JP4018311B2 - Swash plate type variable capacity compressor - Google Patents

Swash plate type variable capacity compressor Download PDF

Info

Publication number
JP4018311B2
JP4018311B2 JP2000040918A JP2000040918A JP4018311B2 JP 4018311 B2 JP4018311 B2 JP 4018311B2 JP 2000040918 A JP2000040918 A JP 2000040918A JP 2000040918 A JP2000040918 A JP 2000040918A JP 4018311 B2 JP4018311 B2 JP 4018311B2
Authority
JP
Japan
Prior art keywords
pressure
passage
valve
chamber
spool valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000040918A
Other languages
Japanese (ja)
Other versions
JP2001227457A (en
Inventor
正樹 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2000040918A priority Critical patent/JP4018311B2/en
Priority to EP01102915A priority patent/EP1126169B1/en
Priority to DE60122225T priority patent/DE60122225T2/en
Priority to US09/778,756 priority patent/US6481977B2/en
Publication of JP2001227457A publication Critical patent/JP2001227457A/en
Application granted granted Critical
Publication of JP4018311B2 publication Critical patent/JP4018311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は車両用空調装置等の冷凍サイクルに介装されて、冷媒ガスの圧縮に用いられる斜板式可変容量圧縮機に関する。
【0002】
【従来の技術】
斜板式可変容量圧縮機の中には、例えば特公平6−89741号公報に示されているように、ソレノイドの励磁電流によってパイロット弁の弁開度を制御して、冷媒吐出室の高圧側冷媒をピストン弁の背部に作用させ、該ピストン弁により冷媒吸入室に流入する冷媒流量を制御するようにしたものが知られている。
【0003】
【発明が解決しようとする課題】
前記従来の斜板式可変容量圧縮機は、圧縮機駆動プーリーに電磁クラッチを組込んだ所謂クラッチ付きタイプのものを基本構造としているため、構造が複雑となってしまうばかりでなく重量が嵩んでしまい、また、部品点数も嵩んでコスト的にも不利となってしまうことは否めない。
【0004】
また、クラッチを接続した圧縮機駆動状態にあって、エバポレータの凍結を回避するために圧縮機の冷媒吸入室の冷媒流入量を0にしたい場合には、パイロット弁を作動するソレノイドの励磁電流を最大にしてピストン弁を閉弁側へフルストロークさせる必要があって、消費電力が大きくなってしまう。
【0005】
そこで、本発明はクラッチを付設しなくても圧縮機の稼働を断・続制御できてクラッチレスとすることができると共に、冷媒の流量制御を司どるパイロット弁を作動するソレノイドを消磁することで圧縮機の冷媒吸入室への冷媒流入量を0にして、エバポレータの凍結防止を行わせることができる斜板式可変容量圧縮機を提供するものである。
【0006】
【課題を解決するための手段】
請求項1の発明にあっては、冷媒吸入室に流入する冷媒流量を制御する冷媒吸入室とクランク室との圧力を調整する圧力調整手段を備えた斜板式可変容量圧縮機において、
前記圧力調整手段を、スプール弁,該スプール弁を閉弁方向に付勢するスプリングを配設したスプリング室,およびスプール弁を開弁方向に作用させる圧力を蓄圧する圧力室を備え、前記冷媒吸入室の上流の低圧側冷媒通路に設けられた流量制御弁と、
冷媒吐出室と圧力室とを連通する通路に設けられて、常態にあってはスプリングにより閉弁され、ソレノイドの励磁電流により弁開度が制御されて冷媒吐出室の高圧側冷媒を作動圧力として圧力室へ導入制御するパイロット弁を有する流量制御弁駆動機構と、で構成し、
かつ、前記流量制御弁には圧力室内の圧力を低圧側冷媒通路の冷媒吸入室側へ逃がす圧力調整通路を設けると共に、スプール弁の全閉時に該圧力調整通路を全閉にする通路遮断手段を設けたことを特徴としている。
【0007】
請求項2の発明にあっては、請求項1に記載の通路遮断手段を、スプール弁の全開時にも圧力調整通路を全閉にするようにしたことを特徴としている。
【0008】
請求項3の発明にあっては、請求項1,2に記載の圧力調整通路を、スプール弁を収容したハウジングに圧力室と低圧側冷媒通路の冷媒吸入室側とに連通して設けた連通路と、スプール弁の外周面に前記連通路の圧力室側の開口に連通可能に設けた凹部と、スプール弁に前記凹部と圧力室とを連通して設けたオリフィス孔とで構成し、かつ、前記凹部の形成位置を、スプール弁の所定開度範囲でのみ前記連通路の圧力室側の開口と連通する位置に設定して、スプール弁自体で通路遮断手段を構成したことを特徴としている。
【0009】
請求項4の発明にあっては、請求項1に記載の流量制御弁のスプリング室を通路を介して低圧側冷媒通路の冷媒吸入室側に連通すると共に、スプール弁に圧力室とスプリング室とを連通する絞り通路を設けて、これら通路と絞り通路とにより圧力調整通路を構成したことを特徴としている。
【0010】
請求項5の発明にあっては、請求項4に記載の通路遮断手段を、スプール弁の全開時にも圧力調整通路を全閉にするようにしたことを特徴としている。
【0011】
請求項6の発明にあっては、請求項5に記載の通路遮断手段を、絞り通路に設けられて、スプール弁の全閉時に圧力室とスプリング室との差圧により該絞り通路を全閉にする差圧弁と、スプリング室に設けられてスプール弁の全開時に該スプール弁の端面に当接してスプール弁を全開規制すると共に、絞り通路の開口端を閉塞する全開規制ストッパとで構成したことを特徴としている。
【0012】
請求項7の発明にあっては、請求項4〜6に記載の絞り通路を、スプール弁に圧力室とスプリング室とに連通して設けた連通路と、オリフィス孔を有し前記連通路の一方の開口端に嵌合固定したブッシュとで構成したことを特徴としている。
【0013】
請求項8の発明にあっては、請求項1〜7に記載のスプール弁は、そのスプール溝の両側面の受圧面積を等しくしたことを特徴としている。
【0014】
請求項9の発明にあっては、請求項1〜8に記載の流量制御弁駆動機構は、低圧側冷媒通路の流量制御弁よりも上流のエバポレータ側の圧力を検出して、パイロット弁の所定開度状態時に該エバポレータ側の圧力が一定圧よりも変化した時にパイロット弁を閉弁方向又は開弁方向に作動させ、流量制御弁の弁開度を調整して前記エバポレータ側の圧力を一定に保持させるフイードバック手段を備えていることを特徴としている。
【0015】
請求項10の発明にあっては、請求項1〜9に記載の流量制御弁駆動機構は、クランク室と、低圧側冷媒通路の流量制御弁よりも上流のエバポレータ側とを連通する圧力調整通路を備えていることを特徴としている。
【0016】
【発明の効果】
請求項1に記載の発明によれば、流量制御弁駆動機構のソレノイドへの供給電流を0にして該ソレノイドを消磁するとパイロット弁が閉弁し、流量制御弁の圧力室への作動圧力の供給を遮断するため、スプール弁が閉弁して冷媒吸入室への冷媒流入量を0にし、低圧側冷媒通路の流量制御弁上流のエバポレータ側圧力の低下を止めて、エバポレータの凍結防止を行わせることができる。
【0017】
従って、エバポレータの凍結防止作動時には、ソレノイドへの励磁電流の供給を停止すればよいので、電力消費を節減することができると共にスプール弁の全閉作動により圧縮機の負荷をほぼ0にするため、駆動源の出力の向上を図ることができる。
【0018】
また、このようにソレノイドへの励磁電流の供給を停止して流量制御弁のスプール弁を閉弁作動させることにより、冷媒吸入室の圧力が降下してその冷媒を吸入したシリンダ内圧とクランク室との差圧が最大となり、各ピストンにかかる力によるモーメントにより斜板の傾斜を立ててピストンストロークを最小にさせて圧縮機の圧縮仕事をほぼ0にするため、ソレノイドの励,消磁で圧縮機の稼働を断・続させることができてクラッチレスとすることができる。
【0019】
従って、圧縮機の構造を簡単にできて小型,軽量化を実現できると共にコスト的に有利に得ることができる。
【0020】
また、前記流量制御弁は圧力室内の圧力を低圧側冷媒通路の冷媒吸入室側へ逃がす圧力調整通路を備えているため、スプール弁が所要の開度で開弁している状態で流量制御弁駆動機構のソレノイドの消磁によりパイロット弁が閉弁すると、流量制御弁の圧力室内の圧力は圧力調整通路により低圧側冷媒通路の冷媒吸入室側へ逃げるため、スプリングの付勢力によるスプール弁の閉弁作動が阻害されることがなく、応答性を高めることができる。
【0021】
しかも、この圧力調整通路はスプール弁の全閉位置では、通路遮断手段によって全閉にされるため、前記パイロット弁が開弁した際には圧力室内の圧力の立ち上がりを速かに行え、従って、圧縮機の低負荷時のように圧力室に作動圧力として導入される冷媒吐出圧が低い運転域であっても、該圧力室内の圧力の立ち上がりを速かに行えてスプール弁の起動性、即ち、開弁性能を向上することができる。
【0022】
請求項2に記載の発明によれば、請求項1の発明の効果に加えて、通路遮断手段はスプール弁の全開時にも圧力調整通路を遮断するため、スプール弁が全開となる圧縮機の高負荷時に圧力室に導入された高温,高圧の冷媒が圧力調整通路を経由して冷媒吸込室側へ流出するのを阻止することができ、従って、スプール弁全開時の冷房性能の劣化を防止するこができる。
