JP2000291540A - Swash plate type variable displacement compressor - Google Patents

Swash plate type variable displacement compressor

Info

Publication number
JP2000291540A
JP2000291540A JP11096900A JP9690099A JP2000291540A JP 2000291540 A JP2000291540 A JP 2000291540A JP 11096900 A JP11096900 A JP 11096900A JP 9690099 A JP9690099 A JP 9690099A JP 2000291540 A JP2000291540 A JP 2000291540A
Authority
JP
Japan
Prior art keywords
pressure
valve
refrigerant
passage
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11096900A
Other languages
Japanese (ja)
Other versions
JP4031141B2 (en
Inventor
Koetsu Takehana
光悦 武塙
Masaki Kawachi
正樹 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP09690099A priority Critical patent/JP4031141B2/en
Publication of JP2000291540A publication Critical patent/JP2000291540A/en
Application granted granted Critical
Publication of JP4031141B2 publication Critical patent/JP4031141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively prevent freezing of an evaporator by closing a pilot valve by breaking current-carrying to a solenoid of a flow rate control valve drive mechanism, closing a flow rate control valve, and stopping reduction of evaporator side pressure of an upstream side from the flow rate control valve in a low pressure side refrigerant passage. SOLUTION: A means for regulating the pressure of a refrigerant intake chamber 7 formed on a rear housing of a compressor, and a crank chamber 5 is provided with a flow rate control valve 31 for opening a spool valve 33 energized in the valve closing direction by a spring 34 with pressure acted in a pressure chamber 35. Then it is provided with a flow rate control valve drive mechanism 32, which is disposed in a passage 40 for communicating a refrigerant delivery chamber 8 and the pressure chamber 35 with each other, and which has a pilot valve 41 whose opening is controlled by the excitation of a solenoid 42 and which is disposed for leading high pressure side refrigerant into the pressure chamber 35. Also the device is provided with a feed back means 46 for regulating an opening of the flow rate control valve 31 by sensing the change by a diaphragm 47, when pressure of an evaporator side disposed upstream from the flow rate control valve 31 is changed more than constant pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車両用空調装置等の
冷凍サイクルに介装されて、冷媒ガスの圧縮に用いられ
る斜板式可変容量圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a swash plate type variable displacement compressor which is interposed in a refrigeration cycle of a vehicle air conditioner or the like and is used for compressing refrigerant gas.

【0002】[0002]

【従来の技術】斜板式可変容量圧縮機の中には、例えば
特公平6−89741号公報に示されているように、ソ
レノイドの励磁電流によってパイロット弁の開度を制御
して、冷媒吐出室の高圧側冷媒をピストン弁の背部に作
用させ、該ピストン弁により冷媒吸入室に流入する冷媒
流量を制御するようにしたものが知られている。
2. Description of the Related Art In a swash plate type variable displacement compressor, as disclosed in Japanese Patent Publication No. Hei 6-89941, for example, the opening degree of a pilot valve is controlled by an exciting current of a solenoid to form a refrigerant discharge chamber. Is known in which the high-pressure side refrigerant acts on the back of a piston valve, and the piston valve controls the flow rate of the refrigerant flowing into the refrigerant suction chamber.

【0003】[0003]

【発明が解決しようとする課題】前記従来の斜板式可変
容量圧縮機は、圧縮機駆動プーリーに電磁クラッチを組
込んだ所謂クラッチ付きタイプのものを基本構造として
いるため、構造が複雑となってしまうばかりでなく重量
が嵩んでしまい、また、部品点数も嵩んでコスト的にも
不利となってしまうことは否めない。
The conventional swash plate type variable displacement compressor has a basic structure of a so-called clutch type in which an electromagnetic clutch is incorporated in a compressor drive pulley, so that the structure is complicated. Not only that, the weight increases, and the number of parts also increases, which is disadvantageous in terms of cost.

【0004】また、クラッチを接続した圧縮機駆動状態
にあって、エバポレータの凍結を回避するために圧縮機
の冷媒吸入室の冷媒流入量を0にしたい場合には、パイ
ロット弁を作動するソレノイドの励磁電流を最大にして
ピストン弁を閉弁側へフルストロークさせる必要があっ
て、消費電力が大きくなってしまう。
Further, when the compressor is connected to a clutch and the refrigerant inflow into the refrigerant suction chamber of the compressor is to be reduced to zero in order to avoid freezing of the evaporator, a solenoid for operating the pilot valve is required. It is necessary to maximize the exciting current to cause the piston valve to perform a full stroke toward the valve closing side, which increases power consumption.

【0005】そこで、本発明はクラッチを付設しなくて
も圧縮機の稼働を断・続制御できてクラッチレスとする
ことができると共に、冷媒の流量制御を司どるパイロッ
ト弁を作動するソレノイドを消磁することで圧縮機の冷
媒吸入室への冷媒流入量を0にして、エバポレータの凍
結防止を行わせることができる斜板式可変容量圧縮機を
提供するものである。
In view of the above, the present invention enables the operation of the compressor to be turned on and off without providing a clutch, thereby achieving a clutchless operation, and demagnetizing a solenoid that operates a pilot valve for controlling the flow rate of the refrigerant. Accordingly, an object of the present invention is to provide a swash plate type variable displacement compressor capable of reducing the amount of refrigerant flowing into the refrigerant suction chamber of the compressor to zero and preventing the evaporator from freezing.

【0006】[0006]

