JP2000291026A - Block layered base isolation footing - Google Patents
Block layered base isolation footingInfo
- Publication number
- JP2000291026A JP2000291026A JP11139043A JP13904399A JP2000291026A JP 2000291026 A JP2000291026 A JP 2000291026A JP 11139043 A JP11139043 A JP 11139043A JP 13904399 A JP13904399 A JP 13904399A JP 2000291026 A JP2000291026 A JP 2000291026A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- block
- blocks
- seismic isolation
- laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Foundations (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、建築及び土木構
築物の基礎に関するもので、支持力改善の機能と併せて
免震機構として利用する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foundation of a building and a civil engineering structure, and is used as a seismic isolation mechanism together with a function of improving a bearing capacity.
【0002】[0002]
【従来の技術】従来から、堆積地盤を対象に構築物の基
礎として、天然の栗石・玉石を敷設する基礎が、接地面
の非平面形状及び積層構造に起因する荷重の分散や支持
力の改善機能があり広く施工されてきた。近年、河川改
修整備の進展及び環境保護気運の高まりから形状と品質
の適格な自然材料の調達が難しくなり、石工など技能者
の不足もあいまって施工対応が困難となりつつある。ま
た、これらは空積みの積層構造であるため、地震時に地
盤からの動的伝達を稍緩和するものながら、水平変位の
拘束性などから免震としての積極的な機能、効果は期待
できない。2. Description of the Related Art Conventionally, a foundation for laying natural rock and cobble stone as a foundation of a structure for a sedimentary ground has a function of dispersing a load caused by a non-planar shape of a ground contact surface and a laminated structure and improving a bearing capacity. There has been widely constructed. In recent years, it has become difficult to procure natural materials of appropriate shape and quality due to the progress of river improvement and maintenance and the rise in environmental protection, and the lack of skilled technicians such as masonry has made it difficult to handle construction work. In addition, since these are empty stacked structures, they can slightly reduce the dynamic transmission from the ground during an earthquake, but cannot expect a positive function or effect as a seismic isolation due to the restraint of horizontal displacement.
【0003】コマ型ブロックを敷設する基礎(特願公・
昭5650054)も、積層の一種で、栗石積層と同様
に不同沈下の抑制、地盤の安定強化として施工されてい
る。しかし、ブロック自体の座り不安定性などから、実
施においては、地盤及びブロック上での丸鋼の組立や削
孔等の工程が繁雑なこと、また、複数段の積層は不安定
なもので施工も困難を伴ううえ、構造上、免震としての
機能は期待できない。一方、これまで、中高層階の建築
などを対象に、ゴム積層構造の免震アイソレータや機械
的な制震装置が実用化されているが、比較的低層の構築
物を対象として、構造及び施工が簡便で費用が低廉なこ
と、性能の劣化等が少なく埋設構造として耐久性が高
く、基礎機能と一体の免震機構はない。[0003] The basics of laying the top block
5650054) is also a kind of lamination, and is constructed to suppress uneven settlement and strengthen the ground as well as the Kuriishi lamination. However, due to the instability of the block itself, the implementation of round bars and drilling on the ground and blocks is complicated, and the stacking of multiple steps is unstable. In addition to the difficulty, the function of seismic isolation cannot be expected due to its structure. On the other hand, rubber-laminated seismic isolators and mechanical vibration control devices have been put into practical use for middle- and high-rise buildings, but the structure and construction are simple for relatively low-rise buildings. Inexpensive, low performance degradation, etc., and high durability as a buried structure. There is no seismic isolation mechanism integrated with basic functions.