【0023】
請求項3に記載の発明によれば、請求項1,2の発明の効果に加えて、スプール弁自体で通路遮断手段を構成できて専用部品を必要とすることがなく、従って、コスト的に有利に得ることができる。
【0024】
請求項4に記載の発明によれば、請求項1の発明の効果に加えて、スプール弁自体に絞り通路を設けて、スプリング室を冷媒吸込室側に開放したスプール弁の作動バランス保持用の通路とで圧力調整通路を構成しているので、圧縮機ハウジングの通路穴加工を極力少なくすることができて、圧縮機ハウジングの設計の自由度を拡大できると共に加工工数を削減でき、コスト的に有利に得ることができる。
【0025】
請求項5に記載の発明によれば、請求項4の発明の効果に加えて、通路遮断手段はスプール弁の全開時にも圧力調整通路を遮断するため、該スプール弁が全開となる圧縮機の高負荷時に圧力室に導入された高温,高圧の冷媒が圧力調整通路を経由して冷媒吸入室側へ流出するのを阻止でき、従って、スプール弁全開時の冷房性能の劣化を防止することができる。
【0026】
請求項6に記載の発明によれば、請求項5の発明の効果に加えて、スプール弁の全閉時と全開時における圧力調整通路の遮断機能を、絞り通路に設けた差圧弁とスプール弁の全開規制ストッパとによって行わせるようにしてあるため、通路遮断手段を簡単な設計,構造によってコスト的に有利に構成することができる。
【0027】
請求項7に記載の発明によれば、請求項4〜6の発明の効果に加えて、スプール弁には連通路を形成して、その一方の開口端にオリフィス孔を有するブッシュを嵌合固定することによって絞り通路を構成することができるので、スプール弁に所定のオリフィス機能が得られるように細径の絞り通路を直接形成するのに較べて、該スプール弁の孔開け加工が容易で生産性を向上することができる。
【0028】
請求項8に記載の発明によれば、請求項1〜7の発明の効果に加えて、流量制御弁のスプール弁に設けたスプール溝の両側面の受圧面積を等しくしてあるため、流量制御弁のスプリングのばね力と、圧力室に作用する作動圧力とを管理するだけでスプール弁の開閉ストロークの精度を出すことができ、精度の高い流量制御を行わせることができる。
【0029】
請求項9に記載の発明によれば、請求項1〜8の発明の効果に加えて、所定の励磁電流によりパイロット弁を所定開度にしてある場合に、車両を急加,減速した際には同一の駆動源で駆動されている圧縮機の回転数が変動するため、低圧側冷媒通路の流量制御弁上流のエバポレータ側圧力が変化してしまうが、フイードバック手段によって該エバポレータ側圧力を一定圧に保持させることができるため、該車両の急加,減速に伴うエバポレータの制御温度の変動を回避することができる。
【0030】
よって、空気調和装置においては、室内吹出し空気の温度変動がなくなり、安定した空気調和を行うことができる。
【0031】
請求項10に記載の発明によれば、請求項1〜9の発明の効果に加えて、クランク室は圧力調整通路によって低圧側冷媒通路の流量制御弁よりも上流のエバポレータ側に連通して同圧に保持されるため、クランク室のブローバイガスによる圧力変動をなくして容量可変制御の精度を高めることができる。
【0032】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0033】
図1において、1は圧縮機ハウジングで複数のシリンダボア3を有するシリンダブロック2と、シリンダブロック2の前側に配置されて該シリンダブロック2との間にクランク室5を形成するフロントハウジング4と、シリンダブロック2の後側にバルブプレート9を介装して配置されて冷媒吸入室7と冷媒吐出室8とを形成するリヤハウジング6とを備えている。
【0034】
クランク室5内にはドライブシャフト10に固設したドライブプレート11と、ドライブシャフト10に揺動自在に嵌装したスリーブ12にピン13により揺動自在に連結したジャーナル14と、該ジャーナル14の外周に螺合固定した斜板15とを備えている。
【0035】
ジャーナル14はドライブプレート11にその弧状の長孔16とピン17とを介して連結して、該長孔16によって揺動が規制されている。
【0036】
各シリンダボア3に嵌装したピストン18は、斜板15を挾んだ一対のシュー19を介して該斜板15に連結してある。
【0037】
ドライブシャフト10の外側の端部にはプーリー20を軸受21を介して回転自在に装着してあり、該プーリー20の内周に螺合固定した第1駆動伝達プレート22と、ドライブシャフト10の端末に固定した第2駆動伝達プレート23とをある一定以上の駆動トルクでは摺動可能に連結して、プーリー20によりドライブシャフト10を回転するようにしてある。
【0038】
斜板15はリヤハウジング6に配設した圧力調整手段30により調整される冷媒吸入室7とクランク室5との差圧によって生じる斜板15のピン17周りのモーメントにより傾斜角度が制御され、この斜板15の角度変化によりピストン18のストロークを変化して冷媒の吐出容量を変化させるようになっている。
【0039】
圧力調整手段30は図2にも示すように、冷媒吸入室7の上流となる冷媒入口24の近傍の低圧側冷媒通路25に設けられて、該冷媒吸入室7への冷媒流入量を直接制御する流量制御弁31と、該流量制御弁31を駆動制御する流量制御弁駆動機構32とで構成している。
【0040】
図1では構造を理解し易くするため、便宜的に流量制御弁31を流量制御弁駆動機構32に対して直角に配置した状態に示しており、このため、該流量制御弁31がリヤハウジング6の側方へ突出した状態に見えるが、実際には流量制御弁31は流量制御弁駆動機構32と平行に配設されて圧縮機のコンパクト化が図られている。
【0041】
流量制御弁31は、低圧側冷媒通路25に直交状態に配置したスプール弁33と、スプール弁33を閉弁方向に付勢するスプリング34を配設したスプリング室37と、スプール弁33を開弁方向に作用させる圧力を蓄圧する圧力室35とを備えている。
【0042】
スプール弁33のスプール溝36の両側面36a,36bは受圧面積を等しくしてある。
【0043】
スプリング34を収容したスプリング室37は、通路38により低圧側冷媒通路25の流量制御弁31よりも下流の冷媒吸入室7側に連通してある。
【0044】
流量制御弁駆動機構32は、冷媒吐出室8と圧力室35とを連通する通路40に設けられて、冷媒吐出室8の高圧側冷媒を作動圧力として圧力室35へ導入制御するパイロット弁としてのボール弁41と、励磁電流に応じてボール弁41の弁開度を制御するソレノイド42とを備えている。
【0045】
ボール弁41は常態にあってはスプリング43によって弁座に着座して閉弁するようにしてある。
【0046】
ソレノイド42は励磁電流が供給されることによりアーマチュア44を図2の上方へ移動させ、プランジャ45を押動してボール弁41の弁開度を制御するようにしてある。
【0047】
流量制御弁駆動機構32は、低圧側冷媒通路25の流量制御弁31よりも上流のエバポレータ側の圧力を検出して、前記ソレノイド42の励磁電流によって可変制御される該エバポレータ側の圧力を一定に保持させるフイードバック手段46を備えている。
【0048】
フイードバック手段46は、大気圧室48と冷媒圧室49とを隔成するダイヤフラム47と、冷媒圧室49に前記エバポレータ側の圧力を導入するフイードバック通路50と、ダイヤフラム47に保持され、前記ソレノイド42のプランジャ45と同軸上に対向配置されてボール弁41の開度を制御するプランジャ51とを備えていて、前記ボール弁41が所定開度に制御されている状態時に、低圧側冷媒通路25の前記エバポレータ側の圧力が一定圧よりも変化した時に、該圧力変化をダイヤフラム47で感知してプランジャ51によりボール弁41を閉弁方向又は開弁方向に作動させ、流量制御弁31の弁開度を調整して前記エバポレータ側の圧力を一定に保持させるようにしてある。
【0049】
前記冷媒圧室49は圧力調整通路52によりクランク室5に連通させて、該クランク室5を低圧側冷媒通路25の前記流量制御弁31の上流のエバポレータ側に連通させている。
【0050】
一方、前記流量制御弁31には、圧力室35内の圧力を低圧側冷媒通路25の冷媒吸入室7側へ逃がす圧力調整通路53を設けると共に、スプール弁33の全閉時に該圧力調整通路53を全閉にする通路遮断手段60を設けてある。
【0051】
本実施形態にあっては、図3,4にも示すようにスプール弁33の全開時にもこの圧力調整通路53を全閉にするようにしている。
【0052】
具体的には、これら図2〜4において、スプール弁33を収容配置したリヤハウジング6には、圧力室35と低圧側冷媒通路25の冷媒吸入室側とに連通した連通路61を設けてある一方、スプール弁33の外周面に前記連通路61の圧力室35側の開口に連通可能に凹部62を設けると共に、該凹部62と圧力室35とを連通する所定絞り面積のオリフィス孔63を設けて、これら連通路61と凹部62およびオリフィス孔63とで前述の圧力調整通路53を構成している。
【0053】
また、前記スプール弁33の外周面の凹部62は、該スプール弁33の所定開度範囲でのみ、即ち、全閉位置と全開位置とを除く開度範囲でのみ前記連通路61の開口と連通するようにその形成位置を設定してあって、このスプール弁33自体で前述の通路遮断手段60を構成している。
【0054】
スプリング室37にはスプール弁33の全開時に該スプール弁33の端面に当接して全開規制する全開規制ストッパ66を設けてある。
【0055】
以上の実施形態の構造によれば、ソレノイド42を励磁すると励磁電流に応じてボール弁41の弁開度が制御され、冷媒吐出室8の高圧側冷媒が該ボール弁41を通過して通路40へ流れ、流量制御弁31の圧力室35に作動圧力として導入される。
【0056】
この圧力室35内の圧力に応じてスプール弁33はスプリング34のばね力に抗して開弁する方向に移動し、低圧側冷媒通路25の流路を拡大して冷媒吸入室7への冷媒流入量を制御し、該冷媒吸入室7とクランク室5との差圧を調整して斜板15の傾斜角度を制御し、ピストン18のストロークを変化させて冷媒吐出量を制御することにより図外のエバポレータの温度制御が行われる。
【0057】