【課題を解決するための手段】請求項1の発明にあって
は、冷媒吸入室に流入する冷媒流量を制御して冷媒吸入
室とクランク室との圧力を調整する圧力調整手段を備え
た斜板式可変容量圧縮機において、前記圧力調整手段
を、スプール弁,該スプール弁を閉弁方向に付勢するス
プリング,およびスプール弁を開弁方向に作用させる圧
力を蓄圧する圧力室を備え、前記冷媒吸入室の上流の低
圧側冷媒通路に設けられた流量制御弁と、冷媒吐出室と
圧力室とを連通する通路に設けられて、常態にあっては
スプリングにより閉弁され、ソレノイドの励磁電流によ
り弁開度が制御されて冷媒吐出室の高圧側冷媒を作動圧
力として圧力室へ導入制御するパイロット弁を有する流
量制御弁駆動機構と、で構成し、かつ、該流量制御弁駆
動機構には、前記パイロット弁の所定開度状態時に、フ
イードバック通路を介して導入される前記低圧側冷媒通
路の流量制御弁上流のエバポレータ側の圧力が一定圧よ
りも変化した時にこの圧力変化をダイヤフラムにより感
知して、プランジャを介して該パイロット弁を閉弁方向
又は開弁方向に作動させ、流量制御弁の弁開度を調整し
て該エバポレータ側の圧力を一定に保持させるフイード
バック手段を設けると共に、前記スプール弁による低圧
側冷媒通路の全閉遮断時に、冷媒吐出室とフイードバッ
ク通路とを連通する高圧側冷媒導入通路を設けたことを
特徴としている。
According to the first aspect of the present invention, there is provided a pressure control device for controlling a flow rate of a refrigerant flowing into a refrigerant suction chamber to adjust a pressure between the refrigerant suction chamber and the crank chamber. In the plate-type variable displacement compressor, the pressure adjusting means includes a spool valve, a spring for urging the spool valve in a valve closing direction, and a pressure chamber for accumulating a pressure for operating the spool valve in a valve opening direction. A flow control valve provided in the low-pressure side refrigerant passage upstream of the suction chamber, and a passage provided in communication between the refrigerant discharge chamber and the pressure chamber, which are normally closed by a spring and provided by an excitation current of the solenoid. A flow control valve drive mechanism having a pilot valve whose valve opening is controlled to control the introduction of the high-pressure side refrigerant of the refrigerant discharge chamber into the pressure chamber as an operating pressure, and the flow control valve drive mechanism includes: The par At the time of the predetermined opening state of the lot valve, when the pressure on the evaporator side upstream of the flow control valve of the low-pressure side refrigerant passage introduced through the feedback passage has changed from a certain pressure, this pressure change is sensed by the diaphragm, The pilot valve is actuated in a valve closing direction or a valve opening direction via a plunger to provide a feedback means for adjusting the valve opening of the flow control valve to keep the pressure on the evaporator side constant. When the low-pressure side refrigerant passage is fully closed and shut off, a high-pressure side refrigerant introduction passage which connects the refrigerant discharge chamber and the feedback path is provided.

【0007】請求項2の発明にあっては、請求項1に記
載のプランジャを中空に形成すると共に、該プランジャ
をパイロット弁の開弁時に該パイロット弁により先端開
口が閉塞され、かつ、パイロット弁の全閉時に先端開口
が開放される長さに設定し、高圧側冷媒導入通路を該中
空のプランジャで構成したことを特徴としている。
According to a second aspect of the present invention, the plunger according to the first aspect is formed hollow, and when the plunger is opened, the front end opening is closed by the pilot valve and the pilot valve is closed. Is set to have a length such that the distal end opening is opened when fully closed, and the high-pressure side refrigerant introduction passage is constituted by the hollow plunger.

【0008】請求項3の発明にあっては、請求項1,2
に記載のスプール弁は、そのスプール溝の両側面の受圧
面積を等しくしたことを特徴としている。
[0008] In the invention of claim 3, claims 1 and 2
Is characterized in that the pressure receiving areas on both sides of the spool groove are made equal.

【0009】請求項4の発明にあっては、請求項1〜3
に記載の流量制御弁駆動機構は、クランク室と、低圧側
冷媒通路の流量制御弁よりも上流のエバポレータ側とを
連通する圧力調整通路を備えていることを特徴としてい
る。
According to the invention of claim 4, claims 1 to 3 are provided.
The flow control valve driving mechanism described in (1) is characterized by including a pressure adjusting passage that communicates the crank chamber with the evaporator side upstream of the flow control valve in the low-pressure side refrigerant passage.

【0010】請求項5の発明にあっては、請求項1〜4
に記載の流量制御弁駆動機構は、流量制御弁の圧力室と
冷媒吸入室とを連通する圧力調整通路を備えていること
を特徴としている。
In the invention of claim 5, claims 1 to 4 are provided.
The flow control valve drive mechanism described in (1) is characterized by including a pressure adjusting passage that communicates the pressure chamber of the flow control valve with the refrigerant suction chamber.

【0011】[0011]

【発明の効果】請求項1に記載の発明によれば、流量制
御弁駆動機構のソレノイドへの供給電流を0にして該ソ
レノイドを消磁するとパイロット弁が閉弁し、流量制御
弁の圧力室への作動圧力の供給を遮断するため、スプー
ル弁が閉弁して冷媒吸入室への冷媒流入量を0にし、低
圧側冷媒通路の流量制御弁上流のエバポレータ側圧力の
低下を止めて、エバポレータの凍結防止を行わせること
ができる。
According to the first aspect of the present invention, when the supply current to the solenoid of the flow control valve drive mechanism is set to 0 and the solenoid is demagnetized, the pilot valve closes and the pressure chamber of the flow control valve is closed. In order to cut off the supply of the operating pressure of the evaporator, the spool valve closes to reduce the amount of the refrigerant flowing into the refrigerant suction chamber to zero, stop the decrease in the evaporator-side pressure upstream of the flow control valve in the low-pressure side refrigerant passage, and stop the evaporator. Freezing prevention can be performed.

【0012】従って、エバポレータの凍結防止作動時に
は、ソレノイドへの励磁電流の供給を停止すればよいの
で、電力消費を節減することができると共にスプール弁
の全閉作動により圧縮機の負荷をほぼ0にするため、駆
動源の出力の向上を図ることができる。
Therefore, when the evaporator operates to prevent freezing, the supply of the exciting current to the solenoid may be stopped, so that the power consumption can be reduced and the load on the compressor can be reduced to almost zero by fully closing the spool valve. Therefore, the output of the driving source can be improved.

【0013】また、このようにソレノイドへの励磁電流
の供給を停止して流量制御弁のスプール弁を閉弁作動さ
せることにより、冷媒吸入室の圧力が降下してその冷媒
を吸入したシリンダ内圧とクランク室との差圧が最大と
なり、各ピストンにかかる力によるモーメントにより斜
板の傾斜を立ててピストンストロークを最小にさせて圧
縮機の圧縮仕事をほぼ0にするため、ソレノイドの励,
消磁で圧縮機の稼働を断・続させることができてクラッ
チレスとすることができる。
By stopping the supply of the exciting current to the solenoid and closing the spool valve of the flow control valve in this manner, the pressure in the refrigerant suction chamber drops, and the internal pressure of the cylinder in which the refrigerant is drawn is reduced. The differential pressure from the crank chamber becomes the maximum, the swash plate is inclined by the moment due to the force applied to each piston, and the piston stroke is minimized to make the compression work of the compressor almost zero.
The operation of the compressor can be interrupted / continued by degaussing, and the clutch can be eliminated.

