JP2000291525A - Power generating system - Google Patents

Power generating system

Info

Publication number
JP2000291525A
JP2000291525A JP11097116A JP9711699A JP2000291525A JP 2000291525 A JP2000291525 A JP 2000291525A JP 11097116 A JP11097116 A JP 11097116A JP 9711699 A JP9711699 A JP 9711699A JP 2000291525 A JP2000291525 A JP 2000291525A
Authority
JP
Japan
Prior art keywords
water
storage tank
water supply
pipe
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11097116A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mochizuki
喜義 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Acetylene Kogyo KK
Original Assignee
Fuji Acetylene Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Acetylene Kogyo KK filed Critical Fuji Acetylene Kogyo KK
Priority to JP11097116A priority Critical patent/JP2000291525A/en
Publication of JP2000291525A publication Critical patent/JP2000291525A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use water energy in a power generating system, using a water supply system. SOLUTION: This power generating system uses a water supply system pumping groundwater up to a water storage tank 10 with a storage pump and supplying the water to respective facilities in a factory with a water supply pump 16. The power generating system is provided with a water turbine 20 which is rotated by energy of the water falling from the water storage tank 10 near the lowest part of a standpipe 14 allowing a fall of the groundwater from the water storage tank 10, upstream of the water supply pump 16. Rotational movement of the water turbine 20 cauges a power generator 40 to rotate, and the obtained electric energy is supplied to the factory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は揚水ポンプにより
地下水を貯水タンクに汲み上げ、給水ポンプによって工
場各設備に給水する給水系に関し、詳しくはこのような
給水系における発電システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply system in which groundwater is pumped into a storage tank by a water pump and water is supplied to various facilities in a factory by a water supply pump, and more particularly to a power generation system in such a water supply system.

【0002】[0002]

【従来の技術】製紙工場などではその設備の稼動のため
に大量の水が必要である。そこで、クローズド型の給水
設備を備えている。即ち、揚水ポンプにより地下水を貯
水タンクにくみ上げ、これを給水管を介して工場内の各
設備に常時給水するようにしている。
2. Description of the Related Art In a paper mill or the like, a large amount of water is required to operate its equipment. Therefore, a closed type water supply facility is provided. That is, groundwater is pumped into a water storage tank by a water pump, and the water is constantly supplied to each facility in the factory via a water supply pipe.

【0003】貯水タンクは地上10mなどといった高所
に位置しており、給水管側において必要な水圧を得るよ
うに意図している。しかしながら、工場内における給水
管が長い場合は末端側では水圧が足りなくなってしま
う。そこで、給水管側にもポンプを設置することによ
り、下流側においても必要な水圧を得ることができるよ
うにしている。
[0003] The water storage tank is located at a high place such as 10 m above the ground, and is intended to obtain necessary water pressure on the water supply pipe side. However, when the water supply pipe in the factory is long, the water pressure becomes insufficient at the terminal side. Therefore, by installing a pump also on the water supply pipe side, a required water pressure can be obtained also on the downstream side.

【0004】[0004]

【発明が解決しようとする課題】貯水タンクから水は給
水管に向け落下しているため、その直下の部分での運動
エネルギは大きい。しかしながら、給水管側において給
水ポンプを使用している場合は、貯水タンクから落下す
る水の運動エネルギは有効に利用されず、殆どが無駄と
なっていた。この発明はかかる点に鑑みてなされたもの
であり、この発明の目的は今までは捨てられていた水の
エネルギを有効活用を図ることにある。
Since the water falls from the water storage tank toward the water supply pipe, the kinetic energy in a portion immediately below the water supply pipe is large. However, when a water supply pump is used on the water supply pipe side, the kinetic energy of water falling from the water storage tank is not effectively used, and most of the energy is wasted. The present invention has been made in view of such a point, and an object of the present invention is to effectively utilize the energy of water that has been discarded until now.