【0004】[0004]
【発明が解決しようとする課題】従来から用いられてき
た栗玉石の積層基礎の機能を一層合理的にして、管理さ
れた工場規格製品によって材料を供給し、品質管理の合
理化及び施工性の向上を図り、荷重の合理的な分散化に
よる不同沈下の抑制及び地盤支持力の改善機能にくわ
え、免震機能を持たせた費用低廉にして一連の積層基礎
を得る。SUMMARY OF THE INVENTION The functions of the conventionally used laminating foundation of marble stones are made more rational, materials are supplied by controlled factory standard products, quality control is streamlined and workability is improved. In addition to the functions of suppressing uneven settlement by rational distribution of load and improving ground bearing capacity, a series of laminated foundations with seismic isolation function at low cost are obtained.
【0005】免震の機能は、地震動の伝達を積極的に減
衰緩和させるため、アイソレータ機能として、水平方向
に柔らかく支持して動的エネルギの伝達を低減し構築物
の揺れ応答を長周期化すること、ダンパー機能として、
応答変位を制限するとともに動的エネルギーを吸収減衰
させるものである。これらの機能を備えて比較的低層の
構築物を対象として、簡単な構造で施工が簡便なうえ費
用が低廉なこと、寒冷地でも温度依存性による性能の変
化が少なく、基礎一連、一体としてメンテナンスの要ら
ない効果的な免震機構とする。[0005] The seismic isolation function is to attenuate and mitigate the transmission of seismic motion. As an isolator function, it is softly supported in the horizontal direction to reduce the transmission of dynamic energy and lengthen the swing response of the building. , As a damper function,
It limits the response displacement and absorbs and attenuates the dynamic energy. With these functions, it is intended for relatively low-rise buildings with a simple structure, simple construction and low cost, and there is little change in performance due to temperature dependence even in cold regions, An effective seismic isolation mechanism that is unnecessary.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
め、発明の積層基礎は、図1及び図2と図3に於ける、
単体の積層ブロック(1)を根掘地盤上に、複数の積層
段に整列敷設して積立てる。各積層段の間に形成される
内部空間には同空間の形態に整合するブロック(2)を
はめ込み、空積みの安定的な積層を構築して、上部荷重
の地盤伝達を分散させ、不同沈下の抑制及び地盤支持力
の改善を図る。地震時には、内部空間にはめ込むブロッ
クを上下一対の摺動型の免震構造とすることで、構築物
と地盤の相対変位に一定の範囲内で追従変位しながら、
上部構築物の動的応答を減衰緩和する免震機能を持たせ
る一連の基礎機構とする。In order to solve the above-mentioned problems, a laminated base of the present invention is shown in FIGS. 1, 2 and 3.
A single laminated block (1) is arranged and laid in a plurality of lamination stages on a root excavation ground, and is piled up. The internal space formed between each stacking stage is fitted with a block (2) that conforms to the shape of the space, constructing a stable stack of empty stacks, dispersing the ground transfer of the upper load, and uneven settlement. And improve ground bearing capacity. In the event of an earthquake, a block that fits into the internal space is a pair of upper and lower sliding seismic isolation structures, so that it can follow the relative displacement between the building and the ground within a certain range,
A series of basic mechanisms to provide a seismic isolation function for damping and relaxing the dynamic response of the upper structure.
【0007】上記の積層基礎の機能を可能とするため、
はめ込むブロックが、積層ブロックの積立てによって形
成される積層の内部空間の形態に整合して、隣接する積
層ブロックと上下8方向の線接触が図られるよう、図4
に示す上下双方に円錐台状を呈し中間に小段を有する形
状を特長とする積層ブロックと、はめ込みブロックであ
り図5に示すところの円錐台状を呈し上下に分離した一
対(3)と(4)の免震ブロックを用いる。この免震ブ
ロックは、地震時の内部空間の変形に追従して一定範囲
の摺動と鉛直方向の回転変位を可能とする。[0007] In order to enable the function of the above-mentioned laminated foundation,
FIG. 4 shows that the blocks to be fitted are in line with the adjacent laminated blocks in eight vertical directions in conformity with the shape of the internal space of the laminate formed by stacking the laminated blocks.