ここで、前記流量制御弁31は圧力室35内の圧力を低圧側冷媒通路25の冷媒吸入室側へ逃がす圧力調整通路53を備えているため、スプール弁33が所要の開度で開弁している状態で前記ソレノイド42の消磁によりパイロット弁41が閉弁すると、圧力室35内の作動圧力を該圧力調整通路53から速かに冷媒吸入室側へ逃がしてスプリング34の付勢力によるスプール弁33の閉弁作動を阻害することがなく、応答性を高めることができる。
【0058】
しかも、この圧力調整通路53は図3で示すスプール弁33の全閉位置では、通路遮断手段60によってほぼ全閉にされるため、前記パイロット弁41が開弁した際には圧力室35内の圧力の立ち上がりを速かに行え、従って、圧縮機の低負荷時のように圧力室35に作動圧力として導入される冷媒吐出圧が低い運転域であっても、該圧力室35内の圧力の立ち上がりを速かに行えてスプール弁33の起動性、即ち、開弁性能を向上することができる。
【0059】
また、この通路遮断手段60は、図4で示すスプール弁33の全開位置でも圧力調整通路53を全閉にするため、該スプール弁33が全開となる圧縮機の高負荷時に圧力室35に導入された高温,高圧の冷媒が圧力調整通路53を経由して冷媒吸入室7側へ流出するのを阻止することができ、従って、スプール弁33の全開時における冷房性能の劣化を防止することができる。
【0060】
特に本実施形態では前記連通路61の圧力室35側の開口形成位置と、スプール弁33の外周面における凹部62の形成位置の設定により、該スプール弁33自体で通路遮断手段60を構成しているので、専用部品を必要とすることがなくコスト的に有利に得ることができる。
【0061】
一方、冷凍サイクルの稼働中におけるエバポレータの凍結防止の目的で、冷媒吸入室7への冷媒流入量を0にして低圧側冷媒通路25の流量制御弁31よりも上流のエバポレータ側の圧力低下を止めるには、ソレノイド42への供給電流を0にして該ソレノイド42を消磁すればよく、該ソレノイド42の消磁によりボール弁41が閉弁して流量制御弁31の圧力室35への作動圧力の供給を停止するから、スプール弁33はスプリング34のばね力によって閉弁作動して低圧側冷媒通路25を遮断し、冷媒吸入室7への冷媒流入量を0にして斜板15の傾斜角度を制御して、ピストンストロークを減少させると共に該低圧側冷媒通路25のエバポレータ側圧力の低下を止め、エバポレータの凍結を防止する。
【0062】
このように、エバポレータの凍結防止作動時には、ソレノイド42への励磁電流の供給を停止すればよいので、電力消費を節減することができるとともにスプール弁33の全閉作動により圧縮機の負荷をほぼ0にするため、駆動源の出力の向上を図ることができる。
【0063】
また、前述したようにソレノイド42への励磁電流の供給を停止して流量制御弁31のスプール弁33を閉弁作動させると、冷媒吸入室7の圧力が降下してシリンダ内圧とクランク室5との差圧が最大となり、ピン17周りのモーメントにより斜板15の傾斜を立ててピストン18のストロークを最小にさせて圧縮機の圧縮仕事をほぼ0にするため、ソレノイド42の励,消磁で圧縮機の稼働を断・続させることができて、従来、圧縮機への駆動力の伝達を断続していたクラッチを廃止していわゆるクラッチレスとすることができ、例えば電磁クラッチの場合における重量のあるマグネット,コイル等を不要とすることができる。
【0064】
従って、圧縮機の構造を簡単にできて小型,軽量化とクラッチへ通電する配線の廃止を実現できると共にコスト的に有利に得ることができる。
【0065】
また、流量制御弁駆動機構32のソレノイド42に所定の励磁電流を供給してボール弁41を所定開度にしてある状態で、車両を急加,減速すると圧縮機の回転変動で低圧側冷媒通路25の流量制御弁31上流のエバポレータ側圧力が変化してしまうが、この圧力変化はフイードバック手段46のダイヤフラム47により直ちに感知されてプランジャ51を介してボール弁41が閉弁方向又は開弁方向に作動されて、該エバポレータ側圧力を前記ソレノイド42の励磁電流に見合った一定の圧力に保持させることができるため、車両の急加,減速に伴うエバポレータの制御温度の変動を回避することができる。
【0066】
ここで、前述の流量制御弁31のスプール弁33に設けたスプール溝36の両側面36a,36bは受圧面積を等しくしてあるから、スプール弁33を閉弁方向に付勢するスプリング34のばね力と、圧力室35に作用する作動圧力とを管理するだけでスプール弁33の開閉ストロークの精度を出すことができ、精度の高い流量制御を行わせることができる。
【0067】
また、クランク室5は圧力調整通路52によって低圧側冷媒通路25の流量制御弁31よりも上流のエバポレータ側に連通して同圧に一定に保持されるため、クランク室5のブローバイガスによる圧力変動をなくして容量可変制御の精度を高めることができる。
【0068】
図5,6は本発明の第2実施形態を示すもので、本実施形態にあっては流量制御弁31のスプール弁33に圧力室35とスプリング室37とを連通する所要の絞り断面積の絞り通路64を設けて、この絞り通路64と前述のスプリング室37を冷媒吸入室側に開放した通路38とで圧力調整通路53を構成している。
【0069】
絞り通路64はスプール弁33の中心軸線上に設けて、該スプール弁33の全開時には前述のスプリング室37内に配設した全開規制ストッパ66の端面で該絞り通路64のスプリング室側の開口端が閉塞されるようにしてあり、また、絞り通路64にスプール弁33の全閉時に圧力室35とスプリング室37との差圧により該絞り通路64を閉塞する差圧弁65を設けて、これら差圧弁65と全開規制ストッパ66とにより通路遮断手段60を構成している。
【0070】
本実施形態では絞り通路64のスプリング室37側の開口部分に大径部を形成して、ここに前記差圧弁65を配設してある。
【0071】
差圧弁65は絞り通路64に設けたテーパ状の弁座68に着座するボール弁67と、ボール弁67を弁座68に着座する方向に付勢するスプリング69と、前記大径部に嵌着固定されて弁室70を形成すると共にスプリング69を保持するスプリングシート71とを備えており、該スプリングシート71には弁室70をスプリング室37に開放する複数の開孔72を設け、スプール弁33の全開時にはこの開孔72が全開規制ストッパ66で閉塞されるようにしてある。
【0072】
差圧弁65のスプリング69は、前記パイロット弁41の開弁により圧力室35に作動圧力が導入されて、該圧力室35とスプリング室37との差圧が所定値以上になるとボール弁67を速かに開弁するようにばね力を任意に設定してある。
【0073】
従って、この第2実施形態によれば前記第1実施形態と同様の効果が得られる他、特に、スプール弁33自体に絞り通路64を設けて、スプリング室37を冷媒吸入室側に開放したスプール弁33の作動バランス保持用の通路38とで圧力調整通路53を構成しているので、リヤハウジング6の通路穴加工を極力少なくすることができて、リヤハウジング6の設計の自由度を拡大できると共に加工工数を削減でき、コスト的に有利に得ることができる。
【0074】
また、スプール弁33の全閉時と全開時における圧力調整通路53の遮断機能を、絞り通路64に設けた差圧弁65とスプール弁33の全開規制ストッパ66とによって行わせるようにしてあるため、通路遮断手段60を簡単な設計,構造によってコスト的に有利に構成することもできる。
【0075】
図7は本発明の第3実施形態を示すもので、前記第2実施形態ではスプール弁33に所定の絞り断面積で絞り通路64を形成しているが、この第3実施形態にあってはスプール弁33の中心軸線上に圧力室35とスプリング室37とを連通する連通路73を形成し、その圧力室35側の開口部分に大径部を形成して該大径部に所定の絞り面積のオリフィス孔75を有するブッシュ74を嵌合固定することによって、これら連通路73とブッシュ74とで絞り通路64を構成している。
【0076】
従って、この第3実施形態によれば前記第2実施形態のようにスプール弁33に所定のオリフィス機能が得られるように細径の絞り通路64を直接形成するのに較べて、連通路73の孔径を大きく形成できるため、該スプール弁33の孔開け加工を容易に行えて生産性を高めることができる。
【0077】
前記第2,第3実施形態では何れも差圧弁65を絞り通路64のスプリング室側の開口端に設けているが、これは圧力室側の開口端に設けることもでき、この場合、第3実施形態におけるブッシュ74はスプリング室側の開口端に設けられる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す断面図。
【図2】本発明の一実施形態における圧力調整手段を系統的に示す断面説明図。
【図3】図2に示した圧力調整手段の流量制御弁のスプール弁全閉状態時を示す断面説明図。
【図4】図2に示した圧力調整手段の流量制御弁のスプール弁全開状態時を示す断面説明図。
【図5】流量制御弁の第2実施形態を示すスプール弁全閉状態時の断面説明図。
【図6】流量制御弁の第2実施形態を示すスプール弁全開状態時の断面説明図。
【図7】流量制御弁の第3実施形態におけるスプール弁の構造を示す断面図。
【符号の説明】
5 クランク室
6 リヤハウジング
7 冷媒吸入室
8 冷媒吐出室
25 低圧側冷媒通路
30 圧力調整手段
31 流量制御弁
32 流量制御弁駆動機構
33 スプール弁
34,43 スプリング
35 圧力室
36 スプール溝
37 スプリング室
38 スプリング室と冷媒吸入室との連通路
40 圧力室と冷媒吐出室との連通路
41 パイロット弁
42 ソレノイド
46 フイードバック手段
52 流量制御弁駆動機構の圧力調整通路
53 流量制御弁の圧力調整通路
60 通路遮断手段
61 連通路
62 凹部
63,75 オリフィス孔
64 絞り通路
65 差圧弁
66 全開規制ストッパ
73 スプール弁に設けた連通路
74 ブッシュ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a swash plate type variable capacity compressor that is interposed in a refrigeration cycle of a vehicle air conditioner or the like and is used to compress refrigerant gas.