【0005】[0005]

【課題を解決するための手段】この発明によれば、揚水
ポンプにより地下水を貯水タンクに汲み上げ、給水ポン
プによって工場各設備に給水する給水系において、貯水
タンクから地下水を落下させる直立管の最下部付近でか
つ給水ポンプの上流に貯水タンクから落下される水のエ
ネルギによって回転せしめられる水車を設け、水車の回
転運動によって発電機を回転させ、得られた電気エネル
ギを工場に供給することを特徴とする発電システムが提
供される。
According to the present invention, in a water supply system in which groundwater is pumped into a water storage tank by a water pump and water is supplied to each plant by a water supply pump, the lowermost part of an upright pipe for dropping groundwater from the water storage tank. A water turbine that is rotated by the energy of water dropped from the water storage tank near and upstream of the water supply pump is provided, the generator is rotated by the rotational motion of the water turbine, and the obtained electric energy is supplied to the factory. A power generation system is provided.

【0006】揚水ポンプにより地下水は貯水タンクに汲
み上げられ、貯水タンクから落下された水は給水ポンプ
より給水系に圧送され、工場の各設備に給水される。貯
水タンクから水を落下させるための直立管の最下部付近
に設けられた水車は落下する水のエネルギによって回転
せしめられ、水車のこの回転運動は発電機に伝達され、
発電機により得られた電気エネルギは工場に供給され
る。貯水タンクからの水を落下させる直立管に水車を設
けたため、水車の設置による圧力損失は当然起こりうる
が、水車の下流に当初より設置されている給水ポンプに
よって再度加圧されるため、給水管における必要な水圧
を確保することができる。
[0006] The groundwater is pumped by a water pump into a water storage tank, and the water dropped from the water storage tank is pumped into a water supply system by a water supply pump and supplied to each facility of the factory. The turbine provided near the bottom of the upright pipe for dropping water from the water storage tank is rotated by the energy of the falling water, and this rotating motion of the turbine is transmitted to the generator,
Electric energy obtained by the generator is supplied to the factory. Since a water turbine was installed in the upright pipe for dropping water from the water storage tank, pressure loss due to the installation of the water turbine could naturally occur, but since the water was pumped up again by the water supply pump installed from the beginning downstream of the water turbine, the water supply pipe was Required water pressure can be secured.

【0007】この発明では従来は貯水タンクから落下す
る水のエネルギによって水車を回し、その回転によって
発電機を回している。そのため、従来は捨てられていた
エネルギの有効利用を図ることができる。
In the present invention, a water wheel is conventionally turned by the energy of water falling from a water storage tank, and a generator is turned by its rotation. Therefore, it is possible to effectively use the energy that has been conventionally thrown away.

【0008】上記構成において、前記水車を迂回する迂
回パイプを有し、該迂回パイプに、常態では閉鎖される
が、緊急時に開かれるように制御される制御弁を設ける
ことができる。制御弁は通常は閉じられ、貯水タンクか
らの水は全量が水車に向かい発電に供されるが、水車の
故障時には制御弁を開くことにより、迂回パイプを介し
て必要量の水を給水管に導くようにすることができる。
[0008] In the above structure, a bypass pipe may be provided to bypass the water turbine, and the bypass pipe may be provided with a control valve which is normally closed but controlled to be opened in an emergency. The control valve is normally closed and the entire amount of water from the water storage tank goes to the turbine to be used for power generation.In the event of a turbine failure, the control valve is opened to supply the required amount of water to the water supply pipe via the bypass pipe. Can be guided.

【0009】上記構成において、発電機は直流発電機で
あり、インバータを介して商用電源ないしは自家発電設
備を利用した工場の給電設備に接続することができる。
この構成により水車駆動の発電機により得られた電気エ
ネルギを全て工場稼動用のエネルギとして無駄なく再利
用することができ、発電設備の有用性を高めることがで
きる効果がある。
In the above configuration, the generator is a DC generator, and can be connected to a commercial power supply or a power supply facility of a factory using a private power generation facility via an inverter.
With this configuration, all the electric energy obtained by the water turbine driven generator can be reused without waste as the energy for operating the factory, and the utility of the power generation equipment can be enhanced.

【0010】[0010]

【発明の実施の形態】図1において10は貯水タンクで
あり、高さHの鉄塔12上に設置されている。図示しな
い揚水ポンプ(ピストンポンプ等)からの地下水は揚水
パイプ13を介して貯水タンク10に汲み上げられる。
貯水タンク10に溜められた地下水はその下部の直立管
14より取り出され、給水ポンプ(ベーンポンプ等)1
6を介して給水管18より工場の各部に給水される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 10 denotes a water storage tank, which is installed on a steel tower 12 having a height H. Groundwater from a pump (not shown) (not shown) is pumped into a water storage tank 10 via a pumping pipe 13.
The groundwater stored in the water storage tank 10 is taken out from an upright pipe 14 at a lower portion thereof and supplied to a water supply pump (a vane pump or the like) 1.
Water is supplied to each part of the factory from the water supply pipe 18 via the pipe 6.

