学研磨の場合と同じように一
方向の開口部から流しながら、空洞を陽極として電解研
磨する。電解研磨によって溶解除去するニオブの厚み
は、5〜100μmの範囲が好ましい。
In the chemical polishing, the entire cavity may be immersed in a polishing solution, or the polishing may be performed by injecting the polishing solution only into the cavity while using the cavity as a container. What can be removed is that the polishing liquid whose temperature has been controlled from one opening toward the other while rotating in the circumferential direction with the axis of the cavity placed parallel to the ground. It turned out that the method of polishing while flowing was the best. Then, when the polishing is completed, the polishing liquid is quickly discharged from the cavity, washed with water, an aluminum counter electrode is inserted, and the electrolytic polishing liquid is caused to flow from the one-way opening as in the case of chemical polishing. Then, electrolytic polishing is performed using the cavity as an anode. The thickness of niobium dissolved and removed by electrolytic polishing is preferably in the range of 5 to 100 μm.

【0017】化学研磨の後に電解研磨を実施する理由
は、ニオブ表面の平滑化によって表面残留抵抗を低減さ
せ、高いQ値と高い加速電界を得る為である。従って、
むやみやたらと研磨時間を長くしても、いたずらにニオ
ブを肉痩せさせるだけでなく、研磨費用の増加につなが
る。反面、研磨時間が短いと十分な空洞性能の改善が出
来ないと言う問題がある。
The reason why the electrolytic polishing is performed after the chemical polishing is to reduce the surface residual resistance by smoothing the niobium surface and obtain a high Q value and a high accelerating electric field. Therefore,
Unnecessarily long polishing times not only unnecessarily thins niobium, but also increases polishing costs. On the other hand, if the polishing time is short, there is a problem that the cavity performance cannot be sufficiently improved.

【0018】(実施例)空洞全長570mm、空洞最大
径210mm、ビームパイプ径80mm、肉厚2.5m
mの1300MHzの5連空洞を、図5の如く、回転付
与機能、倒立機能を備えた架台上に乗せ、1rpmで回
転させながら、30℃に保った89%リン酸1容、67
%硝酸1容、40%フッ化水素酸1容からなる化学研磨
液を、120ml/分で通液しながら、30分間通液
(300μm研磨目標)した。その後、空洞に回転を与
えたままで、研磨液を急速に排出すると共に、横転、倒
立を繰り返して純水洗浄した後、アルミニウム製電極パ
イプを装着し、空洞を水平状態に戻し、0.4rpmで
回転させながら25℃に保たれた98%硫酸85容、4
0%フッ化水素酸10容からなる電解研磨液を、4l/
分の速度で通液しながら、平均電流密度50mA/cm
2で、120分間(15μm研磨目標)電解研磨した。
しかる後、空洞を倒立させたり、横転させたりして、純
水洗浄、超純水洗浄した。この空洞のトータル研磨量を
超音波膜厚計で測定すると、平均310μmであり、ま
た、2°KでのQ値1010、加速電界35MV/mと言
う高性能な加速空洞が得られた。
(Embodiment) Total cavity length 570 mm, maximum cavity diameter 210 mm, beam pipe diameter 80 mm, wall thickness 2.5 m
As shown in FIG. 5, a 5-unit cavity of 1300 MHz of m is placed on a gantry having a rotation imparting function and an inverted function, and is rotated at 1 rpm while keeping 1 volume of 89% phosphoric acid kept at 30 ° C., 67
A chemical polishing solution consisting of 1 volume of 1% nitric acid and 1 volume of 40% hydrofluoric acid was passed for 30 minutes (polishing target of 300 μm) while passing at 120 ml / min. After that, while rotating the cavity, the polishing liquid is rapidly discharged, and the water is repeatedly washed over with pure water by repeatedly turning over and inverting, then the aluminum electrode pipe is attached, and the cavity is returned to a horizontal state at 0.4 rpm. 85 volumes of 98% sulfuric acid kept at 25 ° C. while rotating, 4
An electropolishing solution consisting of 10 volumes of 0% hydrofluoric acid was added at 4 l /
The average current density is 50 mA / cm
In step 2 , electrolytic polishing was performed for 120 minutes (15 μm polishing target).
Thereafter, the cavity was turned over or turned over, and then washed with pure water and ultrapure water. When the total polishing amount of the cavity was measured with an ultrasonic film thickness meter, an average of 310 μm was obtained, and a high-performance acceleration cavity having a Q value of 10 10 at 2 ° K and an acceleration electric field of 35 MV / m was obtained.

