JP2000292513A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JP2000292513A
JP2000292513A JP11098805A JP9880599A JP2000292513A JP 2000292513 A JP2000292513 A JP 2000292513A JP 11098805 A JP11098805 A JP 11098805A JP 9880599 A JP9880599 A JP 9880599A JP 2000292513 A JP2000292513 A JP 2000292513A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
magnetoresistive element
magnetic sensor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098805A
Other languages
Japanese (ja)
Inventor
Masanaga Nishikawa
雅永 西川
Tamotsu Minamitani
保 南谷
Tomoharu Sato
友春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11098805A priority Critical patent/JP2000292513A/en
Publication of JP2000292513A publication Critical patent/JP2000292513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide magnetic sensor which will not malfunction even without a special noise-processing circuit. SOLUTION: A magnetic sensor is composed of a magnetoresistance element 12, a magnet for applying a bias magnetic field to the magnetoresistance element 12, and the like. The magnetoresistance element 12 consists of a substrate 22, a magnetism-sensitive part 23 set to an upper face 22a of the substrate 22, and terminal electrodes 24a and 24b set to both of end parts of the substrate 22. The magnetism-sensitive part 23 is formed of a serpentine magnetoresistance pattern 26 to obtain a predetermined magnetic reluctance value, with having a rectangular area as indicated by a chain line. The magnetoresistance element 12 is arranged to make a longitudinal direction of the magnetism-sensitive part 23 parallel to a direction K in which an object to be detected passes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気センサに関
し、具体的には磁性インクで印刷された文字、記号、パ
ターン等を検出したり、磁性体歯車の歯をカウントして
モータの回転速度を検出したり、あるいは、鋼球を検出
する際に使用される磁気センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor, and more particularly, to detecting characters, symbols, patterns, etc., printed with magnetic ink, and counting the teeth of a magnetic gear to reduce the rotational speed of a motor. The present invention relates to a magnetic sensor used for detecting or detecting a steel ball.

【0002】[0002]

【従来の技術】この種の磁気センサは、例えば図15に
示すような磁気抵抗素子1を有している。磁気抵抗素子
1は、基板2と、この基板2の上面2a(以下検知面2
aとする)に設けた感磁部3と、基板2の両端部に設け
た端子電極4a,4bとからなる。感磁部3は、蛇行形
状の磁気抵抗パターン7にて構成され、図15中におい
て点線で示すように長方形の領域を有している。そし
て、従来の磁気抵抗素子1は、検出対象物の通過方向K
に対して、感磁部3の長手方向が直交するように配置さ
れていた。これは、検出対象物の左右のブレに対して、
より確実な検知能力を持たせるためである。
2. Description of the Related Art A magnetic sensor of this type has a magnetoresistive element 1 as shown in FIG. The magnetoresistive element 1 includes a substrate 2 and an upper surface 2a of the substrate 2 (hereinafter, a detection surface 2a).
a) and terminal electrodes 4a and 4b provided at both ends of the substrate 2. The magnetic sensing part 3 is formed of a meandering magnetoresistive pattern 7, and has a rectangular area as shown by a dotted line in FIG. Then, the conventional magnetoresistive element 1 has a detection object passing direction K
In contrast, the magnetic sensing portion 3 is arranged so that the longitudinal direction is orthogonal. This is for the left and right blur of the detection target,
This is to provide more reliable detection capability.

【0003】[0003]

【発明が解決しようとする課題】ところで、検出対象物
の通過速度が速くなってくると、検出対象物が感磁部3
の前を通過する時間が短くなる。ところが、従来の磁気
抵抗素子1は、感磁部3の短辺方向が検出対象物の通過
方向Kに一致しているため、磁気センサからの出力波形
の幅が極めて狭くなり、通過信号による波形とノイズ
(例えば、衝撃等によるノイズや電源からのノイズ)に
よる瞬時波形との区別がつきにくくなる。この結果、磁
気センサが誤動作するおそれがあった。このため、信号
ラインにノイズが乗らないようにノイズカット回路を別
に設ける必要があり、信号処理回路が複雑になるという
不具合があった。
By the way, when the passing speed of the detection target increases, the detection target moves to the magnetic sensing unit 3.
The time to pass before is shorter. However, in the conventional magnetoresistive element 1, the width of the output waveform from the magnetic sensor is extremely narrow because the short side direction of the magnetic sensing part 3 coincides with the passing direction K of the detection target, and the waveform based on the passing signal is used. And an instantaneous waveform due to noise (for example, noise due to impact or the like or noise from a power supply) are difficult to distinguish. As a result, the magnetic sensor may malfunction. For this reason, it is necessary to separately provide a noise cut circuit so that noise does not get on the signal line, and the signal processing circuit becomes complicated.

【0004】そこで、本発明の目的は、特別なノイズ処
理回路を設けなくても、誤動作しない磁気センサを提供
することにある。
An object of the present invention is to provide a magnetic sensor which does not malfunction even if a special noise processing circuit is not provided.

【0005】[0005]

【課題を解決するための手段及び作用】以上の目的を達
成するため、本発明に係る磁気センサは、磁気抵抗素子
と、前記磁気抵抗素子にバイアス磁界を印加する磁石と
を備え、前記磁気抵抗素子の感磁部の長手方向を、検出
対象物の通過方向に対して略平行に配置している。
In order to achieve the above object, a magnetic sensor according to the present invention comprises a magnetoresistive element and a magnet for applying a bias magnetic field to the magnetoresistive element. The longitudinal direction of the magnetic sensing part of the element is arranged substantially parallel to the direction in which the detection target passes.

【0006】以上の構成により、検出対象物の通過方向
と磁気抵抗素子の感磁部の長手方向とが略同一方向とな
り、検知対象物が感磁部を通過する時間が長くなる。従
って、磁気センサからの出力波形の幅が従来より広くな
り、通過信号による波形とノイズによる瞬時波形との区
別がつき易くなる。
With the above arrangement, the direction of passage of the detection target and the longitudinal direction of the magnetic sensing portion of the magnetoresistive element are substantially the same, and the time for the detection target to pass through the magnetic sensing portion becomes longer. Therefore, the width of the output waveform from the magnetic sensor becomes wider than before, and it becomes easier to distinguish between a waveform based on a passing signal and an instantaneous waveform based on noise.

【0007】また、磁気抵抗素子の感磁部の短辺方向の
長さを、略球形状の検出対象物の直径より短くすること
により、検出対象物が通過する際、感磁部の短辺方向の
全体に渡って磁束が集中する。従って、感磁部全体の磁
気抵抗変化率つまり感度が大きくなる。
Further, by making the length of the magnetic sensing portion of the magnetoresistive element in the short side direction shorter than the diameter of the substantially spherical detection object, the short side of the magnetic sensing portion when the detection object passes therethrough. Magnetic flux concentrates throughout the direction. Accordingly, the rate of change in magnetoresistance, that is, the sensitivity, of the entire magnetic sensing portion increases.

【0008】また、本発明に係る磁気センサは、磁気抵
抗素子が磁性体基板と該磁性体基板上に設けた感磁部と
を有し、磁性体基板の形状が感磁部の略相似形であるこ
とを特徴とする。磁気抵抗素子に磁性体基板を使用する
と、磁石のバイアス磁界が磁性体基板に集中するため、
感度が向上する。さらに、磁性体基板の形状と感磁部の
形状とが略相似形であるため、感磁部に印加されるバイ
アス磁界の強度が均一になり易い。
Further, in the magnetic sensor according to the present invention, the magnetoresistive element has a magnetic substrate and a magnetic sensing portion provided on the magnetic substrate, and the shape of the magnetic substrate is substantially similar to that of the magnetic sensing portion. It is characterized by being. When a magnetic substrate is used for the magnetoresistive element, the bias magnetic field of the magnet concentrates on the magnetic substrate.
The sensitivity is improved. Further, since the shape of the magnetic substrate and the shape of the magnetically sensitive portion are substantially similar, the intensity of the bias magnetic field applied to the magnetically sensitive portion tends to be uniform.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る磁気センサの
実施形態について添付図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the magnetic sensor according to the present invention will be described below with reference to the accompanying drawings.

【0010】[第1実施形態、図1〜図6参照]第1実
施形態は、磁性インクで印刷された文字、記号、パター
ン等を検出する磁気センサを例にして説明する。
[First Embodiment, see FIGS. 1 to 6] In the first embodiment, a magnetic sensor for detecting characters, symbols, patterns, and the like printed with magnetic ink will be described as an example.

【0011】図1は磁気センサ11の外観を示し、図2
は磁気センサ11の構成を示している。磁気センサ11
は、磁気抵抗素子12、磁気抵抗素子12にバイアス磁
界を印加する磁石13、部品12,13を搭載するため
の支持部材である回路基板14及び非磁性保護ケース1
6等にて構成されている。
FIG. 1 shows the appearance of the magnetic sensor 11, and FIG.
Indicates the configuration of the magnetic sensor 11. Magnetic sensor 11
Are a magneto-resistive element 12, a magnet 13 for applying a bias magnetic field to the magneto-resistive element 12, a circuit board 14 as a support member for mounting the components 12, 13, and a non-magnetic protective case 1.
6 and the like.

【0012】図3に示すように、磁気抵抗素子12は、
基板22と、この基板22の上面22a(以下、検知面
22aとする)に設けた感磁部23と、基板22の両端
部に設けた端子電極24a,24bとからなる。感磁部
23は、所定の磁気抵抗値を得るため蛇行形状の磁気抵
抗パターン26にて構成され、図3中において点線で示
すように長方形の領域を有している。そして、この磁気
抵抗素子12は、検出対象物の通過方向Kに対して、感
磁部23の長手方向が平行になるように配置されてい
る。
As shown in FIG. 3, the magnetoresistive element 12
It comprises a substrate 22, a magnetic sensing portion 23 provided on an upper surface 22a of the substrate 22 (hereinafter referred to as a detection surface 22a), and terminal electrodes 24a and 24b provided on both ends of the substrate 22. The magnetic sensing portion 23 is formed of a meandering magnetoresistive pattern 26 to obtain a predetermined magnetoresistance value, and has a rectangular area as shown by a dotted line in FIG. The magnetoresistive element 12 is arranged so that the longitudinal direction of the magnetic sensing part 23 is parallel to the passing direction K of the detection target.

【0013】基板22は絶縁体基板上に蒸着等でInS
b膜等を形成したものや、InSb等の単結晶半導体基
板、あるいは別に成膜した半導体薄膜や単結晶基板を絶
縁基板上に接着剤で貼り付けた複合基板としたもの等が
用いられる。ここに、基板22として磁性体基板を使用
し、該磁性体基板22上に感磁部23を設けることによ
り、磁石13のバイアス磁界が磁性体基板22に集中し
て感度が向上する。さらに、磁性体基板22の形状と感
磁部23の形状とを略相似形に設定しており、感磁部2
3に印加されるバイアス磁界の強度が均一になり易く、
安定した検出が可能になる。検知面22aに対向する下
面22bが、磁気抵抗素子12の実装面とされる。磁気
抵抗素子12は、磁界が強くなるにつれて抵抗値が大き
くなる。磁気抵抗パターン26は、そのセグメントの幅
Wと長さLの比W/Lを大きくして高感度なものにして
いる。
The substrate 22 is made of InS on an insulating substrate by vapor deposition or the like.
A substrate formed with a b film or the like, a single crystal semiconductor substrate such as InSb, or a composite substrate in which a separately formed semiconductor thin film or single crystal substrate is attached to an insulating substrate with an adhesive, or the like is used. Here, by using a magnetic substrate as the substrate 22 and providing the magnetic sensing portion 23 on the magnetic substrate 22, the bias magnetic field of the magnet 13 is concentrated on the magnetic substrate 22 and the sensitivity is improved. Further, the shape of the magnetic substrate 22 and the shape of the magnetic sensing part 23 are set to be substantially similar to each other.
3, the intensity of the bias magnetic field applied to
Stable detection becomes possible. The lower surface 22b facing the detection surface 22a is a mounting surface for the magnetoresistive element 12. The resistance value of the magnetoresistive element 12 increases as the magnetic field increases. The magnetoresistive pattern 26 has a high sensitivity by increasing the ratio W / L of the width W to the length L of the segment.

【0014】図2に示すように、磁気抵抗素子12は、
接着剤等により回路基板14上に水平に固着される。回
路基板14としては、ガラス繊維を含んだエポキシやポ
リイミド樹脂基板、紙エポキシ基板、アルミナ基板等が
用いられる。一方、リード端子18は、回路基板14に
設けた貫通穴14aに挿通されている。リード端子18
の頭部と磁気抵抗素子12の端子電極24a,24bと
は、ワイヤ17(あるいはリードフレーム)を介して電
気的に接続されている。
As shown in FIG. 2, the magnetoresistive element 12
It is horizontally fixed on the circuit board 14 by an adhesive or the like. As the circuit board 14, an epoxy or polyimide resin board containing glass fiber, a paper epoxy board, an alumina board, or the like is used. On the other hand, the lead terminals 18 are inserted into through holes 14 a provided in the circuit board 14. Lead terminal 18
And the terminal electrodes 24a and 24b of the magnetoresistive element 12 are electrically connected via a wire 17 (or a lead frame).

【0015】回路基板14の磁気抵抗素子12実装面と
は反対側の面には、磁石13が接着剤を利用して搭載さ
れる。この磁石13は永久磁石であってもよいし、電磁
石であってもよい。磁石13は回路基板14を挟んで磁
気抵抗素子12に対向している。部品12,13,18
を搭載した回路基板14は、非磁性保護ケース16内に
充填材15と共に収納される。充填材15には、耐湿性
に優れかつ機械的強度が比較的高いエポキシ樹脂等が使
用される。非磁性保護ケース16は、ベリリウム銅、燐
青銅、黄銅、洋白、非磁性ステンレス、アルミニウム、
セラミック、樹脂等の非磁性材料からなる。なお、検知
感度を高めるために、磁気抵抗素子12が、回路基板1
4を挟まないで、磁石13上に直接実装される場合もあ
る。
A magnet 13 is mounted on the surface of the circuit board 14 opposite to the surface on which the magnetoresistive element 12 is mounted, using an adhesive. This magnet 13 may be a permanent magnet or an electromagnet. The magnet 13 faces the magnetoresistive element 12 with the circuit board 14 interposed therebetween. Parts 12, 13, 18
Is mounted together with the filler 15 in the non-magnetic protective case 16. As the filler 15, an epoxy resin or the like having excellent moisture resistance and relatively high mechanical strength is used. The non-magnetic protective case 16 is made of beryllium copper, phosphor bronze, brass, nickel silver, non-magnetic stainless steel, aluminum,
It is made of a non-magnetic material such as ceramic and resin. In order to increase the detection sensitivity, the magnetoresistive element 12 is mounted on the circuit board 1.
4 may be directly mounted on the magnet 13 without sandwiching it.

【0016】次に、以上の構成からなる磁気センサ11
の作用効果について説明する。図4は、磁気センサ11
を用いた電気回路図である。磁気センサ11は、抵抗3
4に直列に接続されている。磁気センサ11と抵抗34
の中継線は、増幅用トランジスタ33のベースに接続さ
れ、磁気センサ11の他端はトランジスタ33のエミッ
タに接続され、抵抗34の他端はトランジスタ33のコ
レクタに接続されている。この回路は、抵抗34の一端
とトランジスタ33のコレクタが端子35に接続され、
磁気センサ11の一端とトランジスタ33のエミッタが
端子36に接続されている、2線式出力結線回路となっ
ている。
Next, the magnetic sensor 11 having the above configuration
The operation and effect of will be described. FIG. 4 shows the magnetic sensor 11.
It is an electric circuit diagram using. The magnetic sensor 11 has a resistance 3
4 in series. Magnetic sensor 11 and resistor 34
Is connected to the base of the amplifying transistor 33, the other end of the magnetic sensor 11 is connected to the emitter of the transistor 33, and the other end of the resistor 34 is connected to the collector of the transistor 33. In this circuit, one end of the resistor 34 and the collector of the transistor 33 are connected to the terminal 35,
One end of the magnetic sensor 11 and the emitter of the transistor 33 are connected to a terminal 36 to form a two-wire output connection circuit.

【0017】予め、端子35に、センサ電源によって直
流電圧Vcを印加し、抵抗34に直流電流を流してお
く。検出対象物が磁気センサ11の前を通過していない
とき、磁石13によるバイアス磁場は磁気抵抗素子12
へ集中しておらず、磁気抵抗素子12の抵抗に変化はな
く、その抵抗値は低い。従って、トランジスタ33のベ
ース・エミッタ間電圧VBEは小さく、トランジスタ33
の動作点に達しない。図5に示すように、トランジスタ
33は遮断領域であるため、トランジスタ33はOFF
状態のままであり、この電気回路の出力電流Iは下降し
ている。
A DC voltage Vc is applied to the terminal 35 in advance by a sensor power supply, and a DC current is applied to the resistor 34 in advance. When the detection target does not pass in front of the magnetic sensor 11, the bias magnetic field generated by the magnet 13 is
And the resistance of the magnetoresistive element 12 does not change, and its resistance value is low. Therefore, the base-emitter voltage V BE of the transistor 33 is small,
Operating point is not reached. As shown in FIG. 5, since the transistor 33 is in the cutoff region, the transistor 33 is turned off.
The state remains, and the output current I of this electric circuit is falling.

【0018】次に、検出対象物が矢印Kの方向からきて
磁気センサ11の前を通過しているとき、磁石13によ
るバイアス磁場は磁気抵抗素子12へ集中するので、磁
気抵抗素子12の抵抗値は高くなる。従って、トランジ
スタ33のベース・エミッタ間電圧VBEは大きくなり、
図5に示すようにトランジスタ33は能動領域に到達す
るため、トランジスタ33はON状態となる。これによ
り、トランジスタ33のコレクタ電流Icが増大し、電
気回路の出力電流Iが上昇する。
Next, when the object to be detected comes in the direction of arrow K and passes in front of the magnetic sensor 11, the bias magnetic field generated by the magnet 13 concentrates on the magnetoresistive element 12, so that the resistance value of the magnetoresistive element 12 Will be higher. Therefore, the base-emitter voltage V BE of the transistor 33 increases,
As shown in FIG. 5, since the transistor 33 reaches the active region, the transistor 33 is turned on. As a result, the collector current Ic of the transistor 33 increases, and the output current I of the electric circuit increases.

【0019】検出対象物が磁気センサ11の前を通過し
て離反すると、磁石13によるバイアス磁場は磁気抵抗
素子12への集中がなくなり、磁気抵抗素子12の抵抗
値は元の低い値となる。従って、トランジスタ33のベ
ース・エミッタ間電圧VBEは小さくなり、トランジスタ
33はOFF状態となり、電気回路の出力電流Iは下降
する。こうして、図6に示すようなパルス状の出力電流
波形が得られ、この出力電流波形のパルス数をカウント
することによって、無接触で検出対象物の通過を検出す
ることができる。
When the object to be detected passes in front of the magnetic sensor 11 and separates, the bias magnetic field generated by the magnet 13 does not concentrate on the magnetoresistive element 12, and the resistance value of the magnetoresistive element 12 becomes the original low value. Accordingly, the base-emitter voltage V BE of the transistor 33 is reduced, the transistor 33 is turned off, and the output current I of the electric circuit decreases. In this way, a pulse-like output current waveform as shown in FIG. 6 is obtained. By counting the number of pulses of this output current waveform, the passage of the detection target can be detected without contact.

【0020】ここに、磁気抵抗素子12の感磁部23の
長手方向と検出対象物の通過方向Kとが平行であるの
で、検出対象物が感磁部23の前を通過する時間が長く
なる。従って、図15で示したように短辺方向が検出対
象物の通過方向に一致している磁気抵抗素子1を有した
従来の磁気センサと比較して、本第1実施形態の磁気セ
ンサ11の方が、電気回路の出力電流波形の幅が広くな
り、通過信号による波形とノイズによる瞬時波形との区
別がつき易くなる。
Here, since the longitudinal direction of the magnetic sensing portion 23 of the magnetoresistive element 12 is parallel to the passing direction K of the detection target, the time required for the detection target to pass in front of the magnetic sensing portion 23 becomes longer. . Therefore, as compared with the conventional magnetic sensor having the magnetoresistive element 1 whose short side coincides with the passing direction of the detection target as shown in FIG. As a result, the width of the output current waveform of the electric circuit becomes wider, and it becomes easier to distinguish between a waveform due to a passing signal and an instantaneous waveform due to noise.

【0021】具体的には、感磁部23の長辺方向の長さ
をD、短辺方向の長さをdとし、従来の磁気センサを用
いた電気回路の出力電流波形の幅をt、本第1実施形態
の磁気センサ11を用いた電気回路の出力電流波形の幅
をTとすると、以下の関係式が成立する。 T=t×(D/d)
Specifically, the length of the magnetic sensing portion 23 in the long side direction is D, the length in the short side direction is d, and the width of the output current waveform of the electric circuit using the conventional magnetic sensor is t. Assuming that the width of the output current waveform of the electric circuit using the magnetic sensor 11 of the first embodiment is T, the following relational expression holds. T = t × (D / d)

【0022】この結果、特別なノイズ処理回路を設けな
くても誤動作しない磁気センサ11を得ることができ
る。
As a result, it is possible to obtain the magnetic sensor 11 which does not malfunction even if no special noise processing circuit is provided.

【0023】[第2実施形態、図7〜図10参照]第2
実施形態は、パチンコ玉等の鋼球検出センサを例にして
説明する。
[Second Embodiment, see FIGS. 7 to 10]
The embodiment will be described using a steel ball detection sensor such as a pachinko ball as an example.

【0024】図7及び図8に示すように、鋼球検出セン
サ41は、磁気抵抗素子42、増幅用トランジスタ4
4、部品42、44を搭載するための回路基板45、磁
気抵抗素子42にバイアス磁界を印加する磁石54及び
非磁性保護ケース48にて構成されている。
As shown in FIGS. 7 and 8, the steel ball detection sensor 41 includes a magnetoresistive element 42 and an amplifying transistor 4.
4, a circuit board 45 for mounting the components 42 and 44, a magnet 54 for applying a bias magnetic field to the magnetoresistive element 42, and a non-magnetic protective case 48.

【0025】図9に示すように、磁気抵抗素子42は、
基板55と、この基板55の上面55a(以下、検知面
55aとする)に設けた感磁部56とを備えている。さ
らに、この磁気抵抗素子42は、同一基板55上に固定
抵抗43も設けている。これにより、部品点数を抑える
ことができ、実装コストも低減できる。
As shown in FIG. 9, the magnetoresistive element 42
It has a substrate 55 and a magnetic sensing portion 56 provided on an upper surface 55a of the substrate 55 (hereinafter, referred to as a detection surface 55a). Further, in the magnetoresistive element 42, a fixed resistor 43 is also provided on the same substrate 55. Thus, the number of components can be reduced, and the mounting cost can be reduced.

【0026】感磁部56は、所定の磁気抵抗値を得るた
め蛇行形状の磁気抵抗パターン57にて構成され、図9
中において点線で示すように長方形の領域を有してい
る。そして、この磁気抵抗素子42は、鋼球65の通過
方向Kに対して、感磁部56の長手方向が平行になるよ
うに配置されている。磁気抵抗パターン57は、そのセ
グメントの幅Wと長さLの比W/Lを大きくして高感度
なものにしている。
The magnetic sensing portion 56 is formed of a meandering magnetoresistive pattern 57 for obtaining a predetermined magnetoresistance value.
It has a rectangular area as shown by the dotted line. The magnetoresistive element 42 is arranged so that the longitudinal direction of the magnetic sensing portion 56 is parallel to the passing direction K of the steel ball 65. The magnetoresistive pattern 57 has a high sensitivity by increasing the ratio W / L of the width W to the length L of the segment.

【0027】さらに、本第2実施形態では、感磁部56
の短辺方向の長さを、鋼球65の直径より短く設定して
いる。これにより、鋼球65が感磁部56の前を通過す
る際、感磁部56の短辺方向の全体に渡って、磁石54
のバイアス磁界が効率良く集中する。従って、感磁部5
6全体の磁気抵抗変化率つまり感度を大きくすることが
できる。また、磁気抵抗素子42のサイズも小さくでき
る。仮に、感磁部56の短辺方向の長さを鋼球65の直
径より長くすると、感磁部56の短辺方向の縁端部でバ
イアス磁界がかなり弱くなり、感磁部56全体としての
感度が比較的小さくなる。
Further, in the second embodiment, the magnetic sensing unit 56
Are set shorter than the diameter of the steel ball 65. Thereby, when the steel ball 65 passes in front of the magnetic sensing part 56, the magnet 54 extends over the entire short side direction of the magnetic sensing part 56.
Bias magnetic field is efficiently concentrated. Therefore, the magnetic sensing part 5
6 can increase the rate of change in magnetoresistance, that is, the sensitivity. Further, the size of the magnetoresistive element 42 can be reduced. If the length of the magnetic sensing portion 56 in the short side direction is longer than the diameter of the steel ball 65, the bias magnetic field becomes considerably weak at the edge of the magnetic sensing portion 56 in the short side direction, and the magnetic sensing portion 56 as a whole The sensitivity is relatively small.

【0028】磁気抵抗素子42は、たとえばInSb,
InAs,GaAs等の化合物半導体を蒸着法やスパッ
タリング法等で基板55上に薄膜状に設けた後、この化
合物半導体薄膜の表面にAl等のメタル膜を蒸着法やス
パッタリング法等の方法で所定のピッチにて形成したも
のである。あるいは、磁気抵抗パターン57は、InS
b等の単結晶半導体基板55の表面にAl等のメタル膜
を所定のピッチで形成したものであってもよい。また、
半導体薄膜は、上記のように基板55上に直接形成した
り、単結晶半導体基板をそのまま用いてもよいし、別に
成膜した半導体薄膜や単結晶半導体基板をガラス、アル
ミナ、フェライト等の基板55上に接着剤で貼り付けた
複合基板としたものであってもよい。
The magnetoresistive element 42 is made of, for example, InSb,
After a compound semiconductor such as InAs or GaAs is provided in a thin film on the substrate 55 by an evaporation method or a sputtering method, a metal film such as Al is formed on the surface of the compound semiconductor thin film by a method such as an evaporation method or a sputtering method. It is formed at a pitch. Alternatively, the magnetoresistive pattern 57 is made of InS
A metal film such as Al may be formed at a predetermined pitch on the surface of the single crystal semiconductor substrate 55 such as b. Also,
The semiconductor thin film may be formed directly on the substrate 55 as described above, or a single crystal semiconductor substrate may be used as it is, or a separately formed semiconductor thin film or single crystal semiconductor substrate may be formed of a substrate 55 made of glass, alumina, ferrite, or the like. It may be a composite substrate that is pasted on with an adhesive.

【0029】ここに、基板55として磁性体基板を使用
し、該磁性体基板55上に感磁部56を設けることによ
り、磁石54のバイアス磁界が磁性体基板55に集中し
て感度が向上する。さらに、磁性体基板55の形状と感
磁部56の形状とを略相似形に設定しており、感磁部5
6に印加されるバイアス磁界の強度が均一になり易く、
安定した検出が可能になる。
Here, by using a magnetic substrate as the substrate 55 and providing the magnetic sensing portion 56 on the magnetic substrate 55, the bias magnetic field of the magnet 54 is concentrated on the magnetic substrate 55 to improve the sensitivity. . Further, the shape of the magnetic substrate 55 and the shape of the magnetic sensing portion 56 are set to be substantially similar to each other.
6, it is easy for the intensity of the bias magnetic field applied to be uniform,
Stable detection becomes possible.

【0030】固定抵抗43は、基板55上に形成された
InSb等の半導体薄膜やInSb等の単結晶半導体基
板や、Al、ニクロム等の金属薄膜やメタルグレーズ等
の厚膜を蛇行状にライン形成したものである。磁気抵抗
パターン57の一方の端部は出力電極62に接続され、
他方の端部は中継電極64に接続されている。固定抵抗
43の一方の端部は出力電極63に接続され、他方の端
部は中継電極64に接続されている。
The fixed resistor 43 is formed by forming a semiconductor thin film of InSb or the like, a single crystal semiconductor substrate of InSb or the like, a metal thin film of Al or Nichrome, or a thick film of metal glaze or the like on the substrate 55 in a meandering line. It was done. One end of the magnetoresistive pattern 57 is connected to the output electrode 62,
The other end is connected to the relay electrode 64. One end of the fixed resistor 43 is connected to the output electrode 63, and the other end is connected to the relay electrode 64.

【0031】また、基板55がフェライト等の磁性体か
らなる場合、磁石54のバイアス磁界は、基板55のエ
ッジ部で高くなる(図9に示した磁束密度分布図を参
照)。従って、図9に示すように、感磁部56を基板5
5の縁部に配置することによって、感度をさらに向上さ
せている。なお、図10に示す磁気抵抗素子42Aのよ
うに、感磁部56を基板55の中央部に配置すると、磁
石54のバイアス磁界は若干低いけれども安定している
ので(図10に示した磁束密度分布図を参照)、安定し
た感度が得られる。
When the substrate 55 is made of a magnetic material such as ferrite, the bias magnetic field of the magnet 54 increases at the edge of the substrate 55 (see the magnetic flux density distribution diagram shown in FIG. 9). Therefore, as shown in FIG.
5, the sensitivity is further improved. When the magneto-sensitive portion 56 is disposed at the center of the substrate 55 as in the magnetoresistive element 42A shown in FIG. 10, the bias magnetic field of the magnet 54 is slightly low but stable. (See distribution diagram), and stable sensitivity is obtained.

【0032】磁気抵抗素子42は、検知面55aを実装
面とし、出力電極62,63と回路基板45の回路パタ
ーン(図示せず)とを、直接半田付けしたり、導電性接
着剤等で接合することによって、回路基板45上に実装
される。
The magnetoresistive element 42 has the detection surface 55a as a mounting surface, and directly solders the output electrodes 62 and 63 and a circuit pattern (not shown) of the circuit board 45 or joins the conductive pattern with a conductive adhesive or the like. By doing so, it is mounted on the circuit board 45.

【0033】非磁性保護ケース48は、鋼球65の直径
より若干大きい径を有する検出穴49と、回路基板45
等を収容するための部品収容部51とを有している。検
出穴49は多角形の他に、円形、楕円形等任意である。
検出穴49の磁気抵抗素子42配置側には、検出穴49
の軸方向に延在した開口部49aが設けられている。検
出穴49と部品収容部51の境界部分には、回路基板4
5を挿入するためのガイド用凹部52が設けられてい
る。部品収容部51の検出穴49側とは反対の側には段
差部53が形成され、この段差部53に設けた凹部53
aに磁石54が嵌め込まれている。
The non-magnetic protective case 48 has a detection hole 49 having a diameter slightly larger than the diameter of the steel ball 65 and a circuit board 45.
And a component accommodating portion 51 for accommodating the like. The detection hole 49 is not limited to a polygon but may be a circle, an ellipse, or the like.
The detection hole 49 is provided on the side of the detection hole 49 where the magnetoresistive element 42 is disposed.
An opening 49a extending in the axial direction is provided. The circuit board 4 is located at the boundary between the detection hole 49 and the component housing 51.
5 is provided with a guide recess 52. A step 53 is formed on the side opposite to the detection hole 49 side of the component accommodating section 51, and a recess 53 provided in the step 53 is provided.
The magnet 54 is fitted in a.

【0034】部品42,44を搭載した回路基板45
は、その両端部をガイド用凹部52に挿入することによ
り、検出穴49の軸方向(言い換えると、鋼球65の通
過方向K)に対して平行になるように、検出穴49に接
して配置される。回路基板45の磁気抵抗素子42を実
装した面とは反対側の面は検出穴49の開口部49aに
露出し、検出穴49の内壁部の一部として兼用される。
磁気抵抗素子42は回路基板45と磁石54の間に配置
され、磁気抵抗素子42の感磁部56の長手方向は、検
出穴49の軸方向に対して平行である。磁石54は、磁
気抵抗素子42に対向している。さらに、回路基板45
の回路パターンには、電気信号取出し用リード端子46
a,46bが電気的に接続されている。
Circuit board 45 on which components 42 and 44 are mounted
Are placed in contact with the detection hole 49 so that they are parallel to the axial direction of the detection hole 49 (in other words, the passing direction K of the steel ball 65) by inserting both ends thereof into the guide concave portion 52. Is done. The surface of the circuit board 45 opposite to the surface on which the magnetoresistive element 42 is mounted is exposed to the opening 49 a of the detection hole 49 and is also used as a part of the inner wall of the detection hole 49.
The magnetoresistive element 42 is arranged between the circuit board 45 and the magnet 54, and the longitudinal direction of the magnetic sensing portion 56 of the magnetoresistive element 42 is parallel to the axial direction of the detection hole 49. The magnet 54 faces the magnetoresistive element 42. Further, the circuit board 45
The circuit pattern of FIG.
a and 46b are electrically connected.

【0035】以上の構成からなる鋼球検出センサ41
は、前記第1実施形態の磁気センサ11と同様の作用効
果を奏することができる。さらに、この鋼球センサ41
は、固定抵抗43や増幅用トランジスタ44を内蔵し、
図4に示した電気回路を有しているので、全体として鋼
球検出センサ装置を小型化できる。
The steel ball detection sensor 41 having the above configuration
Can achieve the same operation and effect as the magnetic sensor 11 of the first embodiment. Further, the steel ball sensor 41
Incorporates a fixed resistor 43 and an amplifying transistor 44,
Since the electric circuit shown in FIG. 4 is provided, the size of the steel ball detection sensor device can be reduced as a whole.

【0036】[第3実施形態、図11〜図14参照]第
3実施形態の磁気センサは、磁気抵抗素子を2個備えた
ものについて説明する。この磁気センサは温度特性の略
等しい磁気抵抗素子を2個用いることにより、出力信号
の温度変化を小さくすることができる。
[Third Embodiment, See FIGS. 11 to 14] A magnetic sensor according to a third embodiment will be described in which two magnetic resistance elements are provided. This magnetic sensor can reduce the temperature change of the output signal by using two magnetoresistive elements having substantially the same temperature characteristics.

【0037】図11に示すように、磁気センサ71は、
2個の磁気抵抗素子12A,12B、磁気抵抗素子12
A,12Bにバイアス磁界を印加する磁石73、部品1
2A,12B,73を搭載するための回路基板74及び
非磁性保護ケース76等にて構成されている。磁気抵抗
素子12A,12Bは、図3に示した磁気抵抗素子12
と同様のものであり、詳細な説明は省略する。なお、図
11において、リード端子は省略されている。
As shown in FIG. 11, the magnetic sensor 71
Two magneto-resistive elements 12A, 12B, 12
A magnet 73 for applying a bias magnetic field to A and 12B, component 1
It comprises a circuit board 74 for mounting 2A, 12B, 73, a non-magnetic protective case 76, and the like. The magnetoresistive elements 12A and 12B correspond to the magnetoresistive elements 12 shown in FIG.
And the detailed description is omitted. In FIG. 11, the lead terminals are omitted.

【0038】図12に示すように、磁気抵抗素子12
A,12Bは所定の間隔で並べられると共に、検出対象
物の通過方向Kに対して感磁部23の長手方向が平行に
なるように配置されている。図13は、磁気センサ71
の電気回路図である。この回路において、磁気抵抗素子
12A,12Bの抵抗値をそれぞれR1,R2、電源用リ
ード端子85に入力される電圧をVdとすると、出力用
リード端子86とグランド用リード端子87との間に発
生する出力電圧Voは以下の(1)式にて表示される。 Vo={R1/(R1+R2)}×Vd…(1)
As shown in FIG.
A and 12B are arranged at a predetermined interval, and are arranged such that the longitudinal direction of the magnetic sensing part 23 is parallel to the passing direction K of the detection target. FIG. 13 shows a magnetic sensor 71.
FIG. In this circuit, assuming that the resistance values of the magnetoresistive elements 12A and 12B are R 1 and R 2 , respectively, and the voltage input to the power supply lead terminal 85 is Vd, the resistance between the output lead terminal 86 and the ground lead terminal 87 is Is generated by the following equation (1). Vo = {R 1 / (R 1 + R 2 )} × Vd (1)

【0039】検出対象物が、磁気抵抗素子12A,12
Bから離れた位置にあるときは、両素子12A,12B
にバイアスする磁石73の磁場は等しい。従って、両素
子12A,12Bの抵抗値はR1=R2=R0となり、前
記(1)式より出力電圧Vo1は以下の(2)式とな
る。 Vo1=[(1+P)R0/{(1+P)R0+(1+P)R0}]×Vd =Vd/2…(2) (ただし、Pは感度)
When the object to be detected is the magnetoresistive element 12A, 12A,
B, the two elements 12A, 12B
Are equal in the magnetic field of the magnet 73 biased to. Therefore, the resistance values of both elements 12A and 12B are R 1 = R 2 = R 0 , and the output voltage Vo 1 is expressed by the following equation (2) from the equation (1). Vo 1 = [(1 + P) R 0 / {(1 + P) R 0 + (1 + P) R 0 }] × Vd = Vd / 2 (2) (where P is sensitivity)

【0040】検出対象物が矢印Kの方向から磁気抵抗素
子12A,12Bに近づくと、まず、最初に検出対象物
に対向する磁気抵抗素子12Aへの磁場集中が起きるの
で、その素子12Aの抵抗値が大きくなり、素子12B
の抵抗値が小さくなる。検出対象物が移動するに従っ
て、検出対象物が対向する磁気抵抗素子は、素子12A
から素子12Bへと順次変わるので、出力用リード端子
86の出力信号は図14に示すように、一つの谷と一つ
の山の連続した信号波形となる。
When the object to be detected approaches the magnetoresistive elements 12A and 12B from the direction of arrow K, first, a magnetic field concentrates on the magnetoresistive element 12A facing the object to be detected. Becomes larger, and the element 12B
Becomes smaller. As the detection target moves, the magnetoresistive element to which the detection target faces is the element 12A.
, The output signal of the output lead terminal 86 has a continuous signal waveform of one valley and one peak, as shown in FIG.

【0041】以上の構成からなる磁気センサ71は、前
記第1実施形態の磁気センサ11と同様の作用効果を奏
することができる。
The magnetic sensor 71 having the above configuration can provide the same operation and effect as the magnetic sensor 11 of the first embodiment.

【0042】[他の実施形態]なお、本発明に係る磁気
センサは前記実施形態に限定するものではなく、その要
旨の範囲内で種々に変更することができる。例えば、磁
気抵抗素子は半導体磁気抵抗素子や強磁性薄膜を用いて
構成してもよい。
[Other Embodiments] The magnetic sensor according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the gist. For example, the magnetoresistive element may be configured using a semiconductor magnetoresistive element or a ferromagnetic thin film.

【0043】[0043]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、磁気抵抗素子の感磁部の長手方向を、検出対象
物の通過方向に対して略平行に配置したので、磁気セン
サの磁気検知距離が長くなる。従って、磁気センサから
の出力波形の幅が従来より広くなり、通過信号による波
形とノイズによる瞬時波形との区別がつき易くなる。こ
の結果、通過信号による波形の処理を正確に行なうこと
ができ、特別なノイズ処理回路を設けなくても、誤動作
しない磁気センサを得ることができる。
As is apparent from the above description, according to the present invention, the longitudinal direction of the magneto-sensitive portion of the magnetoresistive element is arranged substantially parallel to the direction in which the detection object passes, so that the magnetic sensor can be used. , The magnetic detection distance becomes longer. Therefore, the width of the output waveform from the magnetic sensor becomes wider than before, and it becomes easier to distinguish between a waveform based on a passing signal and an instantaneous waveform based on noise. As a result, it is possible to accurately perform the processing of the waveform by the passing signal, and it is possible to obtain a magnetic sensor that does not malfunction without providing a special noise processing circuit.

【0044】また、磁気抵抗素子の感磁部の短辺方向の
長さを、略球形状の検出対象物の直径より短くすること
により、検出対象物が通過する際、感磁部の短辺方向の
全体に渡って磁束を集中させることができ、感磁部全体
としての感度を大きくすることができる。また、磁気抵
抗素子のサイズも小さくできる。
Further, by making the length of the magnetic sensing portion of the magnetoresistive element in the short side direction shorter than the diameter of the substantially spherical detection object, the short side of the magnetic sensing portion when the detection object passes therethrough. The magnetic flux can be concentrated over the entire direction, and the sensitivity of the entire magnetic sensing unit can be increased. Further, the size of the magnetoresistive element can be reduced.

【0045】また、磁気抵抗素子に磁性体基板を使用す
ることにより、磁石のバイアス磁界が磁性体基板に集中
し、磁気抵抗素子の感度を向上させることができる。さ
らに、磁性体基板の形状と感磁部の形状とを略相似形に
設定することにより、感磁部に印加されるバイアス磁界
の強度を均一にし易くなり、安定した検出が可能にな
る。
Further, by using a magnetic substrate for the magnetoresistive element, the bias magnetic field of the magnet concentrates on the magnetic substrate, and the sensitivity of the magnetoresistive element can be improved. Further, by setting the shape of the magnetic substrate and the shape of the magnetic sensing portion to be substantially similar, it becomes easy to make the intensity of the bias magnetic field applied to the magnetic sensing portion uniform, and stable detection becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気センサの第1実施形態を示す
外観斜視図。
FIG. 1 is an external perspective view showing a first embodiment of a magnetic sensor according to the present invention.

【図2】図1に示した磁気センサの断面図。FIG. 2 is a sectional view of the magnetic sensor shown in FIG. 1;

【図3】図2に示した磁気抵抗素子の配置と検出対象物
の通過方向との関係を示す斜視図。
FIG. 3 is a perspective view showing the relationship between the arrangement of the magnetoresistive elements shown in FIG. 2 and the passing direction of a detection target.

【図4】図1に示した磁気センサを用いた電気回路図。FIG. 4 is an electric circuit diagram using the magnetic sensor shown in FIG. 1;

【図5】増幅用トランジスタの電流−電圧特性を示すグ
ラフ。
FIG. 5 is a graph showing current-voltage characteristics of an amplification transistor.

【図6】図4に示した電気回路の出力信号波形を示すグ
ラフ。
6 is a graph showing an output signal waveform of the electric circuit shown in FIG.

【図7】本発明に係る磁気センサの第2実施形態を示す
平面図。
FIG. 7 is a plan view showing a second embodiment of the magnetic sensor according to the present invention.

【図8】図7のVIII−VIII断面図。8 is a sectional view taken along the line VIII-VIII in FIG. 7;

【図9】図7に示した磁気抵抗素子の配置と検出対象物
の通過方向との関係を示す斜視図。
FIG. 9 is a perspective view showing the relationship between the arrangement of the magnetoresistive elements shown in FIG. 7 and the direction in which the detection target passes.

【図10】図9に示した磁気抵抗素子の変形例を示す斜
視図。
FIG. 10 is an exemplary perspective view showing a modification of the magnetoresistance element shown in FIG. 9;

【図11】本発明に係る磁気センサの第3実施形態を示
す断面図。
FIG. 11 is a sectional view showing a third embodiment of the magnetic sensor according to the present invention.

【図12】図11に示した磁気抵抗素子の配置と検出対
象物の通過方向との関係を示す説明図。
FIG. 12 is an explanatory diagram showing the relationship between the arrangement of the magnetoresistive elements shown in FIG. 11 and the direction in which the detection target passes.

【図13】図11に示した磁気センサの電気回路図。FIG. 13 is an electric circuit diagram of the magnetic sensor shown in FIG. 11;

【図14】図11に示した磁気センサの出力信号波形を
示すグラフ。
FIG. 14 is a graph showing an output signal waveform of the magnetic sensor shown in FIG. 11;

【図15】従来の磁気抵抗素子の配置と検出対象物の通
過方向との関係を示す斜視図。
FIG. 15 is a perspective view showing a relationship between a conventional arrangement of magnetoresistive elements and a passing direction of a detection target.

【符号の説明】[Explanation of symbols]

11,71…磁気センサ 12,12A,12B…磁気抵抗素子 13,73…磁石 23…感磁部 41…鋼球センサ 42,42A…磁気抵抗素子 54…磁石 56…感磁部 11, 71: Magnetic sensor 12, 12A, 12B: Magnetic resistance element 13, 73: Magnet 23: Magnetic sensing part 41: Steel ball sensor 42, 42A: Magnetic resistance element 54: Magnet 56: Magnetic sensing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 友春 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 2F063 AA02 AA35 CA08 DA05 EA02 EA03 GA52 2G017 AA00 AB07 AC09 AD55 AD59 AD61 AD65 BA05  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomoharu Sato 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto F-term in Murata Manufacturing Co., Ltd. (reference) 2F063 AA02 AA35 CA08 DA05 EA02 EA03 GA52 2G017 AA00 AB07 AC09 AD55 AD59 AD61 AD65 BA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗素子と、 前記磁気抵抗素子にバイアス磁界を印加する磁石とを備
え、 前記磁気抵抗素子の感磁部の長手方向を、検出対象物の
通過方向に対して略平行に配置したこと、 を特徴とする磁気センサ。
1. A magnetoresistive element, and a magnet for applying a bias magnetic field to the magnetoresistive element, wherein a longitudinal direction of a magneto-sensitive portion of the magnetoresistive element is substantially parallel to a passing direction of an object to be detected. A magnetic sensor, comprising:
【請求項2】 前記磁気抵抗素子の感磁部の短辺方向の
長さが、略球形状の前記検出対象物の直径より短いこと
を特徴とする請求項1記載の磁気センサ。
2. The magnetic sensor according to claim 1, wherein a length of the magnetic sensing portion of the magnetoresistive element in a short side direction is shorter than a diameter of the substantially spherical detection target.
【請求項3】 前記磁気抵抗素子が磁性体基板と該磁性
体基板上に設けた前記感磁部とを有し、前記磁性体基板
の形状が前記感磁部の略相似形であることを特徴とする
請求項1記載の磁気センサ。
3. The method according to claim 2, wherein the magnetoresistive element has a magnetic substrate and the magnetic sensing portion provided on the magnetic substrate, and the shape of the magnetic substrate is substantially similar to the magnetic sensing portion. The magnetic sensor according to claim 1, wherein:
JP11098805A 1999-04-06 1999-04-06 Magnetic sensor Pending JP2000292513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098805A JP2000292513A (en) 1999-04-06 1999-04-06 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11098805A JP2000292513A (en) 1999-04-06 1999-04-06 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2000292513A true JP2000292513A (en) 2000-10-20

Family

ID=14229567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098805A Pending JP2000292513A (en) 1999-04-06 1999-04-06 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2000292513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189069A (en) * 2000-12-22 2002-07-05 Murata Mfg Co Ltd Magnetic sensor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189069A (en) * 2000-12-22 2002-07-05 Murata Mfg Co Ltd Magnetic sensor and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2898687B2 (en) Iron object proximity sensor
JP5867235B2 (en) Magnetic sensor device
US5814985A (en) Incremental sensor of speed and/or position for detecting low and null speeds
US6769166B1 (en) Method of making an electrical current sensor
JP4247821B2 (en) Current sensor
JP2009222524A (en) Rotation detecting apparatus
US6121770A (en) Magnetic sensor using magnetic impedance of magnetic wire within biasing coil
JPH06186254A (en) Chip-type resistor for current detection
US6198276B1 (en) Ferromagnetic-ball sensor using a magnetic field detection element
JP3102268B2 (en) Magnetic detector
JP2000292513A (en) Magnetic sensor
JPH05126512A (en) Angle detector
JP2003302428A (en) Substrate mounting type current sensor and current measuring method
JP3170916B2 (en) Magnetic detector
JP3695088B2 (en) Magnetic sensor
JPH11317139A (en) Steel ball detection sensor
JPH10142263A (en) Current detecting device
JP4399916B2 (en) Steel ball detection sensor
JP2547169Y2 (en) Current detection sensor
JPH0815330A (en) Current detector
JP3233129B2 (en) Magnetic detector
JPH11312448A (en) Steel ball detection sensor
JP3269307B2 (en) Pickup sensor and vehicle speed detection device using pickup sensor
JP3186258B2 (en) Non-contact potentiometer
JPH02115719A (en) Rotation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201