【0014】従って、圧縮機の構造を簡単にできて小
型,軽量化を実現できると共にコスト的に有利に得るこ
とができる。
Accordingly, the structure of the compressor can be simplified, the size and weight can be reduced, and the compressor can be advantageously obtained.

【0015】更に、所定の励磁電流によりパイロット弁
を所定開度にしてある場合に、車両を急加,減速した際
には低圧側冷媒通路の流量制御弁上流のエバポレータ側
圧力が変化してしまうが、この圧力変化はフイードバッ
ク手段のダイヤフラムにより直ちに感知されてプランジ
ャを介してパイロット弁が閉弁方向又は開弁方向に作動
されて、該エバポレータ側圧力を一定圧に保持させるこ
とができるため、該車両の急加,減速に伴うエバポレー
タの制御温度の変動を回避することができる。
Furthermore, when the vehicle is suddenly accelerated or decelerated when the pilot valve is set to the predetermined opening degree by the predetermined excitation current, the pressure on the evaporator upstream of the flow control valve in the low-pressure side refrigerant passage changes. However, since this pressure change is immediately sensed by the diaphragm of the feedback means and the pilot valve is operated in the valve closing direction or the valve opening direction via the plunger, the evaporator side pressure can be maintained at a constant pressure. Fluctuations in the control temperature of the evaporator due to sudden acceleration and deceleration of the vehicle can be avoided.

【0016】また、前記流量制御弁のスプール弁による
低圧側冷媒通路の全閉遮断時には、高圧側冷媒導入通路
によって冷媒吐出室とフィードバック通路とを連通し
て、該フィードバック通路を経由して低圧側冷媒通路の
エバポレータ側へ高圧側冷媒を導入して該エバポレータ
側の圧力を上昇させるため、スプール弁から冷媒吸入室
へ冷媒が洩れ出たとしても前記エバポレータ側圧力の低
下をなくしてエバポレータの凍結防止を確実に行うこと
ができる。
When the low pressure side refrigerant passage is fully closed and shut off by the spool valve of the flow control valve, the refrigerant discharge chamber and the feedback passage are communicated by the high pressure side refrigerant introduction passage, and the low pressure side refrigerant is passed through the feedback passage. In order to increase the pressure on the evaporator side by introducing the high-pressure side refrigerant to the evaporator side of the refrigerant passage, even if the refrigerant leaks from the spool valve to the refrigerant suction chamber, the evaporator side pressure is reduced and the evaporator is prevented from freezing. Can be performed reliably.

【0017】請求項2に記載の発明によれば、請求項1
の発明の効果に加えて、高圧側冷媒導入通路をフィード
バック手段のダイヤフラムに保持されたパイロット弁制
御用のプランジャ自体で構成すると共に、該高圧側冷媒
導入通路の開閉制御をパイロット弁で行わせるようにし
てあるため、専用の通路構成および制御弁設定が不要と
なり、構造を簡単にすることができてコスト的に有利に
得ることができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention, the high-pressure side refrigerant introduction passage is constituted by the plunger itself for controlling the pilot valve held by the diaphragm of the feedback means, and the opening and closing control of the high-pressure side refrigerant introduction passage is controlled by the pilot valve. Therefore, a dedicated passage configuration and control valve setting are not required, the structure can be simplified, and the cost can be advantageously obtained.

【0018】請求項3に記載の発明によれば、請求項
1,2の発明の効果に加えて、流量制御弁のスプール弁
に設けたスプール溝の両側面の受圧面積を等しくしてあ
るため、スプール弁を閉弁方向に付勢するスプリングの
ばね力と、圧力室に作用する作動圧力とを管理するだけ
でスプール弁の開閉ストロークの精度を出することがで
き、精度の高い流量制御を行わせることができる。
According to the third aspect of the invention, in addition to the effects of the first and second aspects, the pressure receiving areas on both side surfaces of the spool groove provided in the spool valve of the flow control valve are equalized. By controlling the spring force of the spring that urges the spool valve in the valve closing direction and the operating pressure that acts on the pressure chamber, the accuracy of the opening and closing stroke of the spool valve can be obtained. Can be done.

【0019】請求項4に記載の発明によれば、請求項1
〜3の発明の効果に加えて、クランク室は圧力調整通路
によって低圧側冷媒通路の流量制御弁よりも上流のエバ
ポレータ側に連通して同圧に一定に保持されるため、ク
ランク室のブローバイガスによる圧力変動をなくして容
量可変制御の精度を高めることができる。
According to the invention described in claim 4, according to claim 1,
In addition to the effects of the inventions of (1) to (3), since the crank chamber communicates with the evaporator side upstream of the flow control valve of the low-pressure side refrigerant passage by the pressure adjustment passage and is kept at the same pressure, the blow-by gas in the crank chamber And the accuracy of the variable displacement control can be improved.

【0020】請求項5に記載の発明によれば、請求項1
〜4の発明の効果に加えて、流量制御弁の圧力室は圧力
調整通路によって冷媒吸入室に連通しているため、パイ
ロット弁が閉弁した際に圧力室の作動圧力を速かに冷媒
吸入室へ逃がしてスプール弁を閉弁作動させることがで
きるので、応答性を高めることができる。
According to the invention described in claim 5, according to claim 1,
In addition to the effects of the fourth to fourth aspects, since the pressure chamber of the flow control valve communicates with the refrigerant suction chamber through the pressure adjusting passage, the operating pressure of the pressure chamber is quickly increased when the pilot valve is closed. Since the spool valve can be released to the chamber and closed, the responsiveness can be improved.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態を図面と
共に詳述する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0022】図1において、1は圧縮機ハウジングで複
数のシリンダボア3を有するシリンダブロック2と、シ
リンダブロック2の前側に配置されて該シリンダブロッ
ク2との間にクランク室5を形成するフロントハウジン
グ4と、シリンダブロック2の後側にバルブプレート9
を介装して配置されて冷媒吸入室7と冷媒吐出室8とを
形成するリヤハウジング6とを備えている。
In FIG. 1, reference numeral 1 denotes a compressor housing, a cylinder block 2 having a plurality of cylinder bores 3, and a front housing 4 which is disposed in front of the cylinder block 2 and forms a crank chamber 5 between the cylinder block 2 and the cylinder block 2. And a valve plate 9 on the rear side of the cylinder block 2.
And a rear housing 6 that forms a refrigerant suction chamber 7 and a refrigerant discharge chamber 8.

