JP2000288425A - Method and device for solid-liquid separation - Google Patents

Method and device for solid-liquid separation

Info

Publication number
JP2000288425A
JP2000288425A JP11098898A JP9889899A JP2000288425A JP 2000288425 A JP2000288425 A JP 2000288425A JP 11098898 A JP11098898 A JP 11098898A JP 9889899 A JP9889899 A JP 9889899A JP 2000288425 A JP2000288425 A JP 2000288425A
Authority
JP
Japan
Prior art keywords
cylinder
liquid
solid
liquid separation
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098898A
Other languages
Japanese (ja)
Inventor
Haruo Kojima
春夫 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11098898A priority Critical patent/JP2000288425A/en
Publication of JP2000288425A publication Critical patent/JP2000288425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Centrifugal Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate fine particles from liquid to be treated mixed with the fine particles by a combination of electrostatic attraction, centrifugal force and magnetic attraction. SOLUTION: The liquid to be treated mixed with solids is imparted with negative charge, then it is fed from the upper part of the inside of a vertical cylinder and is turned and dropped, and also is applied with centrifugal force, thus the solids contained in the liquid to be treated are moved to the inner wall side of the cylinder, and also, a positive electrode is placed in the vicinity of the inner wall of the cylinder and the solids carrying negative charge are attracted. The cylinder is placed in the magnetic field and the magnetic body in the solids is attracted to the cylinder, and the solids adsorbed and attracted are dropped with their empty weights, and are taken out from the lower part of the cylinder, and the liquid from which the solids are separated is ascended in the central part of the cylinder and is discharged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液体に混入して
いる固体(以下微粒子という)に電荷を付与し、電気的
吸着と、被処理液を旋回させることによる遠心力と、磁
界による磁着とにより被処理液中の微粒子を連続的に分
離するこを目的とした固液分離方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for imparting electric charge to a solid (hereinafter referred to as "fine particles") mixed in a liquid to perform electrical adsorption, centrifugal force caused by swirling a liquid to be treated, and magnetic adhesion caused by a magnetic field. And a solid-liquid separation method and apparatus for continuously separating fine particles in the liquid to be treated.

【0002】[0002]

【従来の技術】従来磁界内におけるオンライン用遠心分
離機が知られている(特開昭61−222560号)。
また高速回転により、固液を分離するスクリューデカン
ターが知られている(特開平4−40878号)。
2. Description of the Related Art Conventionally, an online centrifuge in a magnetic field has been known (Japanese Patent Application Laid-Open No. 61-222560).
A screw decanter for separating solid and liquid by high-speed rotation is also known (JP-A-4-40878).

【0003】[0003]

【発明により解決しようとする課題】前記従来オンライ
ン用遠心分離機においては、密封路内で、磁力によりロ
ータを回転し、必要な分離を行うことができるようにし
た発明であって、磁力はロータの回転に用いている。
In the conventional online centrifuge, the rotor can be rotated by magnetic force in a sealed path to perform necessary separation. Used for rotation.

【0004】また高速回転により固液を分離するように
構成されたスクリューデカンターは、液体中の微粒子を
分離するものとして、各種液の固液分離装置として使用
されているが、液体と微粒子の比重の差が少なかった
り、微粒子が10μm以下のように超微粒子であった
り、或いは液体の粘性が微粒子に掛る遠心力と同等又は
大きい場合などには、微粒子の分離が不十分又は困難に
なる問題点があった。
A screw decanter configured to separate solid and liquid by high-speed rotation is used as a solid-liquid separator for various liquids for separating fine particles in a liquid. When the difference between the particles is small, when the particles are ultra-fine particles such as 10 μm or less, or when the viscosity of the liquid is equal to or greater than the centrifugal force applied to the particles, the separation of the particles becomes insufficient or difficult. was there.

【0005】更に回転筒の内壁に付着した微粒子は、ス
クリューによって一側に集められ排出されるが、スクリ
ューの摩耗粉などが液体に巻き込まれるおそれがあるな
どの問題点もあった。
Further, the fine particles adhering to the inner wall of the rotary cylinder are collected and discharged to one side by a screw, but there is a problem that abrasion powder of the screw may be caught in the liquid.