[0002]
[Prior art]
In some swash plate type variable capacity compressors, for example, as disclosed in Japanese Patent Publication No. 6-87741, the opening degree of a pilot valve is controlled by an excitation current of a solenoid, and the high-pressure side refrigerant in the refrigerant discharge chamber is controlled. Is known to act on the back of a piston valve, and the flow rate of the refrigerant flowing into the refrigerant suction chamber is controlled by the piston valve.
[0003]
[Problems to be solved by the invention]
Since the conventional swash plate type variable capacity compressor is based on a so-called clutch type in which an electromagnetic clutch is incorporated in a compressor driving pulley, the structure becomes complicated and the weight increases. In addition, it is undeniable that the number of parts is increased and disadvantageous in terms of cost.
[0004]
In addition, when the compressor is connected to the clutch and the refrigerant flow rate in the refrigerant suction chamber of the compressor is to be zero in order to avoid freezing of the evaporator, the excitation current of the solenoid that operates the pilot valve is set to 0. It is necessary to make the piston valve full stroke toward the valve closing side at the maximum, resulting in an increase in power consumption.
[0005]
Therefore, the present invention can control the operation of the compressor without a clutch and can be made clutchless and demagnetize the solenoid that operates the pilot valve that controls the flow rate of the refrigerant. A swash plate type variable capacity compressor capable of preventing the evaporator from freezing by setting the refrigerant inflow amount to the refrigerant suction chamber of the compressor to zero is provided.
[0006]
[Means for Solving the Problems]
In the first aspect of the invention, in the swash plate type variable displacement compressor including pressure adjusting means for adjusting the pressure between the refrigerant suction chamber and the crank chamber for controlling the flow rate of the refrigerant flowing into the refrigerant suction chamber,
The pressure adjusting means includes a spool valve, a spring chamber in which a spring for urging the spool valve in the valve closing direction is disposed, and a pressure chamber for accumulating pressure that causes the spool valve to act in the valve opening direction. A flow control valve provided in a low-pressure refrigerant passage upstream of the chamber;
It is provided in a passage that connects the refrigerant discharge chamber and the pressure chamber, and is normally closed by a spring. The valve opening is controlled by the solenoid excitation current, and the high-pressure side refrigerant in the refrigerant discharge chamber is used as the operating pressure. A flow control valve drive mechanism having a pilot valve for introducing and controlling the pressure chamber,
The flow rate control valve is provided with a pressure adjusting passage for releasing the pressure in the pressure chamber to the refrigerant suction chamber side of the low pressure side refrigerant passage, and a passage blocking means for fully closing the pressure adjusting passage when the spool valve is fully closed. It is characterized by providing.
[0007]
The invention according to claim 2 is characterized in that the passage blocking means according to claim 1 is configured to fully close the pressure adjusting passage even when the spool valve is fully opened.
[0008]
According to a third aspect of the present invention, the pressure adjusting passage according to the first and second aspects is provided in a housing in which the spool valve is accommodated so as to communicate with the pressure chamber and the refrigerant suction chamber side of the low-pressure side refrigerant passage. A passage, a recess provided in the outer peripheral surface of the spool valve so as to communicate with the opening on the pressure chamber side of the communication passage, an orifice hole provided in communication with the recess and the pressure chamber in the spool valve, and The recess formation position is set to a position communicating with the opening on the pressure chamber side of the communication passage only within a predetermined opening range of the spool valve, and the passage shut-off means is configured by the spool valve itself. .
[0009]
In the invention of claim 4, the spring chamber of the flow rate control valve according to claim 1 is communicated with the refrigerant suction chamber side of the low-pressure side refrigerant passage through the passage, and the pressure chamber and the spring chamber are connected to the spool valve. A throttle passage that communicates with each other is provided, and these passages and the throttle passage constitute a pressure adjustment passage.
[0010]
The invention according to claim 5 is characterized in that the passage blocking means according to claim 4 is configured to fully close the pressure adjusting passage even when the spool valve is fully opened.
[0011]
According to the invention of claim 6, the passage blocking means according to claim 5 is provided in the throttle passage, and the throttle passage is fully closed by the differential pressure between the pressure chamber and the spring chamber when the spool valve is fully closed. And a fully open restriction stopper that is provided in the spring chamber and abuts against the end face of the spool valve when the spool valve is fully open to restrict the spool valve to fully open and closes the opening end of the throttle passage. It is characterized by.
[0012]
According to a seventh aspect of the present invention, the throttle passage according to any one of the fourth to sixth aspects includes a communication passage provided in the spool valve so as to communicate with the pressure chamber and the spring chamber, and an orifice hole. It is characterized by comprising a bush fitted and fixed to one open end.
[0013]
In the invention of claim 8, the spool valve according to claims 1 to 7 is characterized in that the pressure receiving areas on both side surfaces of the spool groove are made equal.
[0014]
According to the ninth aspect of the present invention, the flow control valve drive mechanism according to any one of the first to eighth aspects detects the pressure on the evaporator side upstream of the flow control valve in the low-pressure side refrigerant passage, and determines a predetermined pilot valve. When the pressure on the evaporator side changes from a certain level in the opening state, the pilot valve is operated in the valve closing direction or the valve opening direction, and the valve opening degree of the flow control valve is adjusted to keep the pressure on the evaporator side constant. It is characterized by having feedback means for holding.
[0015]
In a tenth aspect of the present invention, the flow control valve drive mechanism according to any one of the first to ninth aspects is configured so that the crank chamber communicates with the evaporator side upstream of the flow control valve of the low-pressure side refrigerant passage. It is characterized by having.
[0016]
【The invention's effect】
According to the first aspect of the present invention, when the current supplied to the solenoid of the flow control valve drive mechanism is set to 0 and the solenoid is demagnetized, the pilot valve is closed and the operating pressure is supplied to the pressure chamber of the flow control valve. Therefore, the spool valve is closed to reduce the amount of refrigerant flowing into the refrigerant suction chamber to zero, and stop the decrease in the evaporator side pressure upstream of the flow control valve in the low pressure side refrigerant passage, thereby preventing the evaporator from freezing. be able to.
[0017]
Therefore, at the time of the evaporator freezing prevention operation, it is only necessary to stop the supply of the excitation current to the solenoid, so that the power consumption can be reduced and the load of the compressor is made almost zero by the fully closed operation of the spool valve. The output of the drive source can be improved.