【0023】クランク室5内にはドライブシャフト10
に固設したドライブプレート11と、ドライブシャフト
10に摺動自在に嵌装したスリーブ12にピン13によ
り揺動自在に連結したジャーナル14と、該ジャーナル
14の外周に螺合固定した斜板15とを備えている。
A drive shaft 10 is provided in the crank chamber 5.
A journal 14 connected to a sleeve 12 slidably fitted on the drive shaft 10 by a pin 13 so as to swing freely, and a swash plate 15 screwed and fixed to the outer periphery of the journal 14. It has.

【0024】ジャーナル14はドライブプレート11の
弧状の長孔16とピン17とを介して連結して、該長孔
16によって揺動が規制されている。
The journal 14 is connected to the drive plate 11 through an arc-shaped elongated hole 16 and a pin 17, and the swing is regulated by the elongated hole 16.

【0025】各シリンダボア3に嵌装したピストン18
は、斜板15を挟んだ一対のシュー19を介して該斜板
15に連結してある。
A piston 18 fitted in each cylinder bore 3
Is connected to the swash plate 15 via a pair of shoes 19 sandwiching the swash plate 15.

【0026】ドライブシャフト10の外側の端部にはプ
ーリー20を軸受21を介して回転自在に装着してあ
り、該プーリー20の内周に螺合固定した第1駆動伝達
プレート22と、ドライブシャフト10の端末に固定し
た第2駆動伝達プレート23とをある一定以上の駆動ト
ルクでは摺動可能に連結して、プーリー20によりドラ
イブシャフト10を回転するようにしてある。
A pulley 20 is rotatably mounted on the outer end of the drive shaft 10 via a bearing 21, and a first drive transmission plate 22 screwed and fixed to the inner periphery of the pulley 20. The drive shaft 10 is rotated by the pulley 20 by slidably connecting the second drive transmission plate 23 fixed to the terminal 10 with a certain drive torque or more.

【0027】斜板15はリヤハウジング6に配設した圧
力調整手段30により調整される冷媒吸入室7とクラン
ク室5との差圧によって生じる斜板15のピン17の周
りのモーメントにより傾斜角度が制御され、この斜板1
5の角度変化によりピストン18のストロークを変化し
て冷媒の吐出容量を変化させるようになっている。
The inclination angle of the swash plate 15 is adjusted by the moment around the pin 17 of the swash plate 15 generated by the pressure difference between the refrigerant suction chamber 7 and the crank chamber 5 adjusted by the pressure adjusting means 30 provided in the rear housing 6. Controlled, this swash plate 1
By changing the angle of 5, the stroke of the piston 18 is changed to change the discharge capacity of the refrigerant.

【0028】圧力調整手段30は図2にも示すように、
冷媒吸入室7の上流となる冷媒入口24の近傍の低圧側
冷媒通路25に設けられて、該冷媒吸入室7への冷媒流
入量を直接制御する流量制御弁31と、該流量制御弁3
1を駆動制御する流量制御弁駆動機構32とで構成して
いる。
As shown in FIG. 2, the pressure adjusting means 30
A flow control valve 31 provided in the low-pressure side refrigerant passage 25 near the refrigerant inlet 24 upstream of the refrigerant suction chamber 7 for directly controlling the amount of refrigerant flowing into the refrigerant suction chamber 7;
1 and a flow rate control valve drive mechanism 32 for controlling the drive of the motor.

【0029】流量制御弁31は、低圧側冷媒通路25に
直交状態に配置したスプール弁33と、スプール弁33
を閉弁方向に付勢するスプリング34と、スプール弁3
3を開弁方向に作用させる圧力を蓄圧する圧力室35と
を備えている。
The flow control valve 31 includes a spool valve 33 disposed orthogonal to the low-pressure side refrigerant passage 25 and a spool valve 33.
And a spool valve 3 for urging the spool valve 3 in the valve closing direction.
And a pressure chamber 35 for accumulating a pressure that causes the valve 3 to act in the valve opening direction.

【0030】スプール弁33のスプール溝36の両側面
36a,36bは受圧面積を等しくしてある。
The both sides 36a and 36b of the spool groove 36 of the spool valve 33 have the same pressure receiving area.

【0031】スプリング34を収容したスプリング室3
7は、通路38により低圧側冷媒通路25の流量制御弁
31よりも下流の冷媒吸入室7側に連通してある。
The spring chamber 3 containing the spring 34
The passage 7 communicates with the refrigerant suction chamber 7 downstream of the flow control valve 31 of the low-pressure refrigerant passage 25 through a passage 38.

【0032】流量制御弁駆動機構32は、冷媒吐出室8
と圧力室35とを連通する通路40に設けられて、冷媒
吐出室8の高圧側冷媒を作動圧力として圧力室35へ導
入制御するパイロット弁としてのボール弁41と、励磁
電流に応じてボール弁41の弁開度を制御するソレノイ
ド42とを備えている。
The flow control valve drive mechanism 32 is provided with the refrigerant discharge chamber 8.
A ball valve 41 provided as a pilot valve that is provided in a passage 40 that communicates with the pressure chamber 35 and that controls the introduction of the high-pressure side refrigerant of the refrigerant discharge chamber 8 into the pressure chamber 35 as an operating pressure. And a solenoid 42 for controlling the valve opening of the valve 41.

【0033】ボール弁41は常態にあってはスプリング
43によって弁座に着座して閉弁するようにしてある。
The ball valve 41 is normally seated on a valve seat by a spring 43 and closed.

【0034】ソレノイド42は励磁電流が供給されるこ
とによりアーマチュア44を図2の上方へ移動させ、プ
ランジャ45を押動してボール弁41の弁開度を制御す
るようにしてある。
The solenoid 42 is supplied with an exciting current to move the armature 44 upward in FIG. 2 and push the plunger 45 to control the valve opening of the ball valve 41.

【0035】流量制御弁駆動機構32は、低圧側冷媒通
路25の流量制御弁31よりも上流のエバポレータ側の
圧力を検出して、前記ソレノイド42の励磁電流によっ
て可変制御される該エバポレータ側の圧力を一定に保持
させるフイードバック手段46を備えている。
The flow control valve drive mechanism 32 detects the pressure on the evaporator side upstream of the flow control valve 31 in the low pressure side refrigerant passage 25, and variably controls the pressure on the evaporator side by the excitation current of the solenoid 42. Is provided with feedback means 46 for keeping the constant.