【0019】なお、比較の為に、化学研磨液のみで32
分間通液(320μm研磨目標)して洗浄したものと、
電解研磨のみで32時間(320μm研磨目標)連続研
磨したものを作製し、空洞性能を2°Kで測定すると、
それぞれQ値は、1010であり、また加速電界は、それ
ぞれ25MV/mと34M/mとなり、加速性能に極端
な差異を生じた。
For comparison, only 32 chemical polishing liquids were used.
For one minute (320 μm polishing target) and washed,
A sample was continuously polished for 32 hours (320 μm polishing target) only by electrolytic polishing, and the cavity performance was measured at 2 ° K.
The Q value was 10 10 , and the acceleration electric fields were 25 MV / m and 34 M / m, respectively, which caused an extreme difference in acceleration performance.

【0020】図5に示す研磨装置は特願平10−160
446号に開示した装置であり、図中、1は金属製中空
体、2は架台、3はモータ、4は中空体保持金具、5
a,5bはスリーブ、6は給液パイプ、7a,7bは陰
極ターミナル、8a,8bはカーボンブラシ、9a,9
bは液戻し配管、10は内圧制御口、11は排気口、1
2は給液口、13は研磨液、14,15は平歯車、16
は排液口、17は油圧シリンダである。
The polishing apparatus shown in FIG. 5 is disclosed in Japanese Patent Application No. Hei 10-160.
No. 446, in which 1 is a metal hollow body, 2 is a gantry, 3 is a motor, 4 is a hollow body holding bracket, 5
a and 5b are sleeves, 6 is a liquid supply pipe, 7a and 7b are cathode terminals, 8a and 8b are carbon brushes, 9a and 9
b is a liquid return pipe, 10 is an internal pressure control port, 11 is an exhaust port, 1
2 is a liquid supply port, 13 is a polishing liquid, 14 and 15 are spur gears, 16
Is a drain port, and 17 is a hydraulic cylinder.

【0021】[0021]

【発明の効果】請求項1又は2の発明によれば、ニオブ
材自体の機械的強度を損なわず、尚且つ吸蔵水素の影響
を最小限度に食止めることにより、効果的に加工変質層
の除去と平滑化を達成し、著しく高周波加速性能を改善
し得る効果がある。また、請求項3の発明によれば、研
磨後の真空焼鈍を不要とすることができる効果がある。
さらに、請求項4の発明によれば、加速空洞の形状を有
効に利用して、効率良く、また精度良く研磨することが
できる効果がある。
According to the first or second aspect of the present invention, the affected layer is effectively removed without impairing the mechanical strength of the niobium material itself and minimizing the influence of the stored hydrogen. This has the effect of achieving smoothing and remarkably improving high-frequency acceleration performance. Further, according to the invention of claim 3, there is an effect that vacuum annealing after polishing is not required.
Further, according to the invention of claim 4, there is an effect that the shape of the accelerating cavity can be effectively utilized, and the polishing can be performed efficiently and accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の研磨方法を適用される加速空洞の断面
構成を示す説明図である。
FIG. 1 is an explanatory view showing a sectional configuration of an acceleration cavity to which a polishing method of the present invention is applied.

【図2】化学研磨と電解研磨の水素吸蔵量の差を示す説
明図である。
FIG. 2 is an explanatory diagram showing a difference in hydrogen storage amount between chemical polishing and electrolytic polishing.

【図3】機械研磨後に電解研磨した加速空洞の性能を示
す特性図である。
FIG. 3 is a characteristic diagram showing the performance of an acceleration cavity subjected to electrolytic polishing after mechanical polishing.