【0006】[0006]

【課題を解決する為の手段】この発明は、負電荷を付与
して正電極へ吸着させ、遠心力を利用して円筒内壁へ付
着させ、更に磁界の生成により磁性粒子を磁着させるな
ど綜合的に固液を分離させて、前記問題点を解決したの
である。
SUMMARY OF THE INVENTION The present invention is directed to an integrated system in which a negative charge is applied to a positive electrode to be adsorbed, the centrifugal force is used to attach the negative electrode to an inner wall of a cylinder, and a magnetic field is applied to magnetically attach magnetic particles. The above problem was solved by separating the solid and liquid in an appropriate manner.

【0007】即ち方法の発明は、固形物を混入した被処
理液に負電荷を付与した後、縦型の円筒内の上部から供
給して旋回下降させると共に、遠心力を付与して被処理
液内に含まれた固形物を、前記円筒の内壁側へ移動させ
ると共に、前記円筒の内壁付近に正電極をおいて、前記
負電荷を帯びた固形物を吸着させ、前記円筒を磁界内に
において、固形物中の磁性体を磁着させ、前記吸着及び
磁着した固形物を自重により降下させて、前記円筒の下
部から取出し、前記固形物を分離した液体は、前記円筒
の中央部を上昇させて排出することを特徴とした固液分
離方法である。また固形物を混入した被処理液は、円筒
の上部において、接線方向から斜下向きに供給するもの
であり、液体に遠心力を付与するには、被処理液内で攪
拌棒を回転し、又は円筒を回転するものである。
In other words, the invention of the method is to apply a negative charge to a liquid to be treated mixed with a solid substance, and then supply the liquid from the upper portion of a vertical cylinder to swirl and lower the liquid, and apply a centrifugal force to the liquid to be treated. The solid contained therein is moved to the inner wall side of the cylinder, and a positive electrode is placed near the inner wall of the cylinder to adsorb the negatively charged solid, and the cylinder is placed in a magnetic field. The magnetic substance in the solid is magnetically attached, the solid adsorbed and magnetized is lowered by its own weight, taken out from the lower part of the cylinder, and the liquid from which the solid is separated rises in the center of the cylinder. And then discharging the solid-liquid. The liquid to be treated mixed with solids is supplied obliquely downward from the tangential direction in the upper part of the cylinder.To impart a centrifugal force to the liquid, a stirring rod is rotated in the liquid to be treated, or It rotates a cylinder.

【0008】また他の方法の発明は、前記の分離方法
を、固形物の吸着及び磁着の条件を変えて複数回繰り返
すことを特徴とした固液分離方法である。
The invention of another method is a solid-liquid separation method characterized in that the above-mentioned separation method is repeated a plurality of times while changing the conditions of adsorption and magnetic adhesion of solids.

【0009】次に装置の発明は、機枠に、円筒を縦に架
設し、該円筒の上部へ負電荷付与手段を有する給液管を
接線方向から下向き斜めに接続し、前記円筒の中央部へ
排液筒を挿通して、その下端を円筒内の下部で開口させ
ると共に、前記円筒壁に接近して陽電極を設け、前記排
液筒の上部に排液管の基端を連結し、前記円筒の下部に
排出手段を設け、前記円筒内に、送入された被処理液に
遠心力を与える回転手段を設け、前記円筒の外側に磁界
生成用のコイルを装着したことを特徴とする固液分離装
置であり、負電荷付与手段は、給液管内に電極を挿入
し、該電極に負電圧を印加するものである。更に他の装
置の発明は、回転手段は、排液筒に内に挿通した回転軸
に攪拌棒を固定したものであり、 排出手段は、ロータ
リーバルブとしたものである。
Next, the invention of the apparatus is characterized in that a cylinder is vertically installed on a machine frame, and a liquid supply pipe having a negative charge applying means is connected obliquely downward from a tangential direction to an upper part of the cylinder, and a central portion of the cylinder is provided. The drainage tube is inserted into, and the lower end is opened at the lower part in the cylinder, a positive electrode is provided close to the cylindrical wall, and the base end of the drainage pipe is connected to the upper part of the drainage tube, A discharge means is provided at a lower part of the cylinder, a rotation means for applying a centrifugal force to the liquid to be processed is provided inside the cylinder, and a coil for generating a magnetic field is mounted outside the cylinder. This is a solid-liquid separation device, wherein the negative charge applying means inserts an electrode into a liquid supply pipe and applies a negative voltage to the electrode. In still another invention of the present invention, the rotating means is such that a stirring rod is fixed to a rotating shaft inserted into the drainage cylinder, and the discharging means is a rotary valve.