【0036】フイードバック手段46は、大気圧室48
と冷媒圧室49とを隔成するダイヤフラム47と、冷媒
圧室49に前記エバポレータ側の圧力を導入するフイー
ドバック通路50と、ダイヤフラム47に保持され、前
記ソレノイド42のプランジャ45と同軸上に対向配置
されてボール弁41の開度を制御するプランジャ51と
を備えていて、前記ボール弁41が所定開度に制御され
ている状態時に、低圧側冷媒通路25の前記エバポレー
タ側の圧力が一定圧よりも変化した時に該圧力変化をダ
イヤフラム47で感知してプランジャ51によりボール
弁41を閉弁方向又は開弁方向に作動させ、流量制御弁
31の弁開度を調整して前記エバポレータ側の圧力を一
定に保持させるようにしてある。
The feedback means 46 includes an atmospheric pressure chamber 48
Diaphragm 47 which separates the refrigerant pressure chamber 49 from the fuel pressure chamber 49, a feedback path 50 which introduces the pressure on the evaporator side into the refrigerant pressure chamber 49, and which is held by the diaphragm 47 and is coaxially opposed to the plunger 45 of the solenoid 42. And a plunger 51 for controlling the opening of the ball valve 41. When the ball valve 41 is controlled to a predetermined opening, the pressure of the low-pressure side refrigerant passage 25 on the evaporator side becomes lower than a constant pressure. When the pressure changes, the pressure change is sensed by the diaphragm 47, the ball valve 41 is operated in the valve closing direction or the valve opening direction by the plunger 51, and the valve opening of the flow control valve 31 is adjusted to reduce the pressure on the evaporator side. It is kept constant.

【0037】前記冷媒圧室49は圧力調整通路52によ
りクランク室5に連通させて、該クランク室5を低圧側
冷媒通路25の前記流量制御弁31の上流のエバポレー
タ側に連通させている。
The refrigerant pressure chamber 49 communicates with the crank chamber 5 through a pressure adjusting passage 52, and the crank chamber 5 communicates with the low-pressure refrigerant passage 25 on the evaporator side upstream of the flow control valve 31.

【0038】また、流量制御弁31の圧力室35に連絡
する通路40のボール弁41よりも下流側には、冷媒吸
入室7に連絡する圧力調整通路53を連通してあり、該
圧力調整通路53により前記圧力室31と冷媒吸入室7
とを連通している。
A pressure regulating passage 53 communicating with the refrigerant suction chamber 7 is connected downstream of the ball valve 41 of the passage 40 communicating with the pressure chamber 35 of the flow control valve 31. 53, the pressure chamber 31 and the refrigerant suction chamber 7
And communicates.

【0039】また、この流量制御弁駆動機構32には、
前記スプール弁33による低圧側冷媒通路25の全閉遮
断時に、冷媒吐出室8とフィードバック通路50とを連
通する高圧側冷媒導入通路54を設けてある。
The flow control valve driving mechanism 32 includes:
When the low pressure side refrigerant passage 25 is fully closed and shut off by the spool valve 33, a high pressure side refrigerant introduction passage 54 that communicates the refrigerant discharge chamber 8 with the feedback passage 50 is provided.

【0040】本実施形態では図3にも示すように、前記
フィードバック手段46のダイヤフラム47に保持した
プランジャ51を中空に形成して、高圧側冷媒導入通路
54を該プランジャ51で構成している。
In this embodiment, as shown in FIG. 3, the plunger 51 held by the diaphragm 47 of the feedback means 46 is formed hollow, and the high-pressure side refrigerant introduction passage 54 is constituted by the plunger 51.

【0041】プランジャ51の上端部には冷媒圧室49
に臨む適宜の部位に連通孔55を設けてあると共に、該
プランジャ51はボール弁41が開弁している状態では
該ボール弁41により先端開口が閉塞され、かつ、ボー
ル弁41が全閉になると先端開口が開放される長さに設
定されていて、ボール弁41の全閉時に高圧側冷媒導入
通路54が開放されて冷媒吐出室8とフィードバック通
路50とを冷媒圧室49を経由して連通するようにして
ある。
A refrigerant pressure chamber 49 is provided at the upper end of the plunger 51.
A communication hole 55 is provided at an appropriate position facing the front end, and the plunger 51 has a tip opening closed by the ball valve 41 when the ball valve 41 is open, and the ball valve 41 is fully closed. When the ball valve 41 is fully closed, the high pressure side refrigerant introduction passage 54 is opened, and the refrigerant discharge chamber 8 and the feedback passage 50 pass through the refrigerant pressure chamber 49. It is made to communicate.

【0042】以上の実施形態の構造によれば、ソレノイ
ド42を励磁すると励磁電流に応じてボール弁41の弁
開度が制御され、冷媒吐出室8の高圧側冷媒が該ボール
弁41を通過して通路40へ流れ、流量制御弁31の圧
力室35に作動圧力として導入される。
According to the structure of the above embodiment, when the solenoid 42 is excited, the valve opening of the ball valve 41 is controlled according to the exciting current, and the high-pressure side refrigerant in the refrigerant discharge chamber 8 passes through the ball valve 41. And flows into the passage 40 and is introduced into the pressure chamber 35 of the flow control valve 31 as an operating pressure.

【0043】この圧力室35内の圧力に応じてスプール
弁33はスプリング34のばね力に抗して開弁する方向
に移動し、低圧側冷媒通路25の流路を拡大して冷媒吸
入室7への冷媒流入量を制御し、該冷媒吸入室7とクラ
ンク室5との差圧を調整して斜板15の傾斜角度を制御
し、ピストン18のストロークを変化させて冷媒吐出量
を制御することにより図外のエバポレータの温度制御が
行われる。
In response to the pressure in the pressure chamber 35, the spool valve 33 moves in the direction in which the spool valve 33 opens against the spring force of the spring 34, and expands the flow path of the low-pressure side refrigerant passage 25 to increase the refrigerant suction chamber 7 To control the amount of refrigerant flowing into the cooling chamber, adjust the pressure difference between the refrigerant suction chamber 7 and the crank chamber 5, control the inclination angle of the swash plate 15, and change the stroke of the piston 18 to control the amount of refrigerant discharged. Thus, the temperature of the evaporator (not shown) is controlled.