【0011】貯水タンク10は例えばH=10mといっ
た高所に設置されており、直立管14の直下での圧力
(静圧)は高くなっている。しかしながら、貯水タンク
10による静圧効果のみでは給水管18の末端側では水
圧が足りなくなるため、給水ポンプの吐出圧力(動圧)
によって給水管16の末端に至るまで必要な水圧を確保
するようにしている。
The water storage tank 10 is installed at a high place, for example, H = 10 m, and the pressure (static pressure) immediately below the upright pipe 14 is high. However, only with the static pressure effect by the water storage tank 10, the water pressure becomes insufficient at the terminal side of the water supply pipe 18, so that the discharge pressure (dynamic pressure) of the water supply pump is used.
Thus, necessary water pressure is ensured up to the end of the water supply pipe 16.

【0012】この発明によれば、貯水タンク10の底部
における直立管14の下端付近に水車20が設置されて
いる。図2に示すように水車20は筒状のケーシング2
2と、筒状ケーシング22内に収容される羽根車24と
から構成される。羽根車24はケーシング22に両端に
おいて回転可能に軸支される回転軸26と、回転軸26
に固定されるハブ28と、ハブ28から放射状に延びる
複数のブレード30とから構成される。入口管32は上
流端が貯水タンク10からの直立管14の下端に接続さ
れ、入口管32の下流端はケーシング22の入口部22A
に接続されている。出口管34は上流端がケーシング2
2の出口部22Bに接続され、出口管34の下流端は給水
ポンプ16の吸入側に接続されている。図2に示すよう
に入口部22Aに対する入口管32の開口方向は接線方向
であり、そのため直立管14からケーシング22に流入
される水のエネルギが羽根車24に効率的に伝達される
ようになっている。
According to the present invention, the water wheel 20 is installed near the lower end of the upright pipe 14 at the bottom of the water storage tank 10. As shown in FIG. 2, the water turbine 20 is a cylindrical casing 2.
2 and an impeller 24 housed in the cylindrical casing 22. The impeller 24 includes a rotating shaft 26 rotatably supported at both ends of the casing 22, and a rotating shaft 26.
And a plurality of blades 30 radially extending from the hub 28. The upstream end of the inlet pipe 32 is connected to the lower end of the upright pipe 14 from the water storage tank 10, and the downstream end of the inlet pipe 32 is connected to the inlet 22 A of the casing 22.
It is connected to the. The upstream end of the outlet pipe 34 is the casing 2.
The downstream end of the outlet pipe 34 is connected to the suction side of the water supply pump 16. As shown in FIG. 2, the opening direction of the inlet pipe 32 with respect to the inlet section 22A is tangential, so that the energy of water flowing into the casing 22 from the upright pipe 14 is efficiently transmitted to the impeller 24. ing.

【0013】バイパス管36は一端が直立管14の中間
部位に接続され、他端は水車20と給水ポンプ16との
間に接続されている。バイパス管36上に制御弁38が
設けられる。制御弁38は通常は閉鎖位置にあり、貯水
タンク10からの水は全量が水車20に向かうようにな
っている。制御弁38は水車20の故障等の緊急時に開
放され、貯水タンク10から落下してきた水はバイパス
管36を介して給水ポンプ16及び給水管18側に向か
うことができるようになっている。
The bypass pipe 36 has one end connected to an intermediate portion of the upright pipe 14 and the other end connected between the water wheel 20 and the water supply pump 16. A control valve 38 is provided on the bypass pipe 36. The control valve 38 is normally in the closed position, and the entire amount of water from the water storage tank 10 is directed to the water wheel 20. The control valve 38 is opened in an emergency such as a failure of the water turbine 20 or the like, so that the water dropped from the water storage tank 10 can flow toward the water supply pump 16 and the water supply pipe 18 via the bypass pipe 36.

【0014】図1において、直流発電機40は水車20
に近接して設置されており、水車20によって得られた
回転運動を直流発電機40に伝達する伝導機構が設けら
れる。即ち、この伝導機構は水車20の回転軸26上の
プーリ42と、直流発電機40の回転軸上のプーリ44
と、これらプーリ42, 44間を巡るベルト46とにより構
成される。この結果、貯水タンク10から落下する水の
エネルギによる水車の回転軸26の回転によって直流発
電機40が回転駆動され、直流の電気エネルギを得るこ
とができる。この実施形態では水車20の回転軸26は
ベルト伝導機構によって直流発電機40に連結されてい
るが、水車20の回転軸26と同軸に直流発電機40の
回転軸を設けるようにしてもよいことは言うまでもな
い。
Referring to FIG. 1, a DC generator 40 is
And a transmission mechanism for transmitting the rotational motion obtained by the water turbine 20 to the DC generator 40 is provided. That is, the transmission mechanism includes a pulley 42 on the rotating shaft 26 of the water turbine 20 and a pulley 44 on the rotating shaft of the DC generator 40.
And a belt 46 passing between the pulleys 42 and 44. As a result, the DC generator 40 is rotationally driven by the rotation of the rotating shaft 26 of the water wheel due to the energy of the water falling from the water storage tank 10, and DC electric energy can be obtained. In this embodiment, the rotating shaft 26 of the water turbine 20 is connected to the DC generator 40 by a belt transmission mechanism. However, the rotating shaft of the DC generator 40 may be provided coaxially with the rotating shaft 26 of the water turbine 20. Needless to say.

【0015】良く知られていることであるが、直流発電
機40は構造が簡単であるため低コストでありかつイン
バータ48(直流−交流変換器)を用いることによって
商用電源からの電気エネルギないしは自家発電装置によ
る工場用給電設備に簡単に接続することができる。即
ち、図1において50は商用電源や液体又は気体燃料を
エネルギ源とした自家発電装置との接続部である分電盤
を表している。そして、分電盤50を介して工場への送
電ライン52に接続されている。当然のことであるが、
商用電源からの電力が工場稼動のための主力電源となる
が、分電盤50はインバータ48からの水力エネルギに
よる電力を優先して送電ライン52に供給する。そのた
め、発電機40によって得られた電力は全て工場に供給
され、水力エネルギによる電力分商標電源による消費電
力が最大限節約され、水力エネルギの効率的使用が行わ
れるようになっている。
As is well known, the DC generator 40 has a simple structure, is low in cost, and uses an inverter 48 (DC-AC converter) to provide electric energy from a commercial power supply or a private power generator. It can be easily connected to power supply equipment for factories using a power generator. That is, in FIG. 1, reference numeral 50 denotes a distribution board which is a connection portion with a commercial power supply or a private power generator using a liquid or gas fuel as an energy source. And it is connected to the power transmission line 52 to the factory via the distribution board 50. Not surprisingly,
The electric power from the commercial power supply becomes the main power supply for operating the factory, but the distribution board 50 supplies the electric power by the hydraulic energy from the inverter 48 to the power transmission line 52 with priority. Therefore, all the electric power obtained by the generator 40 is supplied to the factory, the power consumption of the power division power supply by the hydraulic energy is saved to the maximum, and the efficient use of the hydraulic energy is performed.

【0016】揚水ポンプ(図示せず)の作動によって汲
み上げられた地下水は揚水パイプ13より貯水タンク1
0に供給される。貯水タンク10に溜められた地下水は
タンク10の底部より直立管14に流出され、水車20
を経て給水ポンプ16に送られ、給水ポンプ16より圧
力下で給水管18に送り出され、工場の各部に給水され
る。
Groundwater pumped by a pump (not shown) is pumped from a pumping pipe 13 to a storage tank 1.
0 is supplied. The groundwater stored in the water storage tank 10 flows out of the bottom of the tank 10 into the upright pipe 14 and is then discharged from the water turbine
The water is supplied to the water supply pump 16 via the water supply pump 16, sent out to the water supply pipe 18 under pressure from the water supply pump 16, and supplied to each part of the factory.

【0017】直立管14から落下される水は入口管32
より水車20のケーシング22に導入され、落下する水
のエネルギによって羽根車24は回転せしめられる。周
知のように水車20の出力Lは、水車の効率をη、発
電機の効率をηとすれば、有効落差(貯水タンク10
の高さ)をH(m)、貯水タンク10から落下する水量を
Q(m3/s)とすると L=9.8H×Q×η×η(KW) である。従って、有効落差HをHを10m、水量を0.05
m3/s、η、ηをいずれも0.9(90%)とすると、L=3.
97(KW)となり、製紙工場等では工場が稼動している限り
は、絶えず水は流れているためこの電力が常時得られる
ことになる。従って、この分の電力の節約が得られる。
即ち、 図1の給水システムでは給水管18内の水圧は
基本的には全て給水ポンプ16によって得られるもので
あり、一方、貯水タンク10から落下する水の位置エネ
ルギは直立管14の下端では大きなものであったが、給
水管18の圧力を得るためには役に立っておらず、この
位置エネルギは結局は捨てられていたことになってい
た。この発明では、従来は無駄となったいた貯水タンク
から落下する水のエネルギを有効に利用することができ
るのである。
The water dropped from the upright pipe 14 is supplied to the inlet pipe 32.
The impeller 24 is rotated by the energy of the water that is introduced into the casing 22 of the water wheel 20 and falls. As is well known, the output L of the water turbine 20 can be calculated as an effective head (the water storage tank 10) if the efficiency of the water turbine is η t and the efficiency of the generator is η g.
Is H (m), and the amount of water falling from the water storage tank 10 is Q (m 3 / s), and L = 9.8H × Q × η t × η g (KW). Therefore, the effective head H is set to 10 m and the water amount is set to 0.05 m.
Assuming that m 3 / s, η t , and η g are all 0.9 (90%), L = 3.
It becomes 97 (KW). In a paper mill, etc., as long as the mill is operating, water is constantly flowing, so this power is always available. Therefore, power savings can be obtained.
That is, in the water supply system of FIG. 1, the water pressure in the water supply pipe 18 is basically all obtained by the water supply pump 16, while the potential energy of water falling from the water storage tank 10 is large at the lower end of the upright pipe 14. However, it did not help to obtain the pressure in the water supply pipe 18, and this potential energy was eventually discarded. According to the present invention, the energy of water falling from the water storage tank, which has been wasted in the past, can be effectively used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の発電システムの全体該略図で
ある。
FIG. 1 is an overall schematic view of a power generation system according to the present invention.

【図2】図2は図1に使用される水車の断面図である。FIG. 2 is a sectional view of the water turbine used in FIG.

【符号の説明】[Explanation of symbols]

10…貯水タンク 12…鉄塔 14…直立管 16…給水ポンプ 18…給水管 20…水車 22…ケーシング 24…羽根車 26…回転軸 30…ブレード 32…入口管 34…出口管 36…バイパス管 38…制御弁 40…直流発電機 48…インバータ 50…分電盤 DESCRIPTION OF SYMBOLS 10 ... Water storage tank 12 ... Steel tower 14 ... Upright pipe 16 ... Water supply pump 18 ... Water supply pipe 20 ... Waterwheel 22 ... Casing 24 ... Impeller 26 ... Rotating shaft 30 ... Blade 32 ... Inlet pipe 34 ... Outlet pipe 36 ... Bypass pipe 38 ... Control valve 40 DC generator 48 Inverter 50 Distribution board

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 揚水ポンプにより地下水を貯水タンクに
汲み上げ、給水ポンプによって工場各設備に給水する給
水系において、貯水タンクから地下水を落下させる直立
管の最下部付近でかつ給水ポンプの上流に貯水タンクか
ら落下される水のエネルギによって回転せしめられる水
車を設け、水車の回転運動によって発電機を回転させ、
得られた電気エネルギを工場に供給することを特徴とす
る発電システム。
In a water supply system in which groundwater is pumped into a water storage tank by a water pump and water is supplied to various facilities in the plant by a water supply pump, a water storage tank is provided near the bottom of an upright pipe for dropping groundwater from the water storage tank and upstream of the water supply pump. Provide a water wheel that is rotated by the energy of the water falling from the, the generator is rotated by the rotating motion of the water wheel,
A power generation system characterized by supplying the obtained electric energy to a factory.
【請求項2】 前記水車を迂回する迂回パイプを有し、
該迂回パイプに、常態では閉鎖されるが、緊急時に開か
れるように制御される制御弁を設けたことを特徴とする
発電システム。
2. It has a bypass pipe that bypasses the water turbine,
A power generation system, wherein a control valve, which is normally closed but controlled to be opened in an emergency, is provided in the bypass pipe.
【請求項3】 請求項1に記載のシステムにおいて、発
電機は直流発電機であり、インバータを介して商用電源
ないしは自家発電設備を利用した工場の給電設備に接続
されていることを特徴とする発電システム。
3. The system according to claim 1, wherein the generator is a DC generator and is connected to a commercial power supply or a power supply facility of a factory using a private power generation facility via an inverter. Power generation system.
JP11097116A 1999-04-05 1999-04-05 Power generating system Pending JP2000291525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11097116A JP2000291525A (en) 1999-04-05 1999-04-05 Power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11097116A JP2000291525A (en) 1999-04-05 1999-04-05 Power generating system

Publications (1)

Publication Number Publication Date
JP2000291525A true JP2000291525A (en) 2000-10-17

Family

ID=14183611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11097116A Pending JP2000291525A (en) 1999-04-05 1999-04-05 Power generating system

Country Status (1)

Country Link
JP (1) JP2000291525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698223B2 (en) 2002-01-17 2004-03-02 Hitachi, Ltd. Energy collecting system and method of operating the same
US7019411B2 (en) 2002-03-27 2006-03-28 Hitachi, Ltd. Energy recovery apparatus and method of operating energy recovering apparatus
WO2012154839A3 (en) * 2011-05-10 2013-03-21 William Riley Multiple-use aquifer-based system
CN105370485A (en) * 2015-10-15 2016-03-02 张建华 Potential energy converter
CN114738165A (en) * 2022-03-29 2022-07-12 温州大学 Energy collecting mechanism combined with tap water pipe network

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698223B2 (en) 2002-01-17 2004-03-02 Hitachi, Ltd. Energy collecting system and method of operating the same
US7174735B2 (en) 2002-01-17 2007-02-13 Hitachi, Ltd. Energy collecting system and method of operating the same
US7191610B2 (en) 2002-01-17 2007-03-20 Hitachi, Ltd. Energy collecting system and method of operating the same
JP2009168037A (en) * 2002-01-17 2009-07-30 Hitachi Industrial Equipment Systems Co Ltd Energy recovery system and storage pump
US7019411B2 (en) 2002-03-27 2006-03-28 Hitachi, Ltd. Energy recovery apparatus and method of operating energy recovering apparatus
WO2012154839A3 (en) * 2011-05-10 2013-03-21 William Riley Multiple-use aquifer-based system
CN105370485A (en) * 2015-10-15 2016-03-02 张建华 Potential energy converter
CN114738165A (en) * 2022-03-29 2022-07-12 温州大学 Energy collecting mechanism combined with tap water pipe network

Similar Documents

Publication Publication Date Title
US4246753A (en) Energy salvaging system
EP0571486B1 (en) A wind-powered energy production and storing system
US20110037265A1 (en) Hollow turbine
JP2004537668A (en) Wind power plant with seawater or brackish water desalination plant
US9856850B1 (en) Apparatus, system and method for producing rotational torque to generate electricity and operate machines
JPS62503113A (en) portable hydro power generation set
CN1973128A (en) Modular hydraulic or hydroelectric machine
Williams et al. Pumps as turbines and induction motors as generators for energy recovery in water supply systems
JP2000291525A (en) Power generating system
US5905311A (en) Integrated hydroelectric unit
US20130302187A1 (en) Pump Turbine Installation
JPH08237997A (en) Generator utilizing drain
KR20100033993A (en) The apparatus aeration system using compressed air by wind power
US4587435A (en) Turbine
KR20130082186A (en) Power generating system for using waste water
WO2011014985A1 (en) Siphon combined fluid power device
CN201412259Y (en) Power generation device of water turbine
RU2347938C1 (en) Floating air-and-water power station
US20060108808A1 (en) System and method for generating electricity using well pressures
GB2032008A (en) Method of and means for generating hydro-electric power
RU2306452C2 (en) Hydraulic turbine
JP2000336635A (en) Jet type hydraulic turbine for pressure line and power generating method using the turbine
JP2006170179A (en) Circulation type private hydraulic power generation device
JPH07305676A (en) Rotor machinery selectively operated as pump or turbine
CN107269447A (en) Pipeline type hydro-generating Unit