【0010】前記発明において、液体に混入された微粒
子を、その性質毎に分別するには、この発明を複数タン
デムに連結し、各工程毎に電圧その他の条件を変化させ
て、その分離条件に合致した電流、電圧を用いることに
より個別分離する。即ち吸着物及び磁着物の品質が異な
るので、これに対応して処理するのが合理的である。例
えばPb、亜鉛、銀、ニッケル、リチュウムなどを別々
に分離処理し、集めることができる。
In the above invention, in order to separate the fine particles mixed in the liquid for each property, the present invention is connected to a plurality of tandems, and the voltage and other conditions are changed in each step, and the separation conditions are changed. Separate by using matched currents and voltages. That is, since the quality of the adsorbed material and the quality of the magnetically attached material are different, it is reasonable to treat it accordingly. For example, Pb, zinc, silver, nickel, lithium and the like can be separately separated and collected.

【0011】この発明は、微粒子に電荷を付与するこ
と、遠心力を付与すること及び磁着させることなどの綜
合処理によって固液を分離し、微粒子を円筒内壁(又は
電極)へ付着させるのであるが、被処理液は旋回流とな
って流動していると共に、微粒子の付着層が厚くなる
と、必然付に付着力(吸着力、磁着力など)と、他の外
力(液流、重力)とのバランスが崩れ、遂には微粒子に
かかる重力の方が大きくなって自重降下し、円筒の下部
へ溜まる。そこでロータリーバルブなどを利用して微粒
子のみを排出する。
According to the present invention, solid-liquid is separated by comprehensive processing such as applying electric charge, applying centrifugal force, and magnetically attaching the fine particles, and the fine particles adhere to the inner wall (or electrode) of the cylinder. However, the liquid to be treated flows in a swirling flow, and when the adhesion layer of the fine particles becomes thick, the adhesion force (adsorption force, magnetic adhesion force, etc.) and other external forces (liquid flow, gravity) inevitably occur. The balance of the particles is lost, and the gravitational force acting on the fine particles eventually becomes larger and falls by its own weight, and accumulates in the lower part of the cylinder. Therefore, only the fine particles are discharged using a rotary valve or the like.

【0012】前記における被処理液の粘性が大きい場合
には、加温又は希釈その他の手段を構じて微粒子の移動
を容易にする。又粉体を処理する場合には、適量の水を
加えて(例えば80%〜90%)流動性と分散性を付与
し、前記被処理液とする。この発明による処理能率は、
装置の容量により定まり、精度は処理条件により定まる
が、一般的に高精度にするには高電圧、高磁界、長大な
分離円筒などが必須要件となるので、被処理液の性質、
要求分離精度などを勘案して合理的に対処する必要があ
る。
If the viscosity of the liquid to be treated is high, heating or dilution or other means is used to facilitate the movement of the fine particles. In the case of treating a powder, an appropriate amount of water is added (for example, 80% to 90%) to impart fluidity and dispersibility to obtain the liquid to be treated. The processing efficiency according to the present invention is:
The accuracy is determined by the capacity of the equipment, and the accuracy is determined by the processing conditions.In general, high accuracy, high voltage, high magnetic field, and a long separation cylinder are essential requirements.
It is necessary to rationally deal with the required separation accuracy.

【0013】前記において、各種微粒子を一度に分離
し、ついで分離した微粒子を個別分級する方法と、この
発明により個別分離する方法と、前記を混用する場合と
がある。例えば電荷特性、磁性の強弱、比重などが近い
物質は混合分離した後、個別化した方が容易である。
In the above, there are a method in which various fine particles are separated at a time and then the separated fine particles are individually classified, a method in which individual particles are separated according to the present invention, and a case in which the above methods are mixed. For example, it is easier to mix and separate substances having similar charge characteristics, magnetic strength, specific gravity, etc., and then individualize them.

【0014】[0014]

【発明の実施の形態】この発明は、微粒子を混入した被
処理液に電荷を付与した後、遠心分離、電荷分離及び磁
化分離により、夫々の単独では分離効率が悪いか、又は
精度の悪い分離を改善し、実用性を付与した分離方法で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method in which a charge is imparted to a liquid to be treated mixed with fine particles, and the separation efficiency is low or the separation is poor by centrifugation, charge separation and magnetization separation. This is a separation method that improves practicality and imparts practicality.

【0015】この発明は、前記方法を実施する為に、被
処理液の送入前に負電荷を付与する手段を設け、遠心分
離する縦型の円筒内へ被処理液を旋回できるように送入
すると共に、円筒を磁界内に架設し、かつ被処理液の旋
回を補助し、遠心力を付与する回転手段を内設したもの
である。また円筒内へ排液手段を設けると共に、分離微
粒子の排出手段を設けて連続処理を可能にしたものであ
る。
According to the present invention, in order to carry out the above-mentioned method, means for imparting a negative charge before feeding the liquid to be treated is provided so that the liquid to be treated can be swung into a vertical cylinder for centrifugation. In addition, a rotating means for inserting the cylinder into the magnetic field, assisting the turning of the liquid to be treated, and applying a centrifugal force is provided therein. In addition, a liquid discharging means is provided in the cylinder and a discharging means for separated fine particles is provided to enable continuous processing.

【0016】[0016]

【実施例1】この発明の実施例を図1、2に基づいて説
明する。微粒子を混入した被処理液に加温又は水分調整
などの前処理を行い、ついでポンプにより定量給送す
る。この給送途中で微粒子に電荷を付与する。
Embodiment 1 An embodiment of the present invention will be described with reference to FIGS. A pretreatment such as heating or moisture adjustment is performed on the liquid to be treated mixed with fine particles, and then the liquid is fed by a pump at a constant rate. In the course of this feeding, a charge is applied to the fine particles.

【0017】ついで被処理液を分離用の円筒内へ旋回送
入する。前記円筒は直立架設され、サイクロンのよう
に、上部から被処理液を受け入れ、被処理液を旋回下降
させる間に固液を分離する。この間に、負電荷を帯びた
微粒子は正電極へ吸着されると共に、磁性微粒子は磁界
により円筒内壁へ磁着され、更に全粒子は遠心力を受け
て円筒内壁へ付着する。
Next, the liquid to be treated is swirled into a separation cylinder. The cylinder is erected upright and receives a liquid to be treated from above, like a cyclone, and separates solid and liquid while rotating the liquid to be treated downward. During this time, the negatively charged fine particles are adsorbed to the positive electrode, and the magnetic fine particles are magnetically attached to the inner wall of the cylinder by a magnetic field, and all the particles adhere to the inner wall of the cylinder under centrifugal force.

【0018】即ち各微粒子は吸着力、磁着力及び遠心力
により、より大きい力に従って移動するが、遠心力と、
吸着力及び磁着力は複合して働くことになる。
That is, each fine particle moves according to a larger force due to adsorption force, magnetic adhesion force and centrifugal force.
Attraction force and magnetic adhesion force work in combination.

【0019】前記のように、吸着力、遠心力及び磁着力
は綜合的作用し、単独では分離し得ない微粒子又は比較
的大きい粒子であっても、容易かつ迅速に分離される。
As described above, the adsorption force, the centrifugal force and the magnetic adhesion force act comprehensively, and even fine particles or relatively large particles that cannot be separated by themselves can be separated easily and quickly.

【0020】前記における付着力(吸着力、遠心力、磁
着力)は微粒子の付着層があつくなると、必然的に自重
とのアンバランスを生じ、自重下降するので正電極面
と、円筒内面の微粒子は付着に伴って下降し、連続分離
が円滑かつ合理的に行われる。
The adhesion force (adsorption force, centrifugal force, and magnetic adhesion force) in the above-described case inevitably causes an imbalance with its own weight when an adhesion layer of fine particles is formed. Falls with the adhesion, and continuous separation is performed smoothly and rationally.

【0021】前記円筒内における微粒子の移動に機械的
強制力は作用しないので、(例えばスクリュー利用のよ
うな)摩耗により新しい微粒子が発生するおそれもな
い。従って長時間高能率の連続分離ができる。
Since no mechanical force acts on the movement of the fine particles in the cylinder, there is no risk that new fine particles will be generated due to abrasion (for example, using a screw). Therefore, continuous separation with high efficiency can be performed for a long time.

【0022】[0022]

【実施例2】この発明の装置の実施例を図2、3、4に
基づいて説明する。機枠1に分離用の円筒2を縦に架設
し、該円筒2の上部一側へ給液管3の先端を接線状に、
かつ下向き傾斜に連接開口させ、前記給液管3内に負電
荷付与用の電極4を内装する。前記円筒2の中央部に
は、頂板2aを貫いて排液筒5を挿入設置し、該排液筒
5の下端を、前記円筒2の下部で開口させる。前記は排
液筒5内に回転軸6を挿通し、該回転軸6の上端はモー
タ7の駆動軸8と連結させると共に、回転軸6の下端に
腕杆9を介して攪拌棒10の基端を固定し、該攪拌棒1
0は、回転軸6と平行に上方へ直立設置してある。前記
円筒2の下部は逆円錐状に形成した排出筒11とし、排
出筒11に排出管12を連結して、該排出管12にロー
タリーバルブ13を介装する。前記排液筒5の上端部に
は、排液管14を連結し、前記円筒2の外側には、磁界
生成用のコイル15を装着し、円筒2の内側には正電極
16が設置してある。図中17は静電気発生器、18は
コイル用の電源である。
Embodiment 2 An embodiment of the apparatus according to the present invention will be described with reference to FIGS. A cylinder 2 for separation is vertically erected on a machine frame 1, and a tip of a liquid supply pipe 3 is tangentially formed on one upper side of the cylinder 2.
In addition, the connection opening is formed to be inclined downward, and the electrode 4 for applying a negative charge is provided inside the liquid supply pipe 3. At the center of the cylinder 2, a drain cylinder 5 is inserted and installed through the top plate 2 a, and the lower end of the drain cylinder 5 is opened at the lower part of the cylinder 2. The rotary shaft 6 is inserted into the drainage cylinder 5, the upper end of the rotary shaft 6 is connected to the drive shaft 8 of the motor 7, and the lower end of the rotary shaft 6 is connected to the base of a stirring rod 10 via an arm 9. Fix the end and stir the rod 1
0 is installed upright in parallel with the rotating shaft 6. The lower part of the cylinder 2 is a discharge tube 11 formed in an inverted conical shape, a discharge tube 12 is connected to the discharge tube 11, and a rotary valve 13 is interposed in the discharge tube 12. A drain pipe 14 is connected to the upper end of the drain cylinder 5, a coil 15 for generating a magnetic field is mounted outside the cylinder 2, and a positive electrode 16 is installed inside the cylinder 2. is there. In the figure, reference numeral 17 denotes an electrostatic generator, and reference numeral 18 denotes a power supply for the coil.

【0023】前記実施例において、被処理液(例えば原
油)を500℃位に加温して、矢示19のように給液管
3内へ供給すると、被処理液は負電極4により負電荷を
付与された後、矢示20のように、円筒2の上部側壁か
ら接線的、かつ下向きに送入されるので、円筒2内を螺
旋上に旋回しつつ下降する。一方羽モータ7を始動すれ
ば、駆動軸8を介して回転軸6を回転し、回転軸6の下
端の腕杆9を介して攪拌棒10を回転するので、被処理
液に遠心力を付与する。前記回転軸6の回転数は、被処
理液の性質及び攪拌棒10を固定する腕杆9の長さによ
って異なるが、通常2000〜4000rpmとする。
この場合の回転方向は、図3中矢示21の方向(送入さ
れた被処理液の旋回方向)であって、旋回力を助長す
る。前記のようにして旋回下降する被処理液中の負電荷
を持った微粒子は、矢示22のように正電極に吸着さ
れ、磁性を有する微粒子は矢示23のように円筒内壁に
磁着し、非磁性微粒子は遠心力によって円筒内壁に押し
つけられる。
In the above embodiment, when the liquid to be treated (for example, crude oil) is heated to about 500 ° C. and supplied into the liquid supply pipe 3 as shown by arrow 19, the liquid to be treated is negatively charged by the negative electrode 4. Is given tangentially and downward from the upper side wall of the cylinder 2 as shown by the arrow 20, so that it descends while spirally turning inside the cylinder 2. On the other hand, when the blade motor 7 is started, the rotating shaft 6 is rotated via the driving shaft 8 and the stirring rod 10 is rotated via the arm rod 9 at the lower end of the rotating shaft 6, so that a centrifugal force is applied to the liquid to be treated. I do. The number of rotations of the rotating shaft 6 varies depending on the properties of the liquid to be treated and the length of the arm rod 9 for fixing the stirring rod 10, but is usually 2000 to 4000 rpm.
The rotation direction in this case is the direction indicated by the arrow 21 in FIG. 3 (the direction in which the supplied liquid to be processed is swirled), and promotes the swirling force. The fine particles having negative charges in the liquid to be processed which swirls down as described above are adsorbed to the positive electrode as shown by arrow 22, and the fine particles having magnetism magnetically adhere to the inner wall of the cylinder as shown by arrow 23. The non-magnetic fine particles are pressed against the inner wall of the cylinder by centrifugal force.

【0024】前記において、吸着、磁着又は押しつけら
れた微粒子は、正電極又は円筒内壁への吸着力(又は磁
着力)が重量以下になると、微粒子25は自重により矢
示24のように自重下降し、排出筒11内へ溜まる。前
記排出筒11内溜まった微粒子は、ロータリーバルブ1
3を矢示26の方向へ回転すれば、所定量宛矢示27の
ように排出されるので、これを次工程に送る。また微粒
子を分離した排液は、矢示28、29のように排液筒5
内に入って上昇し、排液管14から矢示30のように排
出して次工程(排液処理装置)に送られる。
In the above description, when the adsorbed, magnetically adhered, or pressed fine particles fall below the weight of the positive electrode or the inner wall of the cylinder (or the magnetically adhering force), the fine particles 25 fall by their own weight as indicated by arrow 24. Then, it accumulates in the discharge cylinder 11. The fine particles accumulated in the discharge cylinder 11 are
When 3 is rotated in the direction of arrow 26, it is discharged as indicated by arrow 27 for a predetermined amount, and is sent to the next step. Further, the drainage liquid from which the fine particles have been separated is discharged into the drainage cylinder 5 as shown by arrows 28 and 29.
Then, it rises inside, is discharged from the drain pipe 14 as shown by the arrow 30, and is sent to the next step (drain processing apparatus).

【0025】前記におけるコイル15に送電すると、微
粒子中の磁性粒子が円筒2の内壁へ磁着する。この場合
に、コイルに流す電流量を規制することによって磁着す
る物質を制御することができる。
When power is transmitted to the coil 15 described above, magnetic particles in the fine particles magnetically adhere to the inner wall of the cylinder 2. In this case, the substance to be magnetized can be controlled by regulating the amount of current flowing through the coil.

【0026】前記コイル15による磁界の強さは、例え
ば500A×1000Tとなっているので、電流を変え
ば、磁界の強さを調節できる。又は静電電圧は、例えば
5万Vであるが、これを変えることによって吸着又は磁
着される微粒子を選別することができる。従って前記実
施例の装置をタンデムに連結し、分離目的に対応して異
なる微粒子を分離できるようにすれば、分離粒子を再分
別する必要性を少なくすることができる。
The strength of the magnetic field generated by the coil 15 is, for example, 500 A × 1000 T, so that the strength of the magnetic field can be adjusted by changing the current. Alternatively, the electrostatic voltage is, for example, 50,000 V. By changing the electrostatic voltage, fine particles to be attracted or magnetized can be selected. Therefore, if the apparatus of the above embodiment is connected in tandem so that different fine particles can be separated according to the purpose of separation, the necessity of re-fractionating the separated particles can be reduced.

【0027】[0027]

【発明の効果】この発明によれば、微粒子を混入した被
処理液を静電吸着、磁着及び遠心力付着させて綜合分離
処理するので、従来遠心分離が困難であった微粒子を容
易、かつ高い効率で分離できると共に、粘性の大きい液
体からの分離も比較的容易にできるなどの諸効果があ
る。
According to the present invention, the liquid to be treated mixed with fine particles is subjected to electrostatic adsorption, magnetic adhesion and centrifugal force to perform a comprehensive separation process. There are various effects such as separation with high efficiency and separation from a highly viscous liquid being relatively easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法の実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the method of the present invention.

【図2】同じく装置の実施例の一部を省略した断面図。FIG. 2 is a cross-sectional view in which a part of the embodiment of the apparatus is omitted.

【図3】同じく一部を省略した平面図。FIG. 3 is a plan view partially omitted.

【符号の説明】[Explanation of symbols]

1 機枠 2 円筒 3 給液管 4 負電極 5 排液筒 6 回転軸 7 モータ 8 駆動軸 9 腕杆 10 攪拌棒 11 排出筒 12 排出管 13 ロータリーバルブ 14 排液管 15 コイル 16 正電極 17 静電気発生器 18 コイル用の電源 25 微粒子 DESCRIPTION OF SYMBOLS 1 Machine frame 2 Cylinder 3 Supply pipe 4 Negative electrode 5 Drain cylinder 6 Rotating shaft 7 Motor 8 Drive shaft 9 Arm rod 10 Stir bar 11 Drain cylinder 12 Drain pipe 13 Rotary valve 14 Drain pipe 15 Coil 16 Positive electrode 17 Static electricity Generator 18 Power supply for coil 25 Particles

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 固形物を混入した被処理液に負電荷を付
与した後、縦型の円筒内の上部から供給して旋回下降さ
せると共に、遠心力を付与して被処理液内に含まれた固
形物を、前記円筒の内壁側へ移動させると共に、前記円
筒の内壁付近に正電極をおいて、前記負電荷を帯びた固
形物を吸着させ、前記円筒を磁界内ににおいて、固形物
中の磁性体を磁着させ、前記吸着及び磁着した固形物を
自重により降下させて、前記円筒の下部から取出し、前
記固形物を分離した液体は、前記円筒の中央部を上昇さ
せて排出することを特徴とした固液分離方法。
After a negative charge is applied to a liquid to be treated mixed with a solid material, the liquid is supplied from the upper portion of a vertical cylinder and swirled down, and is centrifugally applied to be contained in the liquid to be treated. The solid material is moved to the inner wall side of the cylinder, and a positive electrode is placed near the inner wall of the cylinder to adsorb the negatively charged solid material. The magnetic substance is magnetized, the solid matter adsorbed and magnetized is lowered by its own weight, taken out from the lower part of the cylinder, and the liquid from which the solid matter is separated is discharged by raising the central part of the cylinder. A solid-liquid separation method characterized in that:
【請求項2】 固形物を混入した被処理液は、円筒の上
部において、接線方向から斜下向きに供給することを特
徴とした請求項1記載の固液分離方法。
2. The solid-liquid separation method according to claim 1, wherein the liquid to be treated mixed with a solid is supplied obliquely downward from a tangential direction at an upper portion of the cylinder.
【請求項3】 液体に遠心力を付与するには、被処理液
内で攪拌棒を回転し、又は円筒を回転することを特徴と
した請求項1記載の固液分離方法。
3. The solid-liquid separation method according to claim 1, wherein a centrifugal force is applied to the liquid by rotating a stirring rod or a cylinder in the liquid to be treated.
【請求項4】 請求項1記載の分離方法を、固形物の吸
着及び磁着の条件を変えて複数回繰り返すことを特徴と
した固液分離方法。
4. A solid-liquid separation method, wherein the separation method according to claim 1 is repeated a plurality of times while changing the conditions of solid substance adsorption and magnetic adhesion.
【請求項5】 機枠に、円筒を縦に架設し、該円筒の上
部へ負電荷付与手段を有する給液管を接線方向から下向
き斜めに接続し、前記円筒の中央部へ排液筒を挿通し
て、その下端を円筒内の下部で開口させると共に、前記
円筒壁に接近して陽電極を設け、前記排液筒の上部に排
液管の基端を連結し、前記円筒の下部に排出手段を設
け、前記円筒内に、送入された被処理液に遠心力を与え
る回転手段を設け、前記円筒の外側に磁界生成用のコイ
ルを装着したことを特徴とする固液分離装置。
5. A cylinder is vertically installed on a machine frame, a liquid supply pipe having a negative charge applying means is connected obliquely downward from a tangential direction to an upper part of the cylinder, and a drainage cylinder is provided at a central part of the cylinder. Insert and open the lower end at the lower part in the cylinder, provide a positive electrode close to the cylindrical wall, connect the base end of the drainage pipe to the upper part of the drainage cylinder, the lower part of the cylinder A solid-liquid separation apparatus, comprising: a discharge means; a rotation means for applying a centrifugal force to the liquid to be processed fed into the cylinder; and a coil for generating a magnetic field mounted outside the cylinder.
【請求項6】 負電荷付与手段は、給液管内に電極を挿
入し、該電極に負電圧を印加することを特徴とした請求
項5記載の固液分離装置。
6. The solid-liquid separation device according to claim 5, wherein the negative charge applying means inserts an electrode into the liquid supply pipe and applies a negative voltage to the electrode.
【請求項7】 回転手段は、排液筒に内に挿通した回転
軸に攪拌棒を固定したことを特徴とした請求項5記載の
固液分離装置。
7. The solid-liquid separation device according to claim 5, wherein the rotating means has a stirring rod fixed to a rotating shaft inserted into the drainage cylinder.
【請求項8】 排出手段は、ロータリーバルブとしたこ
とを特徴とする請求項5記載の固液分離装置。
8. The solid-liquid separation device according to claim 5, wherein the discharge means is a rotary valve.
JP11098898A 1999-04-06 1999-04-06 Method and device for solid-liquid separation Pending JP2000288425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098898A JP2000288425A (en) 1999-04-06 1999-04-06 Method and device for solid-liquid separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11098898A JP2000288425A (en) 1999-04-06 1999-04-06 Method and device for solid-liquid separation

Publications (1)

Publication Number Publication Date
JP2000288425A true JP2000288425A (en) 2000-10-17

Family

ID=14231961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098898A Pending JP2000288425A (en) 1999-04-06 1999-04-06 Method and device for solid-liquid separation

Country Status (1)

Country Link
JP (1) JP2000288425A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314560B2 (en) 2003-10-10 2008-01-01 Hideto Yoshida Cyclone separator
WO2008075500A1 (en) * 2006-12-20 2008-06-26 Daikin Industries, Ltd. Refrigerating apparatus
JP2011025184A (en) * 2009-07-28 2011-02-10 Nippon Canpack:Kk Dehydrating treatment equipment for spent diatomaceous earth filter medium
CN106391300A (en) * 2016-11-03 2017-02-15 鞍山鑫盛矿山自控设备有限公司 Ore solution direction control device for efficient magnetic-resonance magnetic separator
CN110980320A (en) * 2019-12-18 2020-04-10 安徽省米升智能科技有限公司 Iron fillings collection device is used in porcelain powder edulcoration
SE2050969A1 (en) * 2020-08-20 2021-11-30 3Nine Ab Method and apparatus for centrifugal separation of particles from a gas flow

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314560B2 (en) 2003-10-10 2008-01-01 Hideto Yoshida Cyclone separator
WO2008075500A1 (en) * 2006-12-20 2008-06-26 Daikin Industries, Ltd. Refrigerating apparatus
JP2008151476A (en) * 2006-12-20 2008-07-03 Daikin Ind Ltd Refrigerating device
JP2011025184A (en) * 2009-07-28 2011-02-10 Nippon Canpack:Kk Dehydrating treatment equipment for spent diatomaceous earth filter medium
CN106391300A (en) * 2016-11-03 2017-02-15 鞍山鑫盛矿山自控设备有限公司 Ore solution direction control device for efficient magnetic-resonance magnetic separator
CN110980320A (en) * 2019-12-18 2020-04-10 安徽省米升智能科技有限公司 Iron fillings collection device is used in porcelain powder edulcoration
SE2050969A1 (en) * 2020-08-20 2021-11-30 3Nine Ab Method and apparatus for centrifugal separation of particles from a gas flow
SE544063C2 (en) * 2020-08-20 2021-11-30 3Nine Ab Method and apparatus for centrifugal separation of particles from a gas flow
WO2022039644A1 (en) * 2020-08-20 2022-02-24 3Nine Ab Method and apparatus for centrifugal separation of particles from a gas flow

Similar Documents

Publication Publication Date Title
US9339821B2 (en) Apparatus and method for density separator for drilling fluid
KR101208302B1 (en) - magnetic field and field gradient enhanced centrifugation solid-liquid separations
KR101569584B1 (en) Electric charging unit and electroststic separation apparatus using the same
JP2000288425A (en) Method and device for solid-liquid separation
CN107983526B (en) Grading treatment process of silicon carbide micro powder
WO2007143817A1 (en) Centrifugal separation of intermixed particulate materials by specific gravity to form a high concentration of the heavier materials
PL177441B1 (en) Method of separating the mixtures of solids of different densities, as well as separating liquid and apparatus therefor
CN201505572U (en) Magnetic separation column device
CN201644218U (en) Conical traveling wave electromagnetic ore separator
CN102626671A (en) Magnetic field ore dressing equipment and using method thereof
JP3076839B2 (en) Method for separating fine particles in dispersion liquid, method for classifying fine particles, method for measuring adsorption power of fine particles, and apparatus for implementing those methods
CN101786043B (en) Tapered travelling-wave electromagnetic wave concentrator
WO1993006934A1 (en) Electrostatic separation of plastic materials
US2217062A (en) Centrifugal amalgamator
CN110614158A (en) Dense medium sorting system
US7296687B2 (en) Methods of separating feed materials using a magnetic roll separator
US1693033A (en) Process of and apparatus for separating substances
US11660612B2 (en) Method for processing a flowable product by electrically charging particles in the flowable product and a disc stack of a centrifuge
CN219560357U (en) Sorting turntable for sorting equipment
RU2321460C1 (en) Centrifugal vibratory concentrator
RU58388U1 (en) CENTRIFUGAL-VIBRATION HUB
SU1197738A1 (en) Centrifuge for separating suspensions containing magnetic current-conducting and dielectric particles
RU59445U1 (en) ENRICHMENT UNIT
JPS5959260A (en) Sorter for powdery body
SU844065A1 (en) Method of separating solid granular material by density in liquid and centrifugal machine for performing it