And (4) a laminated block characterized by a shape having a truncated cone on both the upper and lower sides and having a small step in the middle, and a pair (3) which is a fitting block and has a truncated cone shape as shown in FIG. Use a seismic isolation block. This seismic isolation block enables a certain range of sliding and vertical rotational displacement following the deformation of the internal space during an earthquake.
【0008】「構造と機能及び作用について」 発明の
積層基礎は、円錐台形状のブロックを積立てる積層段の
間で、平面列と列の内部空間において、整合する形状の
ブロックをはめ込み挟み、空積み積層を構造的に一連し
て安定化させるものである。いま、ある点の地盤、ある
積層ブロックの下層段が不同沈下しようとするとき、そ
の直上層段の積層ブロックからの荷重の下方伝達をその
周縁4個のはめ込みブロックを媒介にして外周辺8個の
他の下層段ブロックに分散化させ、以下、外縁方向に順
次、広範囲に荷重の分散がおよび不同沈下を抑制する。[Structure, Function and Function] The stacking foundation of the present invention is characterized in that, between the stacking stages for stacking the truncated cone-shaped blocks, blocks of matching shape are inserted and sandwiched in the plane row and the internal space of the row, and the empty space is formed. This is to stabilize the stacking structure in a series. Now, when the ground at a certain point and the lower layer of a certain laminated block are about to subside, the downward transmission of the load from the laminated block of the immediately upper layer is carried out through the four embedded blocks at the outer periphery of eight blocks. Is dispersed to other lower step blocks, and thereafter, the load is dispersed over a wide area sequentially in the outer edge direction, and uneven settlement is suppressed.
【0009】一般に、剛体の直接基礎で、地盤が粘性土
の場合は中央部地盤での塑性変形のため端部の地盤反力
が増加する。締まりの緩い砂質地盤では逆に中央部の反
力が増加する傾向があり、いずれも不同沈下の原因とな
ることが知られている。これらの場合や局部的に地盤耐
力が劣る場合、発明の積層基礎は、上部フーチングが剛
体でも荷重の分散化、均等化に有効である。In general, when the ground is a rigid body and the ground is a viscous soil, the ground reaction force at the ends increases due to plastic deformation in the central ground. On the other hand, in the case of loose sandy ground, the reaction force in the central part tends to increase, and it is known that any of these causes uneven settlement. In these cases or when the ground strength is locally inferior, the laminated foundation of the present invention is effective for dispersing and equalizing the load even if the upper footing is rigid.
【0010】また、下層段の積層ブロックの下半円錐部
は、埋戻し土(細粒砂利など)が取り巻き接地状態とな
るが、鉛直荷重からは円錐面に沿った分力と円錐面に垂
直の分力が生じ、この垂直分力は埋戻し土を媒介して地
盤内で水平方向の圧縮主応力(最小主応力)を増大させ
るに寄与し、結果として、地盤内の鉛直方向に生ずる最
大主応力との差で発生する「せん断力」は低減する。こ
のことは、隣接ブロックによる地盤内での対角方向の圧
縮力が側方への変位を拘束的とすることと併せて、地盤
のせん断破壊条件からみる支持強度は増強される。つま
り、地盤の側方変位や局部浮き上がりと云った局所せん
断破壊条件に規制されないとされる全般せん断破壊条件
(もしくは究極的せん断破壊条件)での支持力が期待で
きる。[0010] The lower half-cone portion of the lower layer of the laminated block is in contact with the backfill soil (fine-grained gravel) and is in contact with the ground. However, from the vertical load, the component force along the conical surface and the vertical direction to the conical surface are obtained. This vertical component contributes to increase the horizontal compressive principal stress (minimum principal stress) in the ground through the backfill soil, and consequently the maximum vertical force in the ground. The "shear force" generated by the difference from the main stress is reduced. This means that the compressive force in the diagonal direction in the ground by the adjacent blocks restricts the lateral displacement, and the support strength of the ground in view of the shear fracture condition is enhanced. That is, it is possible to expect a bearing capacity under general shear failure conditions (or ultimate shear failure conditions), which are not restricted by local shear fracture conditions such as lateral displacement of the ground and local uplift.
【0011】一方、この内部空間に剛なブロックが存在
することは、積層自身の水平方向の変位を拘束し、地震
時の相対変位を吸収緩和させる免震としての機能を損な
うことなる。この拘束性は積層の立体模型によっても確
認されている。免震機構として、積層間の内部空間は、
地盤と上部構築物との一定の相対変位を許容して、周辺
の各積層ブロックの水平変位及び鉛直回転変位に追従し
なければならない。図6の実線で示すように、二段に積
まれたブロック積層は、地震時に、頂部に慣性力が作用
するとして、鉛直軸からδ/2の角度の範囲で回転変位
する。このとき、積層ブロックで囲まれる内部空間の断
面輪郭(接触線を結ぶ輪郭)形状は、平常時に空間の中
心鉛直軸に対称な六角形から、斜め方向に扁平する非対
称の六角形となるが、そのとき斜め方向の各辺の相対角
は変わらないこと、変位後も空間の輪郭断面積は殆ど変
わらない。On the other hand, the presence of a rigid block in the internal space impairs the function of seismic isolation which restrains the horizontal displacement of the laminate itself and absorbs and relaxes the relative displacement during an earthquake. This constraint has also been confirmed by a three-dimensional model of the laminate. As a seismic isolation mechanism, the internal space between
The relative displacement between the ground and the upper structure must be allowed to follow the horizontal displacement and the vertical rotational displacement of each surrounding laminated block. As shown by the solid line in FIG. 6, the block stacks stacked in two stages are rotationally displaced within a range of an angle of δ / 2 from the vertical axis, assuming that an inertial force acts on the top during an earthquake. At this time, the cross-sectional profile (the profile connecting the contact lines) of the internal space surrounded by the laminated blocks is changed from a hexagon symmetrical to the center vertical axis of the space in normal times to an asymmetrical hexagon flattened in the oblique direction, At that time, the relative angle of each side in the oblique direction does not change, and the contour cross-sectional area of the space hardly changes even after the displacement.
【0012】そこで、内部空間に挿入するはめ込みブロ
ックは、免震装置として図5のとおり各部の形状寸法が
空間形状に整合して、上下双方向の円錐台形状とし、そ
れを上半と下半に二分離する。上下の接触面には、摺動
が可能な支承部((5)摺りあい面)を設け、所要の上
下の間隙を確保して上部免震体を下部免震体が支える構
造とする。地震時、図6の作動対比図の実線に示すよう
に、地盤と上部構築物の相対変位で、各積層ブロックの
鉛直軸が同方向に同時に一定の変位をするためには、中
間空間内に挿入される免震ブロック一対は以下のように
作用する。In view of this, the fitting block to be inserted into the internal space is a seismic isolation device, as shown in FIG. Into two. A slidable bearing ((5) sliding surface) is provided on the upper and lower contact surfaces to secure the required upper and lower gaps and to support the upper seismic isolator with the lower seismic isolator. In the event of an earthquake, as shown by the solid line in the operation comparison diagram in Fig. 6, the vertical axis of each laminated block must be simultaneously and uniformly displaced in the same direction due to the relative displacement between the ground and the upper structure. The pair of seismic isolation blocks works as follows.
【0013】まず、上下一対の免震ブロックは、収まっ
ている空間断面の変形に即して、想定する変位振幅から
決めるΔbを限度として(基本直径Φに対する免震ブロ
ックの直径比も関係して)上下免震ブロックの相対的な
水平摺動で追従していく。同時に、上部免震ブロック
は、周縁の積層ブロックの接触面の角度変位に対して、
支承点を軸としてクリアランスΔhによって制限される
角度δ/2程度を限度(下部免震ブロックが回転しない
場合)として回転しながら追従する。このとき、動的変
位の作用力、加速度は、上部と下部免震ブロックの摺動
支承部のすべり摩擦及び持上げ重力エネルギーの消費等
によって制動減衰され、応答揺れ周期の長周期化にも貢
献するもので、いわゆる、アイソレータとしての機能及
びダンパーとして機能するものである。First, the pair of upper and lower seismic isolation blocks is limited to Δb determined from the assumed displacement amplitude in accordance with the deformation of the contained space section (the diameter ratio of the seismic isolation block to the basic diameter Φ is also related). ) Follow the relative horizontal sliding of the upper and lower seismic isolation blocks. At the same time, the upper seismic isolation block, with respect to the angular displacement of the contact surface of the peripheral laminated block,
The robot follows the bearing while rotating with the angle of about δ / 2 limited by the clearance Δh around the bearing point (when the lower seismic isolation block does not rotate). At this time, the acting force and acceleration of the dynamic displacement are damped by the sliding friction of the sliding bearings of the upper and lower seismic isolation blocks and the consumption of the lifting gravitational energy, etc., which also contributes to a longer response swing period. It functions as a so-called isolator and as a damper.
【0014】また、風力や常時の微振動に際して、この
摩擦等は適当な抵抗力として働き不要な動揺を抑制す
る。地震動の終期には、積層ブロックの鉛直軸の回転傾
斜が安定設定内であり重力に依る自主復元力とともに、
免震ブロックの凹型摺動支承面の曲率等からくる持ち上
げ復元力も作用し、平常時の位置に戻る。Further, in the case of wind force or micro-vibration at any time, the friction acts as an appropriate resistance to suppress unnecessary movement. At the end of the seismic motion, the rotation inclination of the vertical axis of the laminated block is within the stable setting, and together with the self-restoring force due to gravity,
The lift restoring force from the curvature of the concave sliding bearing surface of the seismic isolation block also acts, and returns to the normal position.
【0015】[0015]
【発明の実施形態】図2及び図3は、積層ブロック2段
積みのものである。荷重に対して地盤の支持耐力がいま
一つ不足する場合など、積層端部を階段状にして支持面
積の拡大のため、あるいは想定される応答変位量等か
ら、3段の積層も構成できる。また、地盤の特性と構築
物の固有周期等の関係から、免震機能が必要でない場合
は、一対の免震ブロックに代えて、同形態で摺動しない
もの、上下に分離しない同形態単体のはめ込みブロック
を用いて、支持力の改善のみを目的に水平変位を抑制し
た積層「非免震タイプ」とすることもできる。FIG. 2 and FIG. 3 show a two-layer stack of stacked blocks. For example, when the supporting strength of the ground is insufficient for the load, the laminating end may be stepped to increase the supporting area, or a three-stage lamination may be configured from an assumed response displacement amount or the like. If the seismic isolation function is not necessary due to the relationship between the characteristics of the ground and the natural period of the structure, replace the pair of seismic isolation blocks with one that does not slide in the same form, and that does not separate vertically. Using a block, a laminated “non-seismic type” can be used in which horizontal displacement is suppressed only for the purpose of improving the bearing capacity.
【0016】積層ブロックの基本寸法である直径Φは、
構築物の規模及び施工上等から30〜60cmが適当で
ある。免震ブロックを含め他の各部寸法は、基本直径Φ
に比例して決まる。材質は、強度や価格面でコンクリー
トが妥当であるが再生合成樹脂なども使用できる。免震
ブロックの摺動支承部は、型押し成形の厚鋼板や硬質合
成樹脂のものを製造過程で埋め込み取付けることが適当
である。The diameter Φ, which is the basic dimension of the laminated block, is
30 to 60 cm is appropriate from the viewpoint of the scale and construction of the structure. The other dimensions including the seismic isolation block are the basic diameter Φ
Is determined in proportion to As for the material, concrete is appropriate in terms of strength and price, but recycled synthetic resin can also be used. It is appropriate that the sliding bearing portion of the seismic isolation block be embedded with a stamped steel plate or hard synthetic resin in the manufacturing process.
【0017】免震ブロックの摺動支承部におけるすべり
面の曲率等の形状は、支承面の材料及び加工方法による
摩擦抵抗値などと共に等価剛性及び等価減衰定数として
評定されるもので、想定する地震動の規模、構築物の固
有周期特性等から適宜に設定あるいは選定する。他に、
楕円球体などの移動体方式も利用できる。The shape such as the curvature of the sliding surface in the sliding bearing portion of the seismic isolation block is evaluated as an equivalent rigidity and an equivalent damping constant together with the frictional resistance and the like depending on the material of the bearing surface and the processing method. Is appropriately set or selected based on the scale of the building, the natural period characteristics of the structure, and the like. other,
A moving body method such as an ellipsoidal sphere can also be used.
【0018】施工の留意点として、地盤に直敷設する下
層段積層ブロックの下半円錐まわりの空間すべてを細粒
砂利等にて突固め埋戻す。この段の外周端部の積層ブロ
ックは、側方変位し易い地盤条件においては、内部の積
層ブロックと斜め対角方向2箇所毎の埋め込みフックと
シャックルで引き合いとすることが望ましい。構築物の
フーチングの打設では、免震ブロック上の空間は、EP
Sで被覆又は埋設型枠等により保持する。寒冷地ではフ
ーチング下端を凍結深さ以深とするか地下水位に留意す
る。また、下層段ブロックの上半以降で構築物を含む外
周側端部の埋戻しは、受動的な拘束が少ない非粘着性の
砂等により施工する。As a point to be noted in the construction, the entire space around the lower half cone of the lower layer laminated block directly laid on the ground is compacted with fine-grained gravel or the like and backfilled. It is desirable that the laminated block at the outer peripheral end of this step be inquired by the embedded laminated block and the shackle at every two locations in the diagonal diagonal direction under the ground condition where lateral displacement is likely. When the footing of the structure is cast, the space above the seismic isolation block is EP
It is covered with S or held by a buried form or the like. In cold regions, the bottom of the footing should be deeper than the freezing depth or the groundwater level should be considered. In addition, backfilling of the outer peripheral end including the structure after the upper half of the lower step block is performed with non-adhesive sand or the like which has little passive restraint.
【0019】[0019]
【発明の効果】発明の積層基礎は、座り安定性がよく、
一定の規格寸法で品質的にも十分管理される製品ブロッ
クを敷設するもので、特別の施工技術や技能を必要とせ
ず施工の合理化に貢献できる。従来、堆積地盤におい
て、直接基礎では地盤耐力が幾分不足するとして、いき
なり長尺の杭基礎に頼っていたところ、発明の積層基礎
による支持力の改善、支持面積の拡大等の調整により、
堆積地盤の持っている地耐力を有効に活用する合理的で
経済的な基礎を構築することが出来る。The laminated foundation of the present invention has good sitting stability,
It lays product blocks that have a certain standard size and that are well managed in terms of quality, and can contribute to rationalization of construction without requiring special construction techniques or skills. Conventionally, in the sedimentary ground, as the ground strength of the direct foundation is somewhat inadequate, relying on a long pile foundation suddenly, improvement of the bearing capacity by the laminated foundation of the invention, adjustment of the support area expansion, etc.,
A rational and economic foundation can be built that effectively utilizes the bearing capacity of the sedimentary ground.
【0020】併せて、免震機能を持たせる基礎として、
低廉な建設費用で、寒冷地での温度依存性及び機能劣化
もゴム系アイソレーションに比べて少なく後々のメンテ
ナンスも不要であり、建築及び土木構築物の免震として
広範囲に利用できる。とりわけ、堆積地盤では、地盤動
の卓越周期が中低層の構築物の固有周期に近いことが多
く、従来の基礎では共鳴振動など動的応答性が高いが、
この発明の積層基礎を利用することで、地盤支持力の改
善機能と一体にして、効果的に上部構築物への動的エネ
ルギーの伝達を減衰緩和できる。At the same time, as a basis for providing a seismic isolation function,
Low construction cost, low temperature dependence and functional deterioration in cold regions compared to rubber-based isolation, no need for subsequent maintenance, and can be widely used for seismic isolation of buildings and civil engineering structures. In particular, in the sedimentary ground, the predominant period of the ground motion is often close to the natural period of the middle and low-rise structures, and the conventional foundation has high dynamic response such as resonance vibration,
By utilizing the laminated foundation of the present invention, the transmission of dynamic energy to the upper structure can be effectively damped and alleviated, integrally with the function of improving the ground support force.
【0021】対象となる構築物の具体的例としては、中
低層で固有周期がその地盤の卓越振動特性に近い場合の
鉄筋コンクリート及びSRC構造建物、中層以下の鉄骨
建及び木造建築物、露出型の貯水槽などの独立構造物で
ある。また地中管路や樋門等の埋設型あるいは擁壁等の
地盤と一体で地盤動との分離が困難なものや、その他に
免震機能が不要の場合ところでは、地盤支持力の改善を
目的限定にして、水平変位を抑制した積層「非免震タイ
プ」が適用できる。Specific examples of the target structures include reinforced concrete and SRC structural buildings where the natural period is close to the predominant vibration characteristics of the ground in the middle and low layers, steel structures and wooden structures below the middle layer, and exposed water storage. It is an independent structure such as a tank. In cases where the ground motion is difficult to separate from the ground such as buried type such as underground pipelines and gutters or the ground such as retaining walls, or where seismic isolation function is not required, improve the ground support capacity. For a limited purpose, a laminated “non-seismic type” with suppressed horizontal displacement can be applied.
【図1】ブロック積層基礎の敷設平面図である。FIG. 1 is a plan view of the laying of a block laminate foundation.
【図2】ブロック積層基礎のa視線断面図である。FIG. 2 is a sectional view taken along line a of the block lamination foundation.
【図3】ブロック積層基礎のb視線断面図である。FIG. 3 is a sectional view taken along line b in FIG.
【図4】積層ブロックの形状を示す図(正面図と平面
図)である。FIG. 4 is a diagram (a front view and a plan view) showing the shape of a laminated block.
【図5】はめ込みブロックである免震ブロックの構造図
(上下一対の正面断面図と平面図)である。FIG. 5 is a structural view (a pair of upper and lower front sectional views and a plan view) of a seismic isolation block which is a fitting block.
【図6】免震作動対比図(b視線断面図)である。常時
の状態(破線表示)と地震時の作動状態(実線)を示
す。FIG. 6 is a seismic isolation operation comparison diagram (a sectional view taken along line b). The normal state (shown by broken lines) and the operating state during an earthquake (solid line) are shown.
1 単体の積層ブロック 2 はめ込みブロック(一対の免震ブロック) 3 上部免震ブロック 4 下部免震ブロック 5 免震ブロックの摺動支承部 6 下層段の埋戻し土(細粒砂利等) DESCRIPTION OF SYMBOLS 1 Single laminated block 2 Set-in block (a pair of seismic isolation blocks) 3 Upper seismic isolation block 4 Lower seismic isolation block 5 Sliding bearing part of seismic isolation block 6 Lower layer backfill soil (fine grain gravel etc.)
Claims (1)
る形状が特長である単体の積層ブロックを根掘地盤に整
列布設して複数段の積層に積立て、この積層段の間に形
成される内部空間にも同空間の形態に整合するブロック
をはめ込み、安定的な積層を構築し、不同沈下の抑制及
び地盤支持力を改善するとともに、同空間にはめ込む同
ブロックを上下に分離した摺動型の一対の免震ブロック
とすることで、地震時に上部構築物の動的応答を減衰緩
和する免震機能を持たせることができる一連のブロック
積層基礎。1. A single laminated block characterized by a shape exhibiting a truncated cone on both the upper and lower sides is arranged on an excavated ground, laid in a plurality of layers, and formed between the laminated layers. In the interior space, a block that conforms to the shape of the space is fitted, a stable layering is built, the uneven settlement is suppressed, and the ground support force is improved. A series of block-laying foundations that can be provided with a seismic isolation function that attenuates and relaxes the dynamic response of the upper structure during an earthquake by using a pair of seismic isolation blocks of the type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11139043A JP2000291026A (en) | 1999-04-09 | 1999-04-09 | Block layered base isolation footing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11139043A JP2000291026A (en) | 1999-04-09 | 1999-04-09 | Block layered base isolation footing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000291026A true JP2000291026A (en) | 2000-10-17 |
Family
ID=15236136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11139043A Pending JP2000291026A (en) | 1999-04-09 | 1999-04-09 | Block layered base isolation footing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000291026A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353333A (en) * | 2003-05-29 | 2004-12-16 | Hajime Matsuoka | Vibration mitigating structure and response controlled method |
WO2013081382A1 (en) * | 2011-11-29 | 2013-06-06 | 목포해양대학교 산학협력단 | Seismic wave dustproof wall using buried resonant cylinder |
-
1999
- 1999-04-09 JP JP11139043A patent/JP2000291026A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004353333A (en) * | 2003-05-29 | 2004-12-16 | Hajime Matsuoka | Vibration mitigating structure and response controlled method |
WO2013081382A1 (en) * | 2011-11-29 | 2013-06-06 | 목포해양대학교 산학협력단 | Seismic wave dustproof wall using buried resonant cylinder |
CN104321494A (en) * | 2011-11-29 | 2015-01-28 | 木浦海洋大学产学协力团 | Seismic wave dustproof wall using buried resonant cylinder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070000187A1 (en) | Lateral force resistance device | |
US8696250B2 (en) | Backfill system for retaining wall | |
Adanur | Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey | |
US9222276B2 (en) | Seismic isolation system | |
US20100005754A1 (en) | Seismic Isolation to Protect Buildings | |
Bayraktar et al. | Application of ancient earthquake resistant method in modern construction technology | |
JP2000291026A (en) | Block layered base isolation footing | |
Hamada et al. | Numerical analysis on seismic response of piled raft foundation with ground improvement based on seismic observation records | |
Sezen et al. | Seismic performance of historical and monumental structures | |
JP5864686B1 (en) | Pile foundation | |
JPH08184064A (en) | Foundation structure of building | |
JP2001020558A (en) | Base isolation structure of building | |
JP4483396B2 (en) | Basic structure of building and its construction method | |
JP2006207288A (en) | Base isolating foundation structure, wooden house, and base isolation bearing body for building | |
Shah et al. | Comparative study of base isolation in multistoried RC irregular building | |
JPH1161849A (en) | Base isolation structure foundation on soft ground | |
JP3682667B2 (en) | Ground formation structure | |
JP2007239390A (en) | Differential settlement suppressing structure | |
JP2009150075A (en) | Structure for preventing subsidence of structure | |
JP2009133162A (en) | Unequal settling prevention structure of building in soft ground | |
US5946865A (en) | Dynamic building support structure and method for building the same | |
CN110344457A (en) | A kind of shock resistance ancient architecture foundation ruggedized construction | |
Giarlelis et al. | Dynamic behavior of the seismically isolated SNF Cultural Center in Athens | |
JP2002201816A (en) | Base isolation foundation structure of building | |
JPH07243219A (en) | Foundation construction method for stacking bi-conical blocks |