【0044】ここで、冷凍サイクルの稼働中におけるエ
バポレータの凍結防止の目的で、冷媒吸入室7への冷媒
流入量を0にして低圧側冷媒通路25の流量制御弁31
よりも上流のエバポレータ側の圧力低下を止めるには、
ソレノイド42への供給電流を0にして該ソレノイド4
2を消磁すればよく、該ソレノイド42の消磁によりボ
ール弁41が閉弁して流量制御弁31の圧力室35への
作動圧力の供給を停止するから、スプール弁33はスプ
リング34のばね力によって閉弁作動して低圧側冷媒通
路25を遮断し、冷媒吸入室7への冷媒流入量を0にし
て斜板15の傾斜角度を制御して、ピストンストローク
を減少させると共に該低圧側冷媒通路25のエバポレー
タ側圧力の低下を止め、エバポレータの凍結を防止す
る。
Here, for the purpose of preventing the evaporator from freezing during the operation of the refrigeration cycle, the amount of the refrigerant flowing into the refrigerant suction chamber 7 is reduced to zero, and the flow control valve 31 in the low-pressure side refrigerant passage 25 is set.
To stop the pressure drop on the evaporator side upstream of
The supply current to the solenoid 42 is set to 0 and the solenoid 4
2 can be demagnetized and the ball valve 41 is closed by the demagnetization of the solenoid 42 to stop the supply of the operating pressure to the pressure chamber 35 of the flow control valve 31. By closing the valve, the low-pressure side refrigerant passage 25 is shut off, the amount of refrigerant flowing into the refrigerant suction chamber 7 is reduced to zero, the inclination angle of the swash plate 15 is controlled, the piston stroke is reduced, and the low-pressure side refrigerant passage 25 is reduced. The lowering of the evaporator side pressure is stopped to prevent the evaporator from freezing.

【0045】このように、エバポレータの凍結防止作動
時には、ソレノイド42への励磁電流の供給を停止すれ
ばよいので、電力消費を節減することができると共にス
プール弁33の全閉作動により圧縮機の負荷をほぼ0に
するため、駆動源の出力の向上を図ることができる。
As described above, the supply of the exciting current to the solenoid 42 may be stopped during the anti-freezing operation of the evaporator, so that the power consumption can be reduced and the load on the compressor can be reduced by fully closing the spool valve 33. Is substantially zero, so that the output of the drive source can be improved.

【0046】また、前述したようにソレノイド42への
励磁電流の供給を停止して流量制御弁31のスプール弁
33を閉弁作動させると、冷媒吸入室7の圧力が降下し
てシリンダ内圧とクランク室5との差圧が最大となり、
ピン17周りのモーメントにより斜板15の傾斜を立て
てピストン18のストロークを最小にさせて圧縮機の圧
縮仕事をほぼ0にするため、ソレノイド42の励,消磁
で圧縮機の稼働を断・続させることができて、従来圧縮
機への駆動の伝達を断続していたクラッチを廃止してい
わゆるクラッチレスとすることができ、例えば電磁クラ
ッチの場合重量のあるマグネット,コイル等を不要とす
ることができる。
As described above, when the supply of the exciting current to the solenoid 42 is stopped and the spool valve 33 of the flow control valve 31 is operated to close, the pressure of the refrigerant suction chamber 7 drops, and the cylinder internal pressure and the crank pressure are reduced. The differential pressure with chamber 5 is at a maximum,
In order to make the swash plate 15 tilt by the moment around the pin 17 and minimize the stroke of the piston 18 to make the compression work of the compressor almost zero, the operation of the compressor is interrupted and continued by energizing and demagnetizing the solenoid 42. It is possible to eliminate the clutch, which conventionally interrupts the transmission of drive to the compressor, and eliminate the need for clutches. For example, in the case of an electromagnetic clutch, heavy magnets and coils are not required. Can be.

【0047】従って、圧縮機の構造を簡単にできて小
型,軽量化とクラッチへ通電する配線の廃止を実現でき
ると共にコスト的に有利に得ることができる。
Accordingly, the structure of the compressor can be simplified, the size and weight can be reduced, and the wiring for supplying electricity to the clutch can be eliminated, and the cost can be advantageously obtained.

【0048】また、流量制御弁機構32のソレノイド4
2に所定の励磁電流を供給してボール弁41を所定開度
にしてある状態で、車両を急加,減速すると圧縮機の回
転数変動で低圧側冷媒通路25の流量制御弁31上流の
エバポレータ側圧力が変化してしまうが、この圧力変化
はフイードバック手段46のダイヤフラム47により直
ちに感知されてプランジャ51を介してボール弁41が
閉弁方向又は開弁方向に作動されて、該エバポレータ側
圧力を前記ソレノイド42の励磁電流に見合った一定の
圧力に保持させるこができるため、車両の急加,減速に
伴うエバポレータの制御温度の変動を回避することがで
きる。
The solenoid 4 of the flow control valve mechanism 32
When a predetermined exciting current is supplied to the ball valve 2 and the ball valve 41 is kept at a predetermined opening degree, when the vehicle is rapidly accelerated or decelerated, the evaporator upstream of the flow control valve 31 in the low-pressure side refrigerant passage 25 due to fluctuations in the rotational speed of the compressor. The side pressure changes, but this pressure change is immediately sensed by the diaphragm 47 of the feedback means 46 and the ball valve 41 is actuated in the valve closing direction or the valve opening direction via the plunger 51 to reduce the evaporator side pressure. Since the pressure can be maintained at a constant value corresponding to the exciting current of the solenoid 42, fluctuations in the control temperature of the evaporator due to sudden acceleration and deceleration of the vehicle can be avoided.

【0049】このようなエバポレータの凍結防止作動
時、即ち、前述のようにボール弁41が閉弁して流量制
御弁31のスプール弁33により低圧側冷媒通路25を
全閉遮断している状態では、ボール弁41の閉弁により
プランジャ51の高圧側冷媒導入通路54が開放されて
冷媒吐出室8とフィードバック通路50とが連通し、該
フィードバック通路50を経由して低圧側冷媒通路25
のエバポレータ側への高圧側冷媒を導入して該エバポレ
ータ側の圧力を上昇させるため、スプール弁33から冷
媒吸入室7へ冷媒が洩れ出たとしても前記エバポレータ
の凍結防止を確実に行うことができる。
When such an evaporator operates to prevent freezing, that is, when the ball valve 41 is closed and the low-pressure side refrigerant passage 25 is fully closed by the spool valve 33 of the flow control valve 31, as described above. When the ball valve 41 is closed, the high pressure side refrigerant introduction passage 54 of the plunger 51 is opened, the refrigerant discharge chamber 8 communicates with the feedback passage 50, and the low pressure side refrigerant passage 25 passes through the feedback passage 50.
Since the high-pressure side refrigerant is introduced into the evaporator side to increase the pressure on the evaporator side, even if the refrigerant leaks from the spool valve 33 to the refrigerant suction chamber 7, the freezing of the evaporator can be reliably prevented. .

【0050】特に本実施形態では高圧側冷媒導入通路5
4をフィードバック手段46のダイヤフラム47に保持
されたプランジャ51自体で構成すると共に、その開閉
制御をボール弁41で行わせるようにしてあるため、専
用の通路構成および制御弁設定が不要となり、構造を簡
単にすることができてコスト的に有利に得ることができ
る。
Particularly, in this embodiment, the high-pressure side refrigerant introduction passage 5
4 is constituted by the plunger 51 itself held by the diaphragm 47 of the feedback means 46, and the opening and closing of the plunger 51 is controlled by the ball valve 41, so that a dedicated passage configuration and control valve setting are not required, and the structure is reduced. It can be simplified and cost-effectively obtained.

【0051】ここで、前述の流量制御弁31のスプール
弁33に設けたスプール溝36の両側面36a,36b
は受圧面積を等しくしてあるから、スプール弁33を閉
弁方向に付勢するスプリング34のばね力と、圧力室3
5に作用する作動圧力とを管理するだけでスプール弁3
3の開閉ストロークの精度を出すことができ、精度の高
い流量制御を行わせることができる。
Here, both side surfaces 36a, 36b of the spool groove 36 provided in the spool valve 33 of the flow control valve 31 described above.
Since the pressure receiving areas are equal, the spring force of the spring 34 for urging the spool valve 33 in the valve closing direction and the pressure chamber 3
5 only by controlling the operating pressure acting on the spool valve 3.
The accuracy of the opening / closing stroke of No. 3 can be obtained, and highly accurate flow rate control can be performed.

【0052】また、クランク室5は圧力調整通路52に
よって低圧側冷媒通路25の流量制御弁31よりも上流
のエバポレータ側に連通して同圧に一定に保持されるた
め、クランク室5のブローバイガスによる圧力変動をな
くして容量可変制御の精度を高めることができる。
Since the pressure in the crank chamber 5 is maintained at a constant level by communicating with the evaporator upstream of the flow control valve 31 in the low-pressure side refrigerant passage 25 through the pressure adjusting passage 52, the blow-by gas in the crank chamber 5 is maintained. And the accuracy of the variable displacement control can be improved.

【0053】更に、流量制御弁31の圧力室35は圧力
調整通路53によって冷媒吸入室7に連通しているた
め、流量制御弁駆動機構32のソレノイド42の消磁に
よりボール弁41が閉弁した際に、前記圧力室35の作
動圧力を速かに冷媒吸入室7側へ逃がしてスプール弁3
5を閉弁作動させることができるので、応答性を高める
ことができる。
Further, since the pressure chamber 35 of the flow control valve 31 communicates with the refrigerant suction chamber 7 through the pressure adjustment passage 53, the ball valve 41 is closed when the solenoid 42 of the flow control valve drive mechanism 32 is demagnetized. Then, the operating pressure of the pressure chamber 35 is quickly released to the refrigerant suction chamber 7 side so that the spool valve 3
Since the valve 5 can be operated to close the valve, responsiveness can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】同実施形態における圧力調整手段を系統的に示
す断面説明図。
FIG. 2 is a sectional explanatory view systematically showing a pressure adjusting unit in the embodiment.

【図3】高圧側冷媒導入通路の構成を示す拡大図。FIG. 3 is an enlarged view showing a configuration of a high-pressure side refrigerant introduction passage.

【符号の説明】[Explanation of symbols]

5 クランク室 7 冷媒吸入室 8 冷媒吐出室 25 低圧側冷媒通路 30 圧力調整手段 31 流量制御弁 32 流量制御弁駆動機構 33 スプール弁 34 スプリング 35 圧力室 40 通路 41 パイロット弁 42 ソレノイド 43 スプリング 46 フイードバック手段 47 ダイヤフラム 50 フイードバック通路 51 プランジャ 52,53 圧力調整通路 54 高圧側冷媒導入通路 Reference Signs List 5 Crank chamber 7 Refrigerant suction chamber 8 Refrigerant discharge chamber 25 Low pressure side refrigerant passage 30 Pressure adjusting means 31 Flow control valve 32 Flow control valve drive mechanism 33 Spool valve 34 Spring 35 Pressure chamber 40 Passage 41 Pilot valve 42 Solenoid 43 Spring 46 Feedback means 47 Diaphragm 50 Feedback path 51 Plunger 52,53 Pressure adjustment path 54 High-pressure side refrigerant introduction path

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷媒吸入室(7)に流入する冷媒流量を
制御して冷媒吸入室(7)とクランク室(5)との圧力
を調整する圧力調整手段(30)を備えた斜板式可変容
量圧縮機において、 前記圧力調整手段(30)を、スプール弁(33),該
スプール弁(33)を閉弁方向に付勢するスプリング
(34),およびスプール弁(33)を開弁方向に作用
させる圧力を蓄圧する圧力室(35)を備え、前記冷媒
吸入室(7)の上流の低圧側冷媒通路(25)に設けら
れた流量制御弁(31)と、 冷媒吐出室(8)と圧力室(35)とを連通する通路
(40)に設けられて、常態にあってはスプリング(4
3)により閉弁され、ソレノイド(42)の励磁電流に
より弁開度が制御されて冷媒吐出室(8)の高圧側冷媒
を作動圧力として圧力室(35)へ導入制御するパイロ
ット弁(41)を有する流量制御弁駆動機構(32)
と、で構成し、 かつ、該流量制御弁駆動機構(32)には、前記パイロ
ット弁(41)の所定開度状態時に、フイードバック通
路(50)を介して導入される前記低圧側冷媒通路(2
5)の流量制御弁上流のエバポレータ側の圧力が一定圧
よりも変化した時にこの圧力変化をダイヤフラム(4
7)により感知して、該ダイヤフラム(47)に保持さ
れたプランジャ(51)を介して該パイロット弁(4
1)を閉弁方向又は開弁方向に作動させ、流量制御弁
(31)の弁開度を調整して該エバポレータ側の圧力を
一定に保持させるフイードバック手段(46)を設ける
と共に、 前記スプール弁(33)による低圧側冷媒通路(25)
の全閉遮断時に、冷媒吐出室(8)とフィードバック通
路(50)とを連通する高圧側冷媒導入通路(54)を
設けたことを特徴とする斜板式可変容量圧縮機。
A swash plate type variable pressure control means (30) for controlling a flow rate of a refrigerant flowing into a refrigerant suction chamber (7) to adjust a pressure between the refrigerant suction chamber (7) and a crank chamber (5). In the displacement compressor, the pressure adjusting means (30) is moved in the direction of opening the spool valve (33), a spring (34) for urging the spool valve (33) in the valve closing direction, and the valve opening direction of the spool valve (33). A flow control valve (31) provided in a low-pressure side refrigerant passage (25) upstream of the refrigerant suction chamber (7); and a refrigerant discharge chamber (8). A passage (40) communicating with the pressure chamber (35) is provided, and in a normal state, a spring (4) is provided.
The pilot valve (41) is closed by 3), and the valve opening is controlled by the excitation current of the solenoid (42) to control the introduction of the high-pressure side refrigerant of the refrigerant discharge chamber (8) into the pressure chamber (35) as the operating pressure. Flow control valve drive mechanism having a valve (32)
And the low pressure side refrigerant passage (50) introduced through a feedback passage (50) when the pilot valve (41) is in a predetermined opening state. 2
5) When the pressure on the evaporator side upstream of the flow control valve changes from a fixed pressure, this pressure change is detected by the diaphragm (4).
7), and through the plunger (51) held in the diaphragm (47), the pilot valve (4).
1) is operated in a valve closing direction or a valve opening direction to provide a feedback means (46) for adjusting the valve opening of the flow control valve (31) to maintain the pressure on the evaporator side constant, and the spool valve (33) Low pressure side refrigerant passage (25)
A swash plate type variable displacement compressor characterized in that a high-pressure side refrigerant introduction passage (54) communicating the refrigerant discharge chamber (8) and the feedback passage (50) is provided when fully closed.
【請求項2】 プランジャ(51)を中空に形成すると
共に、該プランジャ(51)をパイロット弁(41)の
開弁時に該パイロット弁(41)により先端開口が閉塞
され、かつ、パイロット弁(41)の全閉時に先端開口
が開放される長さに設定し、高圧側冷媒導入通路(5
4)を該中空のプランジャ(51)で構成したことを特
徴とする請求項1に記載の斜板式可変容量圧縮機。
2. The plunger (51) is formed hollow, and when the plunger (51) is opened, the front end opening is closed by the pilot valve (41), and the pilot valve (41) is closed. ) Is set to a length such that the tip opening is opened when fully closed, and the high-pressure side refrigerant introduction passage (5) is set.
The swash plate type variable displacement compressor according to claim 1, wherein 4) is constituted by the hollow plunger (51).
【請求項3】 スプール弁(33)は、そのスプール溝
(36)の両側面の受圧面積を等しくしたことを特徴と
する請求項1,2に記載の斜板式可変容量圧縮機。
3. A swash plate type variable displacement compressor according to claim 1, wherein said spool valve (33) has equal pressure receiving areas on both side surfaces of said spool groove (36).
【請求項4】 流量制御弁駆動機構(32)は、クラン
ク室(5)と、低圧側冷媒通路(25)の流量制御弁
(31)よりも上流のエバポレータ側とを連通する圧力
調整通路(52)を備えていることを特徴とする請求項
1〜3の何れかに記載の斜板式可変容量圧縮機。
4. A flow control valve drive mechanism (32) for connecting a pressure control passage (40) that communicates between a crank chamber (5) and an evaporator side upstream of a flow control valve (31) of a low pressure side refrigerant passage (25). 52. The swash plate type variable displacement compressor according to any one of claims 1 to 3, further comprising (52).
【請求項5】 流量制御弁駆動機構(32)は、流量制
御弁(31)の圧力室(35)と冷媒吸入室(7)とを
連通する圧力調整通路(53)を備えていることを特徴
とする請求項1〜4の何れかに記載の斜板式可変容量圧
縮機。
5. The flow control valve drive mechanism (32) includes a pressure adjusting passage (53) that communicates a pressure chamber (35) of the flow control valve (31) with the refrigerant suction chamber (7). The swash plate type variable displacement compressor according to any one of claims 1 to 4, wherein
JP09690099A 1999-04-02 1999-04-02 Swash plate type variable capacity compressor Expired - Fee Related JP4031141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09690099A JP4031141B2 (en) 1999-04-02 1999-04-02 Swash plate type variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09690099A JP4031141B2 (en) 1999-04-02 1999-04-02 Swash plate type variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2000291540A true JP2000291540A (en) 2000-10-17
JP4031141B2 JP4031141B2 (en) 2008-01-09

Family

ID=14177258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09690099A Expired - Fee Related JP4031141B2 (en) 1999-04-02 1999-04-02 Swash plate type variable capacity compressor

Country Status (1)

Country Link
JP (1) JP4031141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332329B1 (en) * 1998-11-27 2001-12-25 Calsonic Kansei Corporation Swash plate type variable displacement compressor
US7533687B2 (en) 2003-08-11 2009-05-19 Eagle Industry Co., Ltd. Capacity control valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332329B1 (en) * 1998-11-27 2001-12-25 Calsonic Kansei Corporation Swash plate type variable displacement compressor
US7533687B2 (en) 2003-08-11 2009-05-19 Eagle Industry Co., Ltd. Capacity control valve

Also Published As

Publication number Publication date
JP4031141B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP3780784B2 (en) Control valve for air conditioner and variable capacity compressor
JP3984724B2 (en) Control valve for variable capacity swash plate compressor and swash plate compressor
JPH102284A (en) Variable displacement compressor and its control method
EP0854288B1 (en) Control valve in variable displacement compressor and method of manufacture
JP2001213153A (en) Controller for variable displacement compressor
EP1126169B1 (en) Swashplate type variable-displacement compressor
JP2000161234A (en) Variable displacement type compressor, and its displacement control valve
JP2001221158A (en) Control valve for variable displacement compressor
JPH09280171A (en) Variable displacement compressor, and controlling method for it
JP3899719B2 (en) Control valve for variable capacity compressor
JP4209522B2 (en) Swash plate type variable capacity compressor
JP2000009045A (en) Control valve for variable displacement type compressor, variable displacement type compressor, and variable setting method for set suction pressure
JP2002054561A (en) Control valve of variable displacement compressor, and variable displacement compressor
US8506261B2 (en) Displacement control system for variable displacement compressor
US20030070442A1 (en) Vehicular air-conditioner
JP2002285973A (en) Compression capacity control device for refrigeration cycle
JP4031141B2 (en) Swash plate type variable capacity compressor
JP4031128B2 (en) Swash plate type variable capacity compressor
JP4031140B2 (en) Swash plate type variable capacity compressor
JP4018311B2 (en) Swash plate type variable capacity compressor
JP4088397B2 (en) Swash plate type variable capacity compressor
JP2946711B2 (en) Variable capacity swinging swash plate type compressor
JP2001090657A (en) Swash plate type variable displacement compressor
JP2001090658A (en) Swash plate type variable displacement compressor
WO2004061304A1 (en) Control device for variable capacity compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees