JP2000292386A - Pulse heat transfer test device - Google Patents

Pulse heat transfer test device

Info

Publication number
JP2000292386A
JP2000292386A JP11100971A JP10097199A JP2000292386A JP 2000292386 A JP2000292386 A JP 2000292386A JP 11100971 A JP11100971 A JP 11100971A JP 10097199 A JP10097199 A JP 10097199A JP 2000292386 A JP2000292386 A JP 2000292386A
Authority
JP
Japan
Prior art keywords
heat transfer
power
heating element
test
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11100971A
Other languages
Japanese (ja)
Inventor
Mitsuji Abe
充志 阿部
Akihiko Minato
明彦 湊
Yasuhiro Masuhara
康博 増原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11100971A priority Critical patent/JP2000292386A/en
Publication of JP2000292386A publication Critical patent/JP2000292386A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To execute safely a test for grasping precisely heat transfer characteristics of an instrument resisting a pulsating high heat flux. SOLUTION: This device is so composed that a current is carried to a heating element 3, and that a heating transfer surface 4 is overheated by an electric power, and that heat transfer characteristic from the heating surface 4 is tested. In this case, an electric power for heating is accumulated in an accumulating device 10, and accumulated electric energy is sent instantly to the heating element 3, and pulsating heating transfer characteristics are grasped. And, this device has a charge/discharge device for charging the accumulating device 10 every time before one test, and for allowing the device 10 to discharge every time after finish of the test.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発熱体から周囲の
物質への伝熱特性を試験する装置のうちパルス的に大熱
流束を伴う試験装置に係り、特に発熱体から水などの冷
却剤への過渡的な熱伝達の特性を把握するための試験装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for testing a heat transfer characteristic from a heating element to a surrounding substance, which has a large heat flux in a pulsed manner, and more particularly to a cooling apparatus such as water from the heating element. The present invention relates to a test device for ascertaining the characteristics of transient heat transfer to a device.

【0002】[0002]

【従来の技術】沸騰による熱伝達は多くの機器で利用さ
れているが、多くの場合、定常的な熱伝達特性が問題と
なる。従って、従来は発熱体を定常的に発熱させ、定常
的に熱流束を与えて熱伝達特性を把握していた。この様
な試験で得られた伝熱特性を元に装置設計を行い、通常
の装置では安定に運転されている。
2. Description of the Related Art Heat transfer by boiling is used in many devices, but in many cases, steady heat transfer characteristics become a problem. Accordingly, conventionally, the heat transfer characteristics have been grasped by steadily generating heat from the heating element and constantly applying a heat flux. The apparatus is designed based on the heat transfer characteristics obtained in such a test, and a normal apparatus is operated stably.

【0003】図2は従来の伝熱試験装置のブロック図で
ある。商用電力を受電し、トランス等の受電設備1で必
要電圧に変換した後に電力制御装置2を通過させて必要
な電力を発熱体3に供給する。発熱は伝熱面4に伝えら
れ、伝熱面から水などの冷却剤5へ放出される。このと
きの表面からの熱流束に応じて、沸騰熱伝達の特性が、
核沸騰,膜沸騰と変化する。この核沸騰から膜沸騰へ変
化する時点での熱流束が通常利用できる最大の熱流束で
ある。膜沸騰に移ると伝熱面の温度は大幅に上昇し、伝
熱試験体を破損する場合もある。特に伝熱試験装置は、
試験体の温度を大きく上昇させることを前提にしている
ので、このトラブルの危険性は従来方式では潜在的に特
に高いと言える。
FIG. 2 is a block diagram of a conventional heat transfer test apparatus. The commercial power is received, converted into a required voltage by a power receiving facility 1 such as a transformer, and then passed through a power control device 2 to supply necessary power to the heating element 3. The heat is transmitted to the heat transfer surface 4 and is released from the heat transfer surface to a coolant 5 such as water. Depending on the heat flux from the surface at this time, the characteristic of boiling heat transfer is
It changes with nucleate boiling and film boiling. The heat flux at the time of the change from nucleate boiling to film boiling is the maximum heat flux that can be usually used. In the case of film boiling, the temperature of the heat transfer surface rises significantly, and the heat transfer test piece may be damaged. In particular, heat transfer test equipment
Since it is assumed that the temperature of the test specimen is greatly increased, the risk of this trouble is potentially particularly high in the conventional method.

【0004】[0004]

【発明が解決しようとする課題】たとえば核融合装置の
プラズマ対向面における入熱は、プラズマディスラプシ
ョン時に瞬間的に大きな熱流束が入ってくる。たとえば
熱流束10MW/平米が0.1ms から100msの間
のみ発生する。瞬間的な熱流束に対しては膜沸騰に移る
限界熱流束は定常熱伝達に比べて大きくなる傾向にある
が、各種条件で調べられているわけではない。
For example, as for heat input to the plasma facing surface of the nuclear fusion device, a large heat flux instantaneously enters during plasma disruption. For example, a heat flux of 10 MW / sq.m. Occurs only between 0.1 ms and 100 ms. For instantaneous heat flux, the critical heat flux that shifts to film boiling tends to be larger than steady state heat transfer, but it has not been investigated under various conditions.

【0005】このような瞬間的な熱流束に対する伝熱特
性を把握することを試みる場合には、上記の電力制御装
置2で発熱体3への電力供給量を瞬間的に増大させる。
しかし、この方式の伝熱試験ではパルス的に大電力を必
要とするために、商用電力系統から受電できる電力に限
りがある場所では試験に利用できる電力が限られる。大
電力での試験ができず、たとえば縮小した伝熱試験体モ
デルでの試験を実行せざるを得ないことになり、実機条
件での実証・確証という面からは離れた試験となり、精
度の高い試験ができないことになる。また商用周波数の
波形から20ms以下の短パルス波形での試験を正確に
実行することは難しい。
When trying to grasp the heat transfer characteristics with respect to such an instantaneous heat flux, the power supply to the heating element 3 is instantaneously increased by the power control device 2 described above.
However, in this type of heat transfer test, a large amount of power is required in a pulsed manner, so that the power available for the test is limited in places where the power that can be received from the commercial power system is limited. High-power testing is not possible, and for example, a test with a reduced heat transfer test model must be performed.This is a test that is far from verification and confirmation under actual machine conditions, and has high accuracy. You will not be able to test. Also, it is difficult to accurately execute a test with a short pulse waveform of 20 ms or less from a commercial frequency waveform.

【0006】一方、蓄電池からの電気エネルギーをトラ
ンジスタで制御して伝熱試験体に電力を供給する試験装
置も従来例として存在する。これは大きなエネルギーが
蓄電池に内蔵されている点、また常に電圧が加わってい
る点がトラブルの原因となりやすい。トラブルとは、過
大なエネルギーが試験体に供給され試験体が破損すると
か、また感電などの危険性である。特に、系統や大電力
の化学的な蓄電池と言う大きなエネルギーを持っている
ものにつながれた状態で試験することはトラブル時には
大エネルギーが問題発生の源となるため、大きな事故な
どになりやすい。そのため、試験に必要なエネルギー以
上のエネルギーの流入はなるべく少ない状態で試験する
ことが望ましい。
On the other hand, there is a conventional test apparatus for supplying electric power to a heat transfer test body by controlling electric energy from a storage battery with a transistor. This is because a large amount of energy is built in the storage battery and a point where a voltage is constantly applied tends to cause trouble. Trouble is a danger such as excessive energy being supplied to the specimen and damaging the specimen, or electric shock. In particular, if a test is performed in a state of being connected to a system or a high-power chemical storage battery having a large energy, a large accident is likely to occur in the event of a trouble, so that a large accident is likely to occur. For this reason, it is desirable to perform the test with as little energy as possible inflow of the energy required for the test.

【0007】本発明の目的は、パルス的熱流束下での伝
熱特性を精度良く把握する試験を安全に実行できるパル
ス伝熱試験装置を提供することにある。
An object of the present invention is to provide a pulse heat transfer test apparatus capable of safely executing a test for accurately grasping heat transfer characteristics under a pulsed heat flux.

【0008】[0008]

【課題を解決するための手段】商用電力の系統から直接
にパルス試験用の電力を採取すると前述の問題が発生す
る。従って、電力を発熱体に供給する電力制御装置と商
用電力からの受電設備を切り離す必要がある。そのため
に本発明では、受電設備で受けた電気エネルギーを一時
的に蓄電して、伝熱試験時間に比べて長い時間で充電蓄
積した電気エネルギーを短い伝熱試験時間で瞬時に発熱
体に供給する。このような電気エネルギーを蓄積するも
のとしては、コンデンサ,フライホイールやリアクトル
等の機械的なもしくは電気的な方式の蓄電設備が考えら
れる。たとえば、コンデンサを考えると、受電した電気
エネルギーをコンデンサに充電し、この充電した電気エ
ネルギーをコンデンサと発熱体の間に配置するスイッチ
をオン・オフしてあらかじめ設定した短時間のみ通電・
発熱させる。これで、パルス的な大熱流束を発生させる
ことができる。
If the power for the pulse test is directly collected from the commercial power system, the above-described problem occurs. Therefore, it is necessary to separate the power control device that supplies power to the heating element and the power receiving equipment from commercial power. Therefore, in the present invention, the electric energy received by the power receiving equipment is temporarily stored, and the electric energy charged and stored in a long time as compared with the heat transfer test time is instantaneously supplied to the heating element in a short heat transfer test time. . As a device that stores such electric energy, a mechanical or electrical type power storage facility such as a capacitor, a flywheel or a reactor is considered. For example, considering a capacitor, the received electric energy is charged to the capacitor, and the charged electric energy is turned on and off for a preset short time by turning on and off a switch arranged between the capacitor and the heating element.
Generate heat. Thus, a pulse-like large heat flux can be generated.

【0009】一度発熱体に通電して試験が終了すると、
試験に従事する人の安全のためには蓄電設備に充電され
てない状態で次回の試験に待機することが望ましい。そ
のため発熱体への通電が終了したら、蓄電設備の電極を
抵抗を介して接地する。これにより蓄電設備から電気エ
ネルギーは消滅され、発熱体への通電試験を行わない期
間において安全に試験体の配置換えなどの試験準備を行
うことができる。
Once the heating element is energized and the test is completed,
For safety of persons engaged in the test, it is desirable to wait for the next test without charging the power storage equipment. Therefore, when the energization of the heating element is completed, the electrode of the power storage equipment is grounded via a resistor. As a result, the electric energy is extinguished from the power storage equipment, and the test preparation such as the rearrangement of the test body can be safely performed during the period when the power supply test to the heating element is not performed.

【0010】また、あらかじめ充電された電気エネルギ
ー以上の電力が試験体に供給されることはないので、ト
ラブルが発生しても試験体の損傷などの事故に至ること
はない。
[0010] Further, since electric power equal to or higher than the pre-charged electric energy is not supplied to the specimen, even if a trouble occurs, no accident such as damage to the specimen occurs.

【0011】このような充電の制御と接地の制御は、蓄
電設備へ充電する直流電圧を発生する充電設備のオン・
オフと蓄電設備に並列におかれた接地回路のスイッチの
オンオフにより行う。
[0011] Such charging control and grounding control are performed by turning on / off the charging equipment that generates a DC voltage for charging the power storage equipment.
This is performed by turning off and on and off a switch of a ground circuit placed in parallel with the power storage equipment.

【0012】本発明は、受電設備,充電回路,蓄電設
備,接地,通電スイッチ、及び発熱体が基本的な構成と
なる。そしてこの発熱体近くもしくは発熱体と共通に伝
熱試験面があり、パルス的な発熱に伴う過渡的な伝熱特
性を調べる。受電設備は蓄電設備に電気エネルギーを供
給するために商用系統から電力を受ける。発熱体への電
力供給時間に比べて長時間で蓄電するために受電設備は
発熱体への供給電力に比べて小さい受電設備となる。蓄
電設備は受電した電気エネルギーを発熱体に供給するま
で蓄えておく。蓄電する時間をtc,発熱体への通電時
間をtdとすると、平均受電電力は発熱体への供給電力
に比べてtd/tc程度の割合で小さな受電設備にでき
る。
The present invention basically has a power receiving facility, a charging circuit, a power storage facility, a ground, a power switch, and a heating element. There is a heat transfer test surface near or in common with the heat generating element, and a transient heat transfer characteristic accompanying pulsed heat generation is examined. The power receiving equipment receives electric power from a commercial system to supply electric energy to the power storage equipment. Since power is stored for a longer time than the power supply time to the heating element, the power receiving equipment is a power receiving facility that is smaller than the power supplied to the heating element. The power storage equipment stores the received electric energy until it is supplied to the heating element. Assuming that the time for storing power is tc and the time for energizing the heating element is td, the average receiving power can be reduced to about td / tc compared to the power supplied to the heating element.

【0013】蓄電設備と発熱体との間には通電スイッチ
が置かれる。このスイッチは蓄電している間はオフにな
っており、発熱体には通電しない。また蓄電が完了し、
計測器など他の実験関連設備も準備完了となった時点で
オンとし、発熱体に通電する。また試験時間が終了する
とオフとして通電を停止する。これにより、パルス的に
発熱させることができ、大熱流束を伝熱試験面に発生さ
せることができる。また不必要な通電をなくし、発熱体
の過熱・破損を防止できる。仮に発熱体へ通電するスイ
ッチが故障し、オフにできなくなる場合でも、蓄電設備
に蓄えられたエネルギー以上には発熱体へ入力されない
ので、試験装置や試験体の大きな破損にはつながらな
い。
An energizing switch is provided between the power storage facility and the heating element. This switch is turned off during power storage, and does not energize the heating element. Also, the storage is completed,
When the other equipment related to the experiment such as a measuring instrument is ready, it is turned on and the heating element is energized. When the test time is over, the power is turned off and the energization is stopped. Thereby, heat can be generated in a pulsed manner, and a large heat flux can be generated on the heat transfer test surface. In addition, unnecessary heating is eliminated, and overheating and breakage of the heating element can be prevented. Even if the switch for energizing the heating element breaks down and cannot be turned off, the energy stored in the power storage equipment is not input to the heating element, so that the test apparatus or the test object is not seriously damaged.

【0014】発熱体への通電が終了すると蓄電設備は接
地され、放電する。また充電設備の入力部におかれたス
イッチもオフとなるために、充電設備から発熱体までの
間のすべての部分で電気的にオフとなり、試験体の交換
などによる作業時には安全性が確保される。
When the energization of the heating element is completed, the power storage equipment is grounded and discharged. In addition, since the switch at the input of the charging equipment is also turned off, all parts from the charging equipment to the heating element are electrically turned off, ensuring safety during work such as replacing test specimens. You.

【0015】[0015]

【発明の実施の形態】図1に本発明の好適な一実施例で
あるパルス伝熱試験装置の構成を示す。受電設備1は従
来と同様にトランスやブレーカ等が含まれる。蓄電設備
10は短時間での充放電に優れているコンデンサの集合
体であるコンデンサバンクである。受電された電力は蓄
電設備10に蓄えられるが、そのために充電回路9があ
る。充電回路9は実験開始のしばらく前にオンとなりコ
ンデンサに充電を開始する。充電回路9がオフの場合に
は、充電回路9から発熱体3までの間のすべての箇所で
電気的にはオフである。これらの回路全体で電源設備1
8を構成する。
FIG. 1 shows the configuration of a pulse heat transfer test apparatus according to a preferred embodiment of the present invention. The power receiving facility 1 includes a transformer, a breaker, and the like as in the related art. The power storage facility 10 is a capacitor bank that is an aggregate of capacitors that are excellent in charging and discharging in a short time. The received power is stored in the power storage facility 10, and there is a charging circuit 9 for that. The charging circuit 9 is turned on some time before the start of the experiment, and starts charging the capacitor. When the charging circuit 9 is off, all parts between the charging circuit 9 and the heating element 3 are electrically off. Power supply equipment 1
8.

【0016】充電回路9がオンとなり、充電が進み蓄電
設備10の電圧が上昇してくると、その電圧を検知し
て、あらかじめ設定した電圧に達すると充電回路9はオ
フとなり所定の電圧に蓄電設備10を充電する。このよ
うに時間をかけて電力を蓄電設備10に充電するので受
電する電力は比較的小さい。そのため、従来の方式に比
べて小さな受電設備1となる。また電力系統への負荷も
小さい。一方、蓄電設備10に蓄えられた電力は電力制
御装置2に設けられたスイッチがオンとなることで、発
熱体3に供給される。その結果、充電時間に比べて短時
間で発熱体3中で電力が消費される。たとえば1MW程
度の発熱体3での電力を0.1 秒間供給しようと考える
と、正味の電気エネルギーは100kJである。蓄電設
備10に充電するエネルギーはこれより大きな電気エネ
ルギーであるが、たとえば500kJ充電すると考えて
も5kW程度の充電器で2分以内で充電できる。蓄電設
備10には接地回路も並列に配置される。充電時及び通
電中以外は蓄電設備10のコンデンサバンクは接地され
る。この充電されたエネルギーがすべて発熱体3に入力
されたとしても1MWを0.5 秒通電したことにしかな
らず、大きなトラブルにはならない。
When the charging circuit 9 is turned on and charging proceeds and the voltage of the power storage equipment 10 rises, the voltage is detected, and when the voltage reaches a preset voltage, the charging circuit 9 is turned off and stored at a predetermined voltage. The equipment 10 is charged. As described above, the electric power is charged into the power storage facility 10 over a long period of time, so that the electric power received is relatively small. Therefore, the power receiving equipment 1 is smaller than the conventional method. The load on the power system is also small. On the other hand, the power stored in the power storage facility 10 is supplied to the heating element 3 when a switch provided in the power control device 2 is turned on. As a result, power is consumed in the heating element 3 in a shorter time than the charging time. For example, when it is assumed that electric power from the heating element 3 of about 1 MW is supplied for 0.1 second, the net electric energy is 100 kJ. The energy to be charged in the power storage facility 10 is higher electric energy. For example, even if it is assumed to be charged at 500 kJ, it can be charged within 2 minutes by a charger of about 5 kW. A ground circuit is also arranged in the power storage equipment 10 in parallel. During charging and other than during energization, the capacitor bank of the power storage facility 10 is grounded. Even if all of the charged energy is input to the heating element 3, this means that 1 MW is supplied for 0.5 seconds, and no major trouble occurs.

【0017】電力制御装置2は最も簡単な構成を考える
と単なるスイッチであるが、電流波形を制御することを
考えると、高速なスイッチングが可能な半導体素子とリ
アクトルを用いる回路となる。トランジスタ等の半導体
素子をたとえばパルス幅変調してスイッチングさせるこ
とで発熱体3への電力を調整できる。
The power control device 2 is a simple switch in consideration of the simplest configuration, but is a circuit using a semiconductor element and a reactor capable of high-speed switching in consideration of controlling a current waveform. The power to the heating element 3 can be adjusted by switching a semiconductor element such as a transistor by pulse width modulation, for example.

【0018】充電回路9,蓄電設備10、及び電力制御
回路2の回路例を図3に示す。また伝熱試験体8の構造
例も示した。充電回路9は受電設備1から商用交流電力
を受けて整流し、充電抵抗を通して蓄電設備(コンデン
サバンク)10電流を通じる。充電回路9の入力部には
スイッチ11があり、充電が必要ないときにはオフとし
ている。この部分をオフとすることで充電回路9から電
気的に下流の部分(蓄電設備10,電力制御回路2,発
熱体3)を電気的にオフにできる。このスイッチ11は
充電回路9の入力部でなくても受電設備の中で、たとえ
ば受電設備の入力部のブレーカと兼用する形でオン・オ
フすることもできる。
FIG. 3 shows a circuit example of the charging circuit 9, the power storage equipment 10, and the power control circuit 2. Further, a structural example of the heat transfer test body 8 is also shown. The charging circuit 9 receives commercial AC power from the power receiving facility 1 and rectifies it, and passes a current through the power storage facility (capacitor bank) 10 through a charging resistor. A switch 11 is provided at the input of the charging circuit 9, and is turned off when charging is not required. By turning off this part, the part (power storage equipment 10, power control circuit 2, heating element 3) electrically downstream from charging circuit 9 can be turned off electrically. The switch 11 can be turned on / off in the power receiving equipment, for example, in a form that also serves as a breaker of the input part of the power receiving equipment, without being the input part of the charging circuit 9.

【0019】蓄電設備10のコンデンサバンクとして
は、たとえば15mFのコンデンサを400個用いて4
00Vまで充電すると480kJのエネルギーを充電で
きる。このうち100kJを0.1秒で放出すると1M
Wの電力を0.1秒供給できる。コンデンサの電極と並
列に不必要な電荷を放電させる放電回路として放電抵抗
13と放電スイッチ12を設けている。発熱体3への通
電が終了すると放電スイッチ12をオンとして接地放電
させコンデンサの電圧を零とする。
As a capacitor bank of power storage equipment 10, for example, 400 capacitors of 15 mF
When charged to 00V, energy of 480 kJ can be charged. When 100kJ is released in 0.1 seconds, 1M
W power can be supplied for 0.1 seconds. A discharge resistor 13 and a discharge switch 12 are provided as a discharge circuit for discharging unnecessary charges in parallel with the electrodes of the capacitor. When the energization of the heating element 3 is completed, the discharge switch 12 is turned on to perform ground discharge, and the voltage of the capacitor is reduced to zero.

【0020】電力制御回路2はコンデンサに蓄えられた
電力を制御しながら発熱体3に通電する。この回路では
トランジスタ14のオンオフの割合を制御することで発
熱体3への通電電力を制御できる。また通電電流をなめ
らかにするためにリアクトル15を回路中に配置してい
る。
The power control circuit 2 supplies power to the heating element 3 while controlling the power stored in the capacitor. In this circuit, the power supply to the heating element 3 can be controlled by controlling the on / off ratio of the transistor 14. Also, a reactor 15 is arranged in the circuit to smooth the energizing current.

【0021】発熱体3は管状の形をしているが水に接し
た面が伝熱面4である。伝熱面4を持つ管状の部分が発
熱体で、直接に通電して発熱させる。この管状の発熱体
3中に電流の帰りの回路である導体16が配置されてい
る。導体16の外側は絶縁のため、また内向きの伝熱を
少なくするためにセラミックなどの絶縁物が配置されて
いる。この断面図中で矢印は電流の方向が導体と管状の
発熱体で逆方向であることを示す。
The heating element 3 has a tubular shape, but the surface in contact with water is the heat transfer surface 4. The tubular portion having the heat transfer surface 4 is a heating element, which is directly energized to generate heat. A conductor 16 which is a circuit for returning current is arranged in the tubular heating element 3. An insulator such as ceramic is arranged on the outside of the conductor 16 for insulation and to reduce inward heat transfer. In this cross-sectional view, the arrows indicate that the direction of the current is opposite between the conductor and the tubular heating element.

【0022】実験のシークエンスは図4のようになる。
図中の時刻0秒から0.1 秒が実験期間でこの間に発熱
体3に電流が流される。この通電の前、たとえば1〜3
分前からコンデンサは充電されはじめ、0秒の時点では
あらかじめ設定した電圧に達している。また通電後は強
制的にコンデンサは接地され、放電する。このために実
験を行わないときにはコンデンサに電荷はなく、電圧は
かかっていないため安全性が高い。計測システムも電源
の動作に同期して動く。アナログのデータ、たとえば熱
電対による温度データなどは発熱体3への通電開始前か
らデータの収集を始め、通電終了後に停止する。また電
源の動作に同期して計測器などを動作させるタイミング
パルスも図のように通電前後に存在する。
FIG. 4 shows the sequence of the experiment.
The experiment period is from time 0 second to 0.1 second in the figure, during which an electric current is applied to the heating element 3. Before this energization, for example, 1-3
Minutes before, the capacitor starts to be charged, and reaches a preset voltage at 0 seconds. After the power is supplied, the capacitor is forcibly grounded and discharged. Therefore, when no experiment is performed, the capacitor has no charge and no voltage is applied, so that the safety is high. The measurement system also operates in synchronization with the operation of the power supply. Analog data, for example, temperature data by a thermocouple, starts collecting data before the energization of the heating element 3 starts and stops after the energization ends. A timing pulse for operating a measuring instrument or the like in synchronism with the operation of the power supply also exists before and after energization as shown in the figure.

【0023】図5は本発明のパルス伝熱試験装置を利用
した試験システムの構成を示す。電源の充電・通電・接
地放電の動作を管理するために電源制御盤51がある。
この電源制御盤51から充電電圧の設定や各種タイミン
グの設定及び電流の設定などを行う。また電源制御盤5
1からはタイミング信号が出力され計測器などの動作が
制御される。またこれらをまとめ試験者との仲介を行う
計算機がデータ収集条件や電源運転の条件設定を行う。
このシステムで安定にかつ試験者の意に従って試験装置
が動く。
FIG. 5 shows a configuration of a test system using the pulse heat transfer test apparatus of the present invention. There is a power supply control panel 51 for managing the operations of charging, energizing, and discharging the power supply.
From the power supply control panel 51, setting of charging voltage, setting of various timings, setting of current, and the like are performed. Power control panel 5
1 outputs a timing signal to control the operation of a measuring instrument and the like. A computer that summarizes the above and sets up a data collection condition and a power supply operation condition is set by a computer that mediates with the tester.
With this system, the test apparatus operates stably and according to the tester's wishes.

【0024】[0024]

【発明の効果】本発明によれば、電力を蓄え、その蓄え
た電力で試験するので、パルス的な伝熱特性についての
試験を、系統に大きな負荷を与えることなく行える。ま
た発熱体への通電直前・直後を除いては試験装置の受電
設備以外には電圧が加わってないために、また試験に使
用する電気エネルギーが蓄電されたエネルギーに限られ
るために、安全に試験が行える。
According to the present invention, since the electric power is stored and the test is performed using the stored electric power, the test on the pulse-like heat transfer characteristic can be performed without applying a large load to the system. In addition, except for the time immediately before and immediately after energization of the heating element, no voltage is applied to the equipment other than the power receiving equipment of the test equipment, and the electrical energy used for the test is limited to the stored energy. Can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な一実施例であるパルス伝熱試験
装置の構成図である。
FIG. 1 is a configuration diagram of a pulse heat transfer test apparatus according to a preferred embodiment of the present invention.

【図2】従来の伝熱試験装置の構成図である。FIG. 2 is a configuration diagram of a conventional heat transfer test apparatus.

【図3】図1の充電回路9,蓄電設備10及び電力制御
装置2の模式図である。
FIG. 3 is a schematic diagram of a charging circuit 9, a power storage facility 10, and a power control device 2 of FIG.

【図4】図1のパルス伝熱試験装置における運転タイム
シークエンスを示す図である。
FIG. 4 is a diagram showing an operation time sequence in the pulse heat transfer test device of FIG.

【図5】図1のパルス伝熱試験装置を用いた試験システ
ムの構成図である。
FIG. 5 is a configuration diagram of a test system using the pulse heat transfer test device of FIG. 1;

【符号の説明】[Explanation of symbols]

1…受電設備、2…電力制御装置、3…発熱体、4…伝
熱面、5…冷却材、6…止水栓、7…試験容器、8…伝
熱試験体、9…充電回路、10…蓄電設備、11…スイ
ッチ、12…放電スイッチ、13…放電抵抗、14…ト
ランジスタ、15…リアクトル、16…導体、17…絶
縁物、18…電源設備。
DESCRIPTION OF SYMBOLS 1 ... Power receiving equipment, 2 ... Power control device, 3 ... Heating element, 4 ... Heat transfer surface, 5 ... Coolant, 6 ... Water stopcock, 7 ... Test container, 8 ... Heat transfer test object, 9 ... Charging circuit, DESCRIPTION OF SYMBOLS 10 ... Electric storage equipment, 11 ... Switch, 12 ... Discharge switch, 13 ... Discharge resistance, 14 ... Transistor, 15 ... Reactor, 16 ... Conductor, 17 ... Insulator, 18 ... Power supply equipment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増原 康博 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 2G040 AB08 BA24 CA02 CB03 EA02 EA11 EA13 EB02 EC02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuhiro Masuhara 3-1-1, Sakaimachi, Hitachi-shi, Ibaraki F-term in Hitachi, Ltd. Hitachi Plant 2G040 AB08 BA24 CA02 CB03 EA02 EA11 EA13 EB02 EC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】パルス的な発熱を可能にする電源として電
気エネルギーを蓄える蓄電設備と、この蓄電設備に結線
された電気抵抗によるジュール損による発熱体と両者の
間にオン・オフ可能なスイッチを配置することを特徴と
するパルス伝熱試験装置。
A power storage device for storing electric energy as a power supply capable of generating heat in a pulse form, a heating element connected to the power storage device due to Joule loss due to an electric resistance, and a switch capable of turning on and off between the two. A pulse heat transfer test device, which is arranged.
【請求項2】前記蓄電設備としてコンデンサバンクを用
い、前記コンデンサバンクの充電,発熱体への通電、及
びコンデンサバンクの電極の接地を繰り返し行うことを
特徴とする請求項1記載のパルス伝熱試験装置。
2. A pulse heat transfer test according to claim 1, wherein a capacitor bank is used as said power storage equipment, and charging of said capacitor bank, energization of a heating element, and grounding of electrodes of said capacitor bank are repeated. apparatus.
【請求項3】請求項1及び2のいずれかにおいて、前記
伝熱面を構成する材料に直接通電して発熱させることを
特徴とするパルス伝熱試験装置。
3. The pulse heat transfer test apparatus according to claim 1, wherein the material constituting the heat transfer surface is directly energized to generate heat.
【請求項4】請求項1において、前記発熱体は、管状の
外壁と内部の導体棒もしくは細線の集合体で電流を報復
させ外壁もしくは内側の導体を発熱させることを特徴と
するパルス伝熱試験装置。
4. The pulse heat transfer test according to claim 1, wherein the heating element retaliates the current with an assembly of a tubular outer wall and an inner conductor rod or a thin wire to generate heat on the outer wall or the inner conductor. apparatus.
JP11100971A 1999-04-08 1999-04-08 Pulse heat transfer test device Pending JP2000292386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11100971A JP2000292386A (en) 1999-04-08 1999-04-08 Pulse heat transfer test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11100971A JP2000292386A (en) 1999-04-08 1999-04-08 Pulse heat transfer test device

Publications (1)

Publication Number Publication Date
JP2000292386A true JP2000292386A (en) 2000-10-20

Family

ID=14288246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11100971A Pending JP2000292386A (en) 1999-04-08 1999-04-08 Pulse heat transfer test device

Country Status (1)

Country Link
JP (1) JP2000292386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210555A (en) * 2009-03-12 2010-09-24 Yamatake Corp System for measuring physical property value of gas, method for measuring physical property value of gas, system for forming heating value calculation expression, method for forming heating value calculation expression, system for calculating heating value and method for calculating heating value
CN102401807A (en) * 2011-11-09 2012-04-04 浙江大学 Heat transfer test system of high heat-flow density heated test piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210555A (en) * 2009-03-12 2010-09-24 Yamatake Corp System for measuring physical property value of gas, method for measuring physical property value of gas, system for forming heating value calculation expression, method for forming heating value calculation expression, system for calculating heating value and method for calculating heating value
CN102401807A (en) * 2011-11-09 2012-04-04 浙江大学 Heat transfer test system of high heat-flow density heated test piece

Similar Documents

Publication Publication Date Title
EP2637246B1 (en) Charging/discharging device and method for controlling charging and discharging
US20230359231A1 (en) Methods and apparatus for heating and self-heating of batteries at low temperatures
CN106394264B (en) The method and apparatus that quick charge is carried out to electric car
JP2007513594A (en) Method for balance charging a lithium ion or lithium polymer battery
JP2010148353A5 (en)
JPH07288936A (en) Charging of storage battery
US20030164357A1 (en) Portable drawn arc stud welding apparatus and method providing high current output in short time intervals
JPH11289685A (en) Device for detecting charged state of secondary battery
CN103760496B (en) A kind of electric automobile power battery group charging and discharging capabilities test device and method
JP2023519921A (en) Heating circuit for heating the storage device at extremely low temperatures
CN109093241A (en) Percussion welder control device and control method
Raonic SCR self-supplied gate driver for medium-voltage application with capacitor as storage element
JP2000292386A (en) Pulse heat transfer test device
GB2530716A (en) Cascade circuit tester
US4774449A (en) Transformerless battery charger in combination with a battery, and method of charging a battery
US5617005A (en) Method and apparatus for charging lead acid batteries
CN107493092A (en) Big pulse current generating device and its control method
CN109066016A (en) The heating device of startup power supply and its battery component
CN217332735U (en) Relay detection circuit and device
WO2018123036A1 (en) Relay device
CN114178654B (en) Welding circuit and portable adjustable impact welding machine
JP4441720B2 (en) Failure point search device
JP2755536B2 (en) Device with battery status detection function
Benshatti et al. Internal Resistance Measurement of Lithiumion Batteries using LC Resonant Tank
JPS5840227A (en) Pulse generator for discharge cutter