【図4】機械研磨後に化学研磨した加速空洞の性能を示
す特性図である。
FIG. 4 is a characteristic diagram showing the performance of an acceleration cavity chemically polished after mechanical polishing.

【図5】本発明の研磨方法を実施するための研磨装置の
正面図である。
FIG. 5 is a front view of a polishing apparatus for performing the polishing method of the present invention.

【符号の説明】[Explanation of symbols]

1 金属製中空体 2 架台 3 モータ 13 研磨液 DESCRIPTION OF SYMBOLS 1 Metal hollow body 2 Stand 3 Motor 13 Polishing liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村修平 大阪府大阪市西淀川区姫島5丁目12番20号 株式会社野村鍍金内 Fターム(参考) 2G085 BA04 EA01 EA04  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Shuhei Nomura 5-12-20 Himejima, Nishiyodogawa-ku, Osaka-shi, Osaka F-term Co., Ltd. F term (reference) 2G085 BA04 EA01 EA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 両端に開口部を有する金属製の中空
体であって、少なくとも内面がニオブから構成される超
伝導加速空洞の表面を研磨する方法において、内面をま
ず化学的に研磨除去する工程と続いて電気化学的に研磨
除去する工程とを併用することを特徴とする超伝導加速
空洞の表面研磨方法。
1. A method for polishing a surface of a superconducting accelerating cavity which is a metal hollow body having openings at both ends and at least an inner surface of which is made of niobium, wherein the inner surface is first chemically polished and removed. And a subsequent step of electrochemically polishing and removing the surface.
【請求項2】 超伝導加速空洞の内面が0.2〜10
mmの厚みを有するニオブ材ないしニオブと他の金属と
の複層から構成されていることを特徴とする請求項1記
載の超伝導加速空洞の表面研磨方法。
2. The superconducting accelerating cavity has an inner surface of 0.2 to 10
2. The method for polishing a surface of a superconducting accelerating cavity according to claim 1, wherein the method comprises a niobium material having a thickness of 1 mm or a multilayer of niobium and another metal.
【請求項3】 化学研磨によるニオブの研磨除去厚は
50〜300μmとし、続いて行う電解研磨によるニオ
ブの研磨除去厚は5〜100μmとすることを特徴とす
る請求項1記載の超伝導加速空洞の表面研磨方法。
3. The superconducting accelerating cavity according to claim 1, wherein the removal thickness of niobium by chemical polishing is 50 to 300 μm, and the removal thickness of niobium by subsequent electrolytic polishing is 5 to 100 μm. Surface polishing method.
【請求項4】 両端に開口部を有する金属製の中空体
であって、少なくとも内面がニオブから構成される超伝
導加速空洞の軸心が地面と水平になる様にセットした状
態で、軸心を中心に回転を付与しつつ化学研磨液を一方
の開口部から他方の開口部に向けて流しながらニオブ材
の内表面を研磨除去した後、続いてアルミニウム製の電
極を装着して、電解研磨液で再度電解研磨することを特
徴とする超伝導加速空洞の表面研磨方法。
4. A metal hollow body having openings at both ends, wherein a superconducting acceleration cavity having at least an inner surface made of niobium is set so that an axis thereof is horizontal with the ground. After the inner surface of the niobium material is polished and removed while flowing a chemical polishing liquid from one opening to the other while applying rotation around the center, then an aluminum electrode is attached and electrolytic polishing is performed. A method for polishing a surface of a superconducting acceleration cavity, wherein electrolytic polishing is performed again with a liquid.
JP10393399A 1999-04-12 1999-04-12 Surface polishing method for superconducting acceleration cavity Pending JP2000294398A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10393399A JP2000294398A (en) 1999-04-12 1999-04-12 Surface polishing method for superconducting acceleration cavity
DE2000118244 DE10018244A1 (en) 1999-04-12 2000-04-12 Superconducting acceleration cavity, for a charged particle accelerator, is internally polished by chemical polishing and then electrolytic polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10393399A JP2000294398A (en) 1999-04-12 1999-04-12 Surface polishing method for superconducting acceleration cavity

Publications (1)

Publication Number Publication Date
JP2000294398A true JP2000294398A (en) 2000-10-20

Family

ID=14367248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10393399A Pending JP2000294398A (en) 1999-04-12 1999-04-12 Surface polishing method for superconducting acceleration cavity

Country Status (2)

Country Link
JP (1) JP2000294398A (en)
DE (1) DE10018244A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384305C (en) * 2005-11-11 2008-04-23 赵夔 Large crystal grain niobium material superconducting cavity and its manufacturing method
JP2008243671A (en) * 2007-03-28 2008-10-09 Japan Synchrotron Radiation Research Inst Etching method of acceleration cavity
CN102811546A (en) * 2012-07-24 2012-12-05 中国原子能科学研究院 Method for improving Q (Quality) value of high-frequency resonant cavity
CN113823543A (en) * 2021-08-02 2021-12-21 中国科学院空天信息创新研究院 Processing method for control electrode in multi-beam klystron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343649B1 (en) * 2012-01-23 2016-05-17 U.S. Department Of Energy Method for producing smooth inner surfaces

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100384305C (en) * 2005-11-11 2008-04-23 赵夔 Large crystal grain niobium material superconducting cavity and its manufacturing method
JP2008243671A (en) * 2007-03-28 2008-10-09 Japan Synchrotron Radiation Research Inst Etching method of acceleration cavity
JP4744469B2 (en) * 2007-03-28 2011-08-10 財団法人高輝度光科学研究センター Accelerated cavity etching method
CN102811546A (en) * 2012-07-24 2012-12-05 中国原子能科学研究院 Method for improving Q (Quality) value of high-frequency resonant cavity
CN113823543A (en) * 2021-08-02 2021-12-21 中国科学院空天信息创新研究院 Processing method for control electrode in multi-beam klystron
CN113823543B (en) * 2021-08-02 2024-03-01 中国科学院空天信息创新研究院 Processing method for control electrode in multi-beam klystron

Also Published As

Publication number Publication date
DE10018244A1 (en) 2000-11-02

Similar Documents

Publication Publication Date Title
WO2020186892A1 (en) Method for preparing ultra-low-temperature weak current control metal material ebsd sample
Lilje et al. Improved surface treatment of the superconducting TESLA cavities
CN113385895B (en) High-stability niobium-based superconducting accelerating cavity and preparation method thereof
JP3881517B2 (en) Method for producing a sputter target with improved finish
JP2000294398A (en) Surface polishing method for superconducting acceleration cavity
JP4184344B2 (en) Surface treatment method for vacuum member
CN113373483B (en) Preparation method of copper-based thick-wall niobium-based superconducting cavity
CN2842984Y (en) Large-particle niobium-material super conductive cavity
CN113373404B (en) Copper-based thick-wall Nb 3 Sn film superconducting cavity and preparation method thereof
JPS61101946A (en) Mesh manufacturing system
CN111800933B (en) Medium-temperature annealing method for superconducting cavity
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same
JPH09246111A (en) Formation of electrode foil for aluminum electrolytic capacitor
JP2745575B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2003059777A (en) METHOD FOR MAKING SOUND AMORPHOUS Nb OXIDE FILM AND METHOD FOR PRODUCING Nb SOLID ELECTROLYTIC CAPACITOR
JP2696882B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
Hussey et al. The etching of oxide scales on metals
JP4744469B2 (en) Accelerated cavity etching method
JP3687346B2 (en) Nb3 Al-based superconducting wire and manufacturing method thereof
TWI841025B (en) Steel sheet for cans and method of producing same
JPH07272983A (en) Electrode foil for aluminum electrolytic capacitor and its manufacturing method
JP2006328495A (en) Method for imparting corrosion resistance to aluminum or aluminum alloy
JPH04131400A (en) Electrolytic polishing method of superconducting cavity
Ghanbari Haghighi et al. Effect of Applied Voltage on the Formation of TiO2 Nanotube on Titanium Substrate using Anodizing Process
RU2115915C1 (en) Process of manufacture of metal replica for analysis of nanometric ducts in tracking membranes