[0018]
In addition, by stopping the supply of the excitation current to the solenoid and closing the spool valve of the flow control valve in this way, the pressure in the refrigerant suction chamber drops and the cylinder internal pressure and the crank chamber that sucked the refrigerant In order to minimize the piston stroke and reduce the compression work of the compressor to almost zero by the moment caused by the force applied to each piston, the compression work of the compressor is almost zero. The operation can be interrupted / interrupted and clutchless can be achieved.
[0019]
Therefore, the structure of the compressor can be simplified, a reduction in size and weight can be realized, and a cost advantage can be obtained.
[0020]
In addition, the flow control valve has a pressure adjustment passage for releasing the pressure in the pressure chamber to the refrigerant suction chamber side of the low-pressure side refrigerant passage, so that the flow control valve can be opened in a state where the spool valve is opened at a required opening degree. When the pilot valve is closed due to the demagnetization of the solenoid of the drive mechanism, the pressure in the pressure chamber of the flow control valve escapes to the refrigerant suction chamber side of the low-pressure side refrigerant passage through the pressure adjustment passage, so the spool valve is closed by the spring biasing force. The operation is not hindered and the responsiveness can be improved.
[0021]
Moreover, since the pressure adjusting passage is fully closed by the passage blocking means in the fully closed position of the spool valve, when the pilot valve is opened, the pressure in the pressure chamber can be quickly raised. Even when the refrigerant discharge pressure introduced as an operating pressure into the pressure chamber is low, such as when the compressor is under low load, the pressure in the pressure chamber can rise quickly and the spool valve can be activated. The valve opening performance can be improved.
[0022]
According to the second aspect of the present invention, in addition to the effect of the first aspect, the passage blocking means blocks the pressure adjusting passage even when the spool valve is fully opened. It is possible to prevent high-temperature and high-pressure refrigerant introduced into the pressure chamber at the time of load from flowing out to the refrigerant suction chamber side via the pressure adjustment passage, and therefore prevent deterioration of the cooling performance when the spool valve is fully opened. I can do this.
[0023]
According to the third aspect of the present invention, in addition to the effects of the first and second aspects of the invention, the spool valve itself can constitute the passage blocking means and no special parts are required. Can be advantageously obtained.
[0024]
According to the fourth aspect of the present invention, in addition to the effect of the first aspect of the invention, the spool valve itself is provided with a throttle passage and the spring chamber is opened to the refrigerant suction chamber side for maintaining the operation balance of the spool valve. Since the pressure adjustment passage is configured with the passage, the passage hole processing of the compressor housing can be reduced as much as possible, the degree of freedom in designing the compressor housing can be expanded and the number of processing steps can be reduced, and the cost can be reduced. Can be advantageously obtained.
[0025]
According to the invention described in claim 5, in addition to the effect of the invention of claim 4, the passage blocking means blocks the pressure adjusting passage even when the spool valve is fully opened. It is possible to prevent the high-temperature and high-pressure refrigerant introduced into the pressure chamber at the time of high load from flowing out to the refrigerant suction chamber side via the pressure adjustment passage, and thus prevent deterioration of the cooling performance when the spool valve is fully opened. it can.
[0026]
According to the sixth aspect of the invention, in addition to the effect of the fifth aspect of the invention, the differential pressure valve and the spool valve provided with the throttle passage having a function of shutting off the pressure adjusting passage when the spool valve is fully closed and fully opened. Therefore, the passage blocking means can be advantageously configured with a simple design and structure.
[0027]
According to the seventh aspect of the invention, in addition to the effects of the fourth to sixth aspects, the spool valve is formed with a communication passage, and a bush having an orifice hole at one opening end thereof is fitted and fixed. As a result, the throttle passage can be configured, so that the spool valve can be easily drilled and produced as compared to the case where the narrow passage is directly formed so that a predetermined orifice function can be obtained in the spool valve. Can be improved.
[0028]
According to the eighth aspect of the invention, in addition to the effects of the first to seventh aspects of the invention, the pressure receiving areas on both sides of the spool groove provided in the spool valve of the flow rate control valve are equalized. By simply managing the spring force of the valve spring and the operating pressure acting on the pressure chamber, the accuracy of the open / close stroke of the spool valve can be increased, and highly accurate flow rate control can be performed.
[0029]
According to the invention of claim 9, in addition to the effects of the inventions of claims 1 to 8, when the pilot valve is set to a predetermined opening by a predetermined exciting current, when the vehicle is suddenly accelerated or decelerated, Since the rotation speed of the compressor driven by the same drive source fluctuates, the evaporator side pressure upstream of the flow control valve in the low pressure side refrigerant passage will change, but the evaporator side pressure is kept constant by the feedback means. Therefore, fluctuations in the control temperature of the evaporator due to sudden acceleration and deceleration of the vehicle can be avoided.
[0030]
Therefore, in the air conditioner, the temperature variation of the indoor blowing air is eliminated, and stable air conditioning can be performed.
[0031]
According to the invention described in claim 10, in addition to the effects of the inventions of claims 1-9, the crank chamber communicates with the evaporator side upstream of the flow rate control valve of the low-pressure side refrigerant passage by the pressure adjusting passage. Since the pressure is maintained, the pressure fluctuation due to the blow-by gas in the crank chamber can be eliminated and the accuracy of the variable capacity control can be improved.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0033]
In FIG. 1, reference numeral 1 denotes a compressor housing, a cylinder block 2 having a plurality of cylinder bores 3, a front housing 4 which is disposed on the front side of the cylinder block 2 and forms a crank chamber 5 between the cylinder block 2, and a cylinder A rear housing 6 is provided on the rear side of the block 2 with a valve plate 9 interposed therebetween and forms a refrigerant suction chamber 7 and a refrigerant discharge chamber 8.
[0034]
In the crank chamber 5, a drive plate 11 fixed to the drive shaft 10, a journal 14 slidably connected by a pin 13 to a sleeve 12 slidably fitted to the drive shaft 10, and an outer periphery of the journal 14 And a swash plate 15 that is screwed and fixed thereto.
[0035]
The journal 14 is connected to the drive plate 11 via its arc-shaped long hole 16 and a pin 17, and swinging is restricted by the long hole 16.
[0036]
The piston 18 fitted to each cylinder bore 3 is connected to the swash plate 15 via a pair of shoes 19 sandwiching the swash plate 15.
[0037]
A pulley 20 is rotatably mounted on an outer end portion of the drive shaft 10 via a bearing 21, a first drive transmission plate 22 screwed and fixed to the inner periphery of the pulley 20, and a terminal of the drive shaft 10. The drive shaft 10 is rotated by the pulley 20 by slidably connecting the second drive transmission plate 23 fixed to the drive plate 23 with a certain drive torque or more.
[0038]
The inclination angle of the swash plate 15 is controlled by the moment around the pin 17 of the swash plate 15 generated by the differential pressure between the refrigerant suction chamber 7 and the crank chamber 5 adjusted by the pressure adjusting means 30 disposed in the rear housing 6. By changing the angle of the swash plate 15, the stroke of the piston 18 is changed to change the refrigerant discharge capacity.
[0039]
As shown in FIG. 2, the pressure adjusting means 30 is provided in the low-pressure side refrigerant passage 25 in the vicinity of the refrigerant inlet 24 upstream of the refrigerant suction chamber 7, and directly controls the amount of refrigerant flowing into the refrigerant suction chamber 7. And a flow rate control valve drive mechanism 32 that drives and controls the flow rate control valve 31.
[0040]
In FIG. 1, in order to facilitate understanding of the structure, the flow control valve 31 is shown in a state where it is disposed at right angles to the flow control valve drive mechanism 32 for convenience. The flow control valve 31 is actually arranged in parallel with the flow control valve drive mechanism 32 to make the compressor more compact.
[0041]
The flow rate control valve 31 includes a spool valve 33 arranged orthogonal to the low-pressure side refrigerant passage 25, a spring chamber 37 provided with a spring 34 for urging the spool valve 33 in the valve closing direction, and the spool valve 33 opened. And a pressure chamber 35 for accumulating pressure acting in the direction.
[0042]
Both side surfaces 36a, 36b of the spool groove 36 of the spool valve 33 have the same pressure receiving area.
[0043]
The spring chamber 37 in which the spring 34 is accommodated communicates with the refrigerant suction chamber 7 side downstream of the flow rate control valve 31 of the low-pressure side refrigerant passage 25 by a passage 38.
[0044]
The flow rate control valve drive mechanism 32 is provided in a passage 40 that connects the refrigerant discharge chamber 8 and the pressure chamber 35, and serves as a pilot valve that controls the introduction of the high-pressure refrigerant in the refrigerant discharge chamber 8 into the pressure chamber 35 as an operating pressure. A ball valve 41 and a solenoid 42 for controlling the valve opening degree of the ball valve 41 according to the exciting current are provided.
[0045]
The ball valve 41 is normally seated on a valve seat by a spring 43 and closed.
[0046]
The solenoid 42 is configured to move the armature 44 upward in FIG. 2 when an excitation current is supplied and to push the plunger 45 to control the valve opening degree of the ball valve 41.
[0047]
The flow rate control valve drive mechanism 32 detects the pressure on the evaporator side upstream of the flow rate control valve 31 in the low pressure side refrigerant passage 25 and makes the pressure on the evaporator side variably controlled by the excitation current of the solenoid 42 constant. Feedback means 46 for holding is provided.
[0048]
The feedback means 46 is held by the diaphragm 47, a diaphragm 47 that separates the atmospheric pressure chamber 48 and the refrigerant pressure chamber 49, a feedback passage 50 that introduces the evaporator-side pressure into the refrigerant pressure chamber 49, and the solenoid 42. Of the low pressure side refrigerant passage 25 when the ball valve 41 is controlled to a predetermined opening degree. When the pressure on the evaporator side changes from a certain pressure, the change in pressure is detected by the diaphragm 47, and the ball valve 41 is operated in the valve closing direction or the valve opening direction by the plunger 51. Is adjusted so that the pressure on the evaporator side is kept constant.
[0049]
The refrigerant pressure chamber 49 is communicated with the crank chamber 5 through a pressure adjusting passage 52, and the crank chamber 5 is communicated with the evaporator side upstream of the flow rate control valve 31 in the low-pressure side refrigerant passage 25.
[0050]
On the other hand, the flow control valve 31 is provided with a pressure adjustment passage 53 for releasing the pressure in the pressure chamber 35 to the refrigerant suction chamber 7 side of the low-pressure side refrigerant passage 25, and the pressure adjustment passage 53 when the spool valve 33 is fully closed. There is provided a passage blocking means 60 for fully closing.
[0051]
In this embodiment, as shown in FIGS. 3 and 4, the pressure adjusting passage 53 is fully closed even when the spool valve 33 is fully opened.
[0052]
Specifically, in FIGS. 2 to 4, the rear housing 6 in which the spool valve 33 is accommodated is provided with a communication passage 61 that communicates with the pressure chamber 35 and the refrigerant suction chamber side of the low-pressure side refrigerant passage 25. On the other hand, a concave portion 62 is provided on the outer peripheral surface of the spool valve 33 so as to be able to communicate with the opening on the pressure chamber 35 side of the communication passage 61, and an orifice hole 63 having a predetermined throttle area for communicating the concave portion 62 and the pressure chamber 35 is provided. The communication passage 61, the recess 62, and the orifice hole 63 constitute the pressure adjusting passage 53 described above.
[0053]
The recess 62 on the outer peripheral surface of the spool valve 33 communicates with the opening of the communication passage 61 only in a predetermined opening range of the spool valve 33, that is, only in an opening range excluding the fully closed position and the fully open position. The formation position is set so that the spool valve 33 itself constitutes the passage blocking means 60 described above.
[0054]
The spring chamber 37 is provided with a full opening restriction stopper 66 that abuts against the end face of the spool valve 33 and restricts the full opening when the spool valve 33 is fully opened.
[0055]
According to the structure of the above embodiment, when the solenoid 42 is excited, the valve opening degree of the ball valve 41 is controlled according to the exciting current, and the high-pressure side refrigerant in the refrigerant discharge chamber 8 passes through the ball valve 41 and passes through the passage 40. Is introduced into the pressure chamber 35 of the flow control valve 31 as an operating pressure.
[0056]
In response to the pressure in the pressure chamber 35, the spool valve 33 moves in a direction to open against the spring force of the spring 34, and expands the flow path of the low-pressure side refrigerant passage 25 to supply refrigerant to the refrigerant suction chamber 7. By controlling the inflow amount, adjusting the differential pressure between the refrigerant suction chamber 7 and the crank chamber 5 to control the inclination angle of the swash plate 15, and changing the stroke of the piston 18 to control the refrigerant discharge amount. The temperature of the outside evaporator is controlled.
[0057]
Here, since the flow rate control valve 31 includes a pressure adjusting passage 53 for releasing the pressure in the pressure chamber 35 to the refrigerant suction chamber side of the low-pressure side refrigerant passage 25, the spool valve 33 is opened at a required opening degree. When the pilot valve 41 is closed due to the demagnetization of the solenoid 42 in this state, the operating pressure in the pressure chamber 35 is quickly released from the pressure adjusting passage 53 to the refrigerant suction chamber side, and the spool valve is driven by the biasing force of the spring 34. The valve closing operation of 33 is not hindered, and the responsiveness can be improved.
[0058]
Moreover, since the pressure adjusting passage 53 is substantially fully closed by the passage blocking means 60 when the spool valve 33 shown in FIG. 3 is in the fully closed position, when the pilot valve 41 is opened, The rise of pressure can be performed quickly. Therefore, even when the refrigerant discharge pressure introduced as the operating pressure into the pressure chamber 35 is low as in the case of a low load of the compressor, the pressure in the pressure chamber 35 is reduced. The start-up can be performed quickly, and the startability of the spool valve 33, that is, the valve opening performance can be improved.
[0059]
Further, the passage blocking means 60 is introduced into the pressure chamber 35 at the time of high load of the compressor in which the spool valve 33 is fully opened in order to fully close the pressure adjustment passage 53 even when the spool valve 33 shown in FIG. 4 is fully opened. The high-temperature and high-pressure refrigerant thus produced can be prevented from flowing out to the refrigerant suction chamber 7 side via the pressure adjustment passage 53, and therefore, the deterioration of the cooling performance when the spool valve 33 is fully opened can be prevented. it can.
[0060]
Particularly in this embodiment, the passage blocking means 60 is configured by the spool valve 33 itself by setting the opening formation position of the communication passage 61 on the pressure chamber 35 side and the formation position of the recess 62 on the outer peripheral surface of the spool valve 33. Therefore, it is possible to obtain a cost advantage without requiring a dedicated part.
[0061]
On the other hand, for the purpose of preventing the evaporator from freezing during the operation of the refrigeration cycle, the refrigerant inflow amount into the refrigerant suction chamber 7 is set to 0 and the pressure drop on the evaporator side upstream of the flow rate control valve 31 in the low-pressure side refrigerant passage 25 is stopped. For this, the solenoid 42 is demagnetized by setting the supply current to the solenoid 42 to 0. The demagnetization of the solenoid 42 closes the ball valve 41 and supplies the operating pressure to the pressure chamber 35 of the flow control valve 31. Therefore, the spool valve 33 is closed by the spring force of the spring 34 to shut off the low-pressure side refrigerant passage 25, and the amount of refrigerant flowing into the refrigerant suction chamber 7 is set to 0 to control the inclination angle of the swash plate 15. Thus, the piston stroke is reduced and the evaporator side pressure in the low-pressure side refrigerant passage 25 is prevented from being lowered to prevent the evaporator from freezing.
[0062]
In this way, during the freeze prevention operation of the evaporator, it is only necessary to stop the supply of the excitation current to the solenoid 42, so that power consumption can be reduced and the load on the compressor can be substantially reduced by the fully closed operation of the spool valve 33. Therefore, the output of the drive source can be improved.
[0063]
As described above, when the supply of the excitation current to the solenoid 42 is stopped and the spool valve 33 of the flow control valve 31 is operated to close, the pressure in the refrigerant suction chamber 7 drops, and the cylinder internal pressure and the crank chamber 5 In order to make the compression work of the compressor almost zero by setting the inclination of the swash plate 15 by the moment around the pin 17 and minimizing the stroke of the piston 18, the compression by the excitation and demagnetization of the solenoid 42 is performed. The operation of the machine can be interrupted / interrupted, and the clutch that has been interrupted to transmit the driving force to the compressor in the past can be abolished so as to be so-called clutchless. Certain magnets, coils, etc. can be dispensed with.
[0064]
Therefore, the structure of the compressor can be simplified, the size and weight can be reduced, and the wiring for energizing the clutch can be eliminated, and the cost can be advantageously obtained.
[0065]
In addition, when a predetermined exciting current is supplied to the solenoid 42 of the flow control valve drive mechanism 32 and the ball valve 41 is at a predetermined opening degree, when the vehicle is suddenly accelerated or decelerated, the low-pressure side refrigerant passage is caused by the rotational fluctuation of the compressor. The pressure on the evaporator side upstream of the 25 flow control valve 31 changes, but this change in pressure is immediately detected by the diaphragm 47 of the feedback means 46 and the ball valve 41 is moved in the valve closing direction or valve opening direction via the plunger 51. By being actuated, the evaporator side pressure can be maintained at a constant pressure corresponding to the excitation current of the solenoid 42, so that fluctuations in the evaporator control temperature due to sudden acceleration and deceleration of the vehicle can be avoided.
[0066]
Here, since both side surfaces 36a and 36b of the spool groove 36 provided in the spool valve 33 of the flow rate control valve 31 have the same pressure receiving area, the spring of the spring 34 that urges the spool valve 33 in the valve closing direction. Only by managing the force and the operating pressure acting on the pressure chamber 35, the accuracy of the opening / closing stroke of the spool valve 33 can be obtained, and a highly accurate flow rate control can be performed.
[0067]
Further, the crank chamber 5 communicates with the evaporator side upstream of the flow rate control valve 31 of the low pressure side refrigerant passage 25 by the pressure adjusting passage 52 and is kept constant at the same pressure. Thus, the accuracy of variable capacity control can be improved.
[0068]
5 and 6 show a second embodiment of the present invention. In this embodiment, the required throttle cross-sectional area for communicating the pressure chamber 35 and the spring chamber 37 with the spool valve 33 of the flow control valve 31 is shown. The throttle passage 64 is provided, and the pressure regulation passage 53 is configured by the throttle passage 64 and the passage 38 that opens the spring chamber 37 to the refrigerant suction chamber side.
[0069]
The throttle passage 64 is provided on the central axis of the spool valve 33, and when the spool valve 33 is fully opened, the opening end of the throttle passage 64 on the spring chamber side is the end face of the full opening restriction stopper 66 provided in the spring chamber 37 described above. In addition, the throttle passage 64 is provided with a differential pressure valve 65 that closes the throttle passage 64 by the differential pressure between the pressure chamber 35 and the spring chamber 37 when the spool valve 33 is fully closed. A passage blocking means 60 is constituted by the pressure valve 65 and the fully open restriction stopper 66.
[0070]
In the present embodiment, a large-diameter portion is formed in the opening portion of the throttle passage 64 on the spring chamber 37 side, and the differential pressure valve 65 is disposed here.
[0071]
The differential pressure valve 65 is fitted to a ball valve 67 seated on a tapered valve seat 68 provided in the throttle passage 64, a spring 69 biasing the ball valve 67 in the seating direction of the valve seat 68, and the large diameter portion. A spring seat 71 is formed which is fixed to form a valve chamber 70 and holds a spring 69. The spring seat 71 is provided with a plurality of apertures 72 for opening the valve chamber 70 to the spring chamber 37, and a spool valve. When the opening 33 is fully opened, the opening 72 is closed by the fully opening restriction stopper 66.
[0072]
The spring 69 of the differential pressure valve 65 causes the ball valve 67 to speed up when the operating pressure is introduced into the pressure chamber 35 by opening the pilot valve 41 and the differential pressure between the pressure chamber 35 and the spring chamber 37 exceeds a predetermined value. The spring force is arbitrarily set to open the valve.
[0073]
Therefore, according to the second embodiment, the same effects as those of the first embodiment can be obtained. In particular, the spool valve 33 itself is provided with the throttle passage 64 and the spring chamber 37 is opened to the refrigerant suction chamber side. Since the pressure adjusting passage 53 is constituted by the passage 38 for maintaining the operation balance of the valve 33, the machining of the passage hole of the rear housing 6 can be reduced as much as possible, and the degree of freedom in designing the rear housing 6 can be expanded. At the same time, the number of processing steps can be reduced, and the cost can be advantageously obtained.
[0074]
Further, the function of shutting off the pressure adjustment passage 53 when the spool valve 33 is fully closed and fully opened is performed by the differential pressure valve 65 provided in the throttle passage 64 and the fully open restriction stopper 66 of the spool valve 33. The passage blocking means 60 can be advantageously configured with a simple design and structure.
[0075]
FIG. 7 shows a third embodiment of the present invention. In the second embodiment, a throttle passage 64 is formed in the spool valve 33 with a predetermined throttle cross-sectional area. In this third embodiment, FIG. A communication passage 73 that connects the pressure chamber 35 and the spring chamber 37 is formed on the central axis of the spool valve 33, and a large diameter portion is formed in the opening portion on the pressure chamber 35 side, and a predetermined throttle is formed in the large diameter portion. By fitting and fixing a bush 74 having an orifice hole 75 having an area, the communication passage 73 and the bush 74 constitute a throttle passage 64.
[0076]
Therefore, according to the third embodiment, compared with the case where the narrow-diameter throttle passage 64 is directly formed so as to obtain a predetermined orifice function in the spool valve 33 as in the second embodiment, the communication passage 73 is not formed. Since the hole diameter can be formed large, the spool valve 33 can be easily drilled and the productivity can be increased.
[0077]
In both the second and third embodiments, the differential pressure valve 65 is provided at the opening end of the throttle passage 64 on the spring chamber side, but this can also be provided at the opening end of the pressure chamber side. The bush 74 in the embodiment is provided at the opening end on the spring chamber side.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is an explanatory cross-sectional view systematically showing pressure adjusting means in one embodiment of the present invention.
3 is an explanatory cross-sectional view showing a state in which the spool valve of the flow rate control valve of the pressure adjusting means shown in FIG. 2 is fully closed.
4 is a cross-sectional explanatory view showing a state in which the spool valve of the flow rate control valve of the pressure adjusting means shown in FIG. 2 is fully opened.
FIG. 5 is an explanatory cross-sectional view of the second embodiment of the flow control valve when the spool valve is fully closed.
FIG. 6 is an explanatory cross-sectional view of the second embodiment of the flow control valve when the spool valve is fully opened.
FIG. 7 is a cross-sectional view showing a structure of a spool valve in a third embodiment of the flow control valve.
[Explanation of symbols]
5 Crank chamber
6 Rear housing
7 Refrigerant suction chamber
8 Refrigerant discharge chamber
25 Low pressure side refrigerant passage
30 Pressure adjusting means
31 Flow control valve
32 Flow control valve drive mechanism
33 Spool valve
34, 43 Spring
35 Pressure chamber
36 Spool groove
37 Spring room
38 Communication path between spring chamber and refrigerant suction chamber
40 Communication path between pressure chamber and refrigerant discharge chamber
41 Pilot valve
42 Solenoid
46 Feedback means
52 Pressure control passage of flow control valve drive mechanism
53 Pressure control passage of flow control valve
60 Passage blocking means
61 communication path
62 recess
63,75 Orifice hole
64 Restricted passage
65 Differential pressure valve
66 Fully open restriction stopper
73 Communication path provided in spool valve
74 Bush

Claims (10)

冷媒吸入室(7)に流入する冷媒流量を制御する冷媒吸入室(7)とクランク室(5)との圧力を調整する圧力調整手段(30)を備えた斜板式可変容量圧縮機において、
前記圧力調整手段(30)を、スプール弁(33),該スプール弁(33)を閉弁方向に付勢するスプリング(34)を配設したスプリング室(37),およびスプール弁(33)を開弁方向に作用させる圧力を蓄圧する圧力室(35)を備え、前記冷媒吸入室(7)の上流の低圧側冷媒通路(25)に設けられた流量制御弁(31)と、
冷媒吐出室(8)と圧力室(35)とを連通する通路(40)に設けられて、常態にあってはスプリング(43)により閉弁され、ソレノイド(42)の励磁電流により弁開度が制御されて冷媒吐出室(8)の高圧側冷媒を作動圧力として圧力室(35)へ導入制御するパイロット弁(41)を有する流量制御弁駆動機構(32)と、で構成し、
かつ、前記流量制御弁(31)には圧力室(35)内の圧力を低圧側冷媒通路(25)の冷媒吸入室(7)側へ逃がす圧力調整通路(53)を設けると共に、スプール弁(33)の全閉時に該圧力調整通路(53)を全閉にする通路遮断手段(60)を設けたことを特徴とする斜板式可変容量圧縮機。
In the swash plate type variable displacement compressor provided with pressure adjusting means (30) for adjusting the pressure between the refrigerant suction chamber (7) and the crank chamber (5) for controlling the flow rate of the refrigerant flowing into the refrigerant suction chamber (7),
The pressure adjusting means (30) includes a spool valve (33), a spring chamber (37) provided with a spring (34) for urging the spool valve (33) in the valve closing direction, and a spool valve (33). A flow rate control valve (31) provided with a pressure chamber (35) for accumulating pressure acting in the valve opening direction and provided in the low-pressure side refrigerant passage (25) upstream of the refrigerant suction chamber (7);
It is provided in a passage (40) communicating with the refrigerant discharge chamber (8) and the pressure chamber (35), and is normally closed by a spring (43), and is opened by an excitation current of a solenoid (42). And a flow rate control valve drive mechanism (32) having a pilot valve (41) that controls the introduction of the high-pressure side refrigerant in the refrigerant discharge chamber (8) into the pressure chamber (35) as an operating pressure,
The flow control valve (31) is provided with a pressure adjusting passage (53) for releasing the pressure in the pressure chamber (35) to the refrigerant suction chamber (7) side of the low-pressure side refrigerant passage (25), and a spool valve ( 33) A swash plate type variable displacement compressor provided with a passage blocking means (60) for fully closing the pressure adjusting passage (53) when fully closed.
通路遮断手段(60)を、スプール弁(33)の全開時にも圧力調整通路(53)を全閉にするようにしたことを特徴とする請求項1に記載の斜板式可変容量圧縮機。The swash plate type variable displacement compressor according to claim 1, wherein the passage blocking means (60) is configured to fully close the pressure adjusting passage (53) even when the spool valve (33) is fully opened. 圧力調整通路(53)を、スプール弁(33)を収容したハウジング(6)に圧力室(35)と低圧側冷媒通路(25)の冷媒吸入室(7)側とに連通して設けた連通路(61)と、スプール弁(33)の外周面に前記連通路(61)の圧力室(35)側の開口に連通可能に設けた凹部(62)と、スプール弁(33)に前記凹部(62)と圧力室(35)とを連通して設けたオリフィス孔(63)とで構成し、かつ、前記凹部(62)の形成位置を、スプール弁(33)の所定開度範囲でのみ前記連通路(61)の圧力室(35)側の開口と連通する位置に設定して、スプール弁(33)自体で通路遮断手段(60)を構成したことを特徴とする請求項1,2に記載の斜板式可変容量圧縮機。A pressure adjusting passage (53) is provided in the housing (6) containing the spool valve (33) so as to communicate with the pressure chamber (35) and the refrigerant suction chamber (7) side of the low pressure side refrigerant passage (25). A passage (61); a recess (62) provided on the outer peripheral surface of the spool valve (33) so as to communicate with an opening on the pressure chamber (35) side of the communication passage (61); and the recess on the spool valve (33). (62) and an orifice hole (63) provided in communication with the pressure chamber (35), and the formation position of the recess (62) is only within a predetermined opening range of the spool valve (33). The passage blocking means (60) is constituted by the spool valve (33) itself at a position communicating with the opening on the pressure chamber (35) side of the communication passage (61). The swash plate type variable capacity compressor described in 1. 流量制御弁(31)のスプリング室(37)を通路(38)を介して低圧側冷媒通路(25)の冷媒吸入室(7)側に連通すると共に、スプール弁(33)に圧力室(35)とスプリング室(37)とを連通する絞り通路(64)を設けて、これら通路(38)と絞り通路(64)とにより圧力調整通路(53)を構成したことを特徴とする請求項1に記載の斜板式可変容量圧縮機。The spring chamber (37) of the flow rate control valve (31) communicates with the refrigerant suction chamber (7) side of the low-pressure side refrigerant passage (25) through the passage (38), and the pressure chamber (35) is connected to the spool valve (33). And a throttle passage (64) communicating with the spring chamber (37), and the pressure adjustment passage (53) is constituted by the passage (38) and the throttle passage (64). The swash plate type variable capacity compressor described in 1. 通路遮断手段(60)を、スプール弁(33)の全開時にも圧力調整通路(53)を全閉にするようにしたことを特徴とする請求項4に記載の斜板式可変容量圧縮機。The swash plate type variable capacity compressor according to claim 4, wherein the passage blocking means (60) is configured to fully close the pressure adjusting passage (53) even when the spool valve (33) is fully opened. 通路遮断手段(60)を、絞り通路(64)に設けられて、スプール弁(33)の全閉時に圧力室(35)とスプリング室(37)との差圧により該絞り通路(64)を全閉にする差圧弁(65)と、スプリング室(37)に設けられてスプール弁(33)の全開時に該スプール弁(33)の端面に当接してスプール弁(33)を全開規制すると共に、絞り通路(64)の開口端を閉塞する全開規制ストッパ(66)とで構成したことを特徴とする請求項5に記載の斜板式可変容量圧縮機。A passage blocking means (60) is provided in the throttle passage (64), and when the spool valve (33) is fully closed, the throttle passage (64) is opened by the differential pressure between the pressure chamber (35) and the spring chamber (37). A differential pressure valve (65) that is fully closed, and a spring chamber (37) that contacts the end face of the spool valve (33) when the spool valve (33) is fully opened to fully open the spool valve (33). 6. The swash plate type variable displacement compressor according to claim 5, wherein the swash plate type variable displacement compressor is constituted by a full opening restriction stopper (66) for closing an opening end of the throttle passage (64). 絞り通路(64)を、スプール弁(33)に圧力室(35)とスプリング室(37)とに連通して設けた連通路(73)と、オリフィス孔(75)を有し前記連通路(73)の一方の開口端に嵌合固定したブッシュ(74)とで構成したことを特徴とする請求項4〜6の何れかに記載の斜板式可変容量圧縮機。The throttle passage (64) includes a communication passage (73) provided in communication with the spool valve (33) in communication with the pressure chamber (35) and the spring chamber (37), and an orifice hole (75). 73) A swash plate type variable capacity compressor according to any one of claims 4 to 6, characterized in that it is constituted by a bush (74) fitted and fixed to one open end of 73). スプール弁(33)は、そのスプール溝(36)の両側面の受圧面積を等しくしたことを特徴とする請求項1〜7の何れかに記載の斜板式可変容量圧縮機。The swash plate type variable displacement compressor according to any one of claims 1 to 7, wherein the spool valve (33) has equal pressure receiving areas on both side surfaces of the spool groove (36). 流量制御弁駆動機構(32)は、低圧側冷媒通路(25)の流量制御弁(31)よりも上流のエバポレータ側の圧力を検出して、パイロット弁(41)の所定開度状態時に該エバポレータ側の圧力が一定圧よりも変化した時にパイロット弁(41)を閉弁方向又は開弁方向に作動させ、流量制御弁(31)の弁開度を調整して前記エバポレータ側の圧力を一定に保持させるフイードバック手段(46)を備えていることを特徴とする請求項1〜8の何れかに記載の斜板式可変容量圧縮機。The flow rate control valve drive mechanism (32) detects the pressure on the evaporator side upstream of the flow rate control valve (31) of the low pressure side refrigerant passage (25), and when the pilot valve (41) is in a predetermined opening state, the evaporator The pilot valve (41) is operated in the valve closing direction or the valve opening direction when the pressure on the side changes from a constant pressure, and the valve opening degree of the flow control valve (31) is adjusted to keep the pressure on the evaporator side constant. The swash plate type variable capacity compressor according to any one of claims 1 to 8, further comprising feedback means (46) for holding. 流量制御弁駆動機構(32)は、クランク室(5)と、低圧側冷媒通路(25)の流量制御弁(31)よりも上流のエバポレータ側とを連通する圧力調整通路(52)を備えていることを特徴とする請求項1〜9の何れかに記載の斜板式可変容量圧縮機。The flow control valve drive mechanism (32) includes a pressure adjustment passage (52) that communicates the crank chamber (5) with the evaporator side upstream of the flow control valve (31) of the low-pressure side refrigerant passage (25). The swash plate type variable capacity compressor according to any one of claims 1 to 9.
JP2000040918A 2000-02-18 2000-02-18 Swash plate type variable capacity compressor Expired - Fee Related JP4018311B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000040918A JP4018311B2 (en) 2000-02-18 2000-02-18 Swash plate type variable capacity compressor
EP01102915A EP1126169B1 (en) 2000-02-18 2001-02-07 Swashplate type variable-displacement compressor
DE60122225T DE60122225T2 (en) 2000-02-18 2001-02-07 Swash plate compressor with variable displacement
US09/778,756 US6481977B2 (en) 2000-02-18 2001-02-08 Swashplate type variable-displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040918A JP4018311B2 (en) 2000-02-18 2000-02-18 Swash plate type variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2001227457A JP2001227457A (en) 2001-08-24
JP4018311B2 true JP4018311B2 (en) 2007-12-05

Family

ID=18564230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040918A Expired - Fee Related JP4018311B2 (en) 2000-02-18 2000-02-18 Swash plate type variable capacity compressor

Country Status (1)

Country Link
JP (1) JP4018311B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330501B2 (en) 2004-08-06 2009-09-16 サンデン株式会社 connector

Also Published As

Publication number Publication date
JP2001227457A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
JP5181808B2 (en) Capacity control mechanism in variable capacity compressor
JP7007299B2 (en) Capacity control valve
JP3728387B2 (en) Control valve
JP3984724B2 (en) Control valve for variable capacity swash plate compressor and swash plate compressor
EP1126169B1 (en) Swashplate type variable-displacement compressor
JPH07127566A (en) Clutchless one side piston type variable displacement compressor
JPH10325393A (en) Variable displacement swash plate type clutchless compressor
JP2000161234A (en) Variable displacement type compressor, and its displacement control valve
JP2000009045A (en) Control valve for variable displacement type compressor, variable displacement type compressor, and variable setting method for set suction pressure
JP2002285956A (en) Control valve of variable displacement compressor
WO2017002784A1 (en) Variable capacity compressor
JP3899719B2 (en) Control valve for variable capacity compressor
JP4209522B2 (en) Swash plate type variable capacity compressor
JP4018311B2 (en) Swash plate type variable capacity compressor
JP4031141B2 (en) Swash plate type variable capacity compressor
JP4088397B2 (en) Swash plate type variable capacity compressor
JP4031128B2 (en) Swash plate type variable capacity compressor
JP4031140B2 (en) Swash plate type variable capacity compressor
JP4064066B2 (en) Variable capacity swash plate compressor
JP2000120912A (en) Control valve for variable displacement compressor
WO2004061304A1 (en) Control device for variable capacity compressor
JPH03134268A (en) Variable displacement swash plate type compressor
JP5519199B2 (en) Variable capacity swash plate compressor and air conditioning system using the same
JP2001090658A (en) Swash plate type variable displacement compressor
JPH03199677A (en) Variable volume type swash plate compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees