JP2000286435A - Manufacture of solar battery and manufacture of substrate therefor - Google Patents

Manufacture of solar battery and manufacture of substrate therefor

Info

Publication number
JP2000286435A
JP2000286435A JP11092031A JP9203199A JP2000286435A JP 2000286435 A JP2000286435 A JP 2000286435A JP 11092031 A JP11092031 A JP 11092031A JP 9203199 A JP9203199 A JP 9203199A JP 2000286435 A JP2000286435 A JP 2000286435A
Authority
JP
Japan
Prior art keywords
substrate
silicon
resin
solar cell
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11092031A
Other languages
Japanese (ja)
Inventor
Hirotaka Inagaki
浩貴 稲垣
Atsushi Kamata
敦之 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11092031A priority Critical patent/JP2000286435A/en
Publication of JP2000286435A publication Critical patent/JP2000286435A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent impregnation of molten silicon to increase the wettability by forming the starting material which is a mixture of carbon powder, resin, and silicon carbide powder and ten applying pressure to the starting material to form it into a sheet-like molding and baking the molding into a substrate. SOLUTION: Carbon powder 1 with the average grain diameter of 1 μm which is a basic material of a substrate 1, phenol resin and silicon carbide powder 2 with the average grain diameter of 1 μm are mixed at the volume ratio of 40:40:20 to prepare the starting material. In a non-oxidizing atmosphere at 200 deg.C, the starting material is applied with pressure of 200 kg/cm2 using a double rolled rolling mill to be formed into a 150 mm-square and 1 mm-thick sheet-like molding. Thereafter, in the same non-oxidizing atmosphere, the temperature is raised up to 2000 deg.C to form the molding into a carbon composite material. By using such a material for a substrate, impregnation of molten silicon can be prevented and the wettability can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池用基板の
製造方法及び太陽電池の製造方法に関する。
The present invention relates to a method for manufacturing a solar cell substrate and a method for manufacturing a solar cell.

【0002】[0002]

【従来の技術】半導体の薄膜をデバイスとして使用する
ためには、薄膜を配備するための基板が必要となる。こ
の基板に対して、半導体薄膜成膜時の温度上昇のために
耐熱性と、半導体材料の熱物性、特に熱膨張係数の整合
性が要求される。このため、従来、カーポン、酸化アル
ミニウム、酸化マグネシウム、酸化けい素等の低熱膨張
係数の材料が用いられてきた。
2. Description of the Related Art In order to use a semiconductor thin film as a device, a substrate on which the thin film is provided is required. The substrate is required to have a heat resistance and a thermophysical property of the semiconductor material, particularly, a consistency of a coefficient of thermal expansion in order to raise the temperature at the time of forming the semiconductor thin film. For this reason, materials having a low coefficient of thermal expansion such as carpon, aluminum oxide, magnesium oxide, and silicon oxide have been conventionally used.

【0003】しかしながら、大面積を必要とする例えば
太陽電池のような半導体デバイスにおいて、基板として
必要な条件は上述の熱的性質の合致が重要な要素とな
り、従来から用いられてきた材料ではシリコンとの十分
な整合を得ることができず、シリコン中の亀裂の発生の
要因となっていた。また、通常、安価な長所を有する基
板、例えば樹脂を焼結して製造するカーボン、酸化アル
ミニウム等のセラミックス基板は、内部に気孔を有する
ため、結晶品質を向上させるシリコンの溶融・再結晶化
を実施する場合、溶融したシリコンが基板内に含浸して
しまったり、濡れ性が悪く、溶融したシリコンが凝集し
てしまっていた。
[0003] However, in semiconductor devices such as solar cells which require a large area, for example, the condition required for the substrate is that the above-mentioned thermal properties are an important factor. Could not be obtained, and this was a cause of cracks in silicon. In addition, a substrate having an inexpensive advantage, for example, a ceramic substrate made of sintering a resin, such as carbon or aluminum oxide, has pores therein, so that melting and recrystallization of silicon to improve the crystal quality can be performed. In the case of carrying out, the molten silicon impregnates the inside of the substrate, the wettability is poor, and the molten silicon is aggregated.

【0004】[0004]

【発明が解決しようとする課題】従来の樹脂を焼結した
カーボン基板は内部に気孔を有するため、結晶品質を向
上させるシリコンの溶融・再結晶化を実施する場合、溶
融したシリコンが基板内に含浸してしまったり、濡れ性
が悪く、溶融したシリコンが凝集してしまっていた。
Since the conventional carbon substrate obtained by sintering a resin has pores therein, when performing melting and recrystallization of silicon to improve the crystal quality, the molten silicon remains in the substrate. Impregnation and poor wettability caused molten silicon to aggregate.

【0005】本発明はこのような課題に対処するために
なされたもので、安価であるというカーボン系基板の特
徴を損なうことなく、溶融したシリコンの含浸防止・良
好な濡れ性を示すと言った太陽電池用の基板として使用
可能な太陽電池用基板の製造方法及び太陽電池の製造方
法を提供するものである。言い換えれば、溶融したシリ
コンの含浸防止・良好な濡れ性を示すと言った実用可能
な太陽電池用の基板をカーボン系基板で実現する事を課
題とする。
[0005] The present invention has been made to address such problems, and has been described as showing prevention of impregnation of molten silicon and good wettability without impairing the characteristics of a carbon-based substrate that is inexpensive. An object of the present invention is to provide a method for manufacturing a solar cell substrate that can be used as a solar cell substrate and a method for manufacturing a solar cell. In other words, it is an object of the present invention to realize a practical substrate for a solar cell, which is capable of preventing impregnation of molten silicon and exhibiting good wettability, with a carbon-based substrate.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に請求項1の太陽電池用基板の製造方法は、炭素粉末、
樹脂、及び炭化シリコン粉末を混合した出発原料を形成
する工程と、この出発原料に圧力を加えてシート状の成
形体にする工程と、この成形体を焼成して基板を形成す
る工程とを具備する事を特徴とする。この様に製造工程
を経る事によって、炭素基板中に炭化シリコン粒子を分
散させることができ、必要十分な構造強度とシリコンの
熱膨張に等しい熱膨張係数を有する基板を形成する事が
可能となり、基板上のシリコン薄膜中の亀裂の発生を抑
制できる熱膨張係数と十分な強度を持つ基板が得られる
ことを見出した。ここで、シリコン原料粉末とは、炭化
シリコン、純シリコン等のシリコンを主として含有する
材料であって、結果として形成する基板中のシリコンの
原料となる。
According to a first aspect of the present invention, there is provided a method for manufacturing a substrate for a solar cell, comprising the steps of:
A step of forming a starting material in which the resin and the silicon carbide powder are mixed, a step of applying pressure to the starting material to form a sheet-shaped molded body, and a step of firing the molded body to form a substrate It is characterized by doing. Through such a manufacturing process, silicon carbide particles can be dispersed in a carbon substrate, and a substrate having a necessary and sufficient structural strength and a thermal expansion coefficient equal to the thermal expansion of silicon can be formed. It has been found that a substrate having a thermal expansion coefficient and sufficient strength capable of suppressing the occurrence of cracks in a silicon thin film on the substrate can be obtained. Here, the silicon raw material powder is a material mainly containing silicon such as silicon carbide and pure silicon, and is a raw material for silicon in a substrate to be formed as a result.

【0007】請求項2の太陽電池用基板の製造方法は、
請求項1において、前記樹脂は熱可塑性或いは熱硬化性
の樹脂である事を特徴とする。この様な樹脂を使用する
事で緻密な基板を形成する事ができる。
[0007] A method for manufacturing a solar cell substrate according to claim 2 is as follows.
In claim 1, the resin is a thermoplastic or thermosetting resin. By using such a resin, a dense substrate can be formed.

【0008】請求項3の太陽電池の製造方法は、炭素粉
末と、熱可塑性或いは熱硬化性の樹脂と、炭化シリコン
粉末を混合すして出発原料を形成する工程と、この出発
原料に圧力を加えてシート状の成形体にする工程と、こ
の成形体を焼成して基板を形成する工程と、前記基板上
にシリコン層を溶射法によって形成する工程と、前記シ
リコン層を発電層とする太陽電池素子を形成する工程と
を具備する事を特徴とする。この様に製造工程を経る事
によって出発原料に熱可塑性樹脂或いは熱硬化性樹脂を
使用するために基板の高密度化が図られ、かつ炭化シリ
コン粉末を混合させるためにシリコンに対する濡れ性も
高めることができる事を見出した。その結果、太陽電池
素子の製造工程であるシリコンの溶融・再結晶化が良好
に実施できるようになった。
According to a third aspect of the present invention, there is provided a method of manufacturing a solar cell, comprising mixing a carbon powder, a thermoplastic or thermosetting resin, and a silicon carbide powder to form a starting material, and applying pressure to the starting material. Forming a substrate by sintering the formed body, forming a silicon layer on the substrate by thermal spraying, and using the silicon layer as a power generation layer And a step of forming an element. By using a thermoplastic resin or a thermosetting resin as a starting material by passing through the manufacturing process in this way, the density of the substrate is increased, and the wettability to silicon is also increased by mixing the silicon carbide powder. I found that I can do it. As a result, the melting and recrystallization of silicon, which is a manufacturing process of a solar cell element, can be favorably performed.

【0009】請求項4の太陽電池の製造方法は、この溶
融・再結晶化を特徴付けており請求項3において、前記
シリコン層を溶射法によって形成した後、前記シリコン
層を加熱して溶融・再結晶化させる工程を具備すること
を特徴とする。
The method for manufacturing a solar cell according to claim 4 is characterized by this melting and recrystallization. In claim 3, after forming the silicon layer by thermal spraying, the silicon layer is heated and melted. It is characterized by comprising a step of recrystallization.

【0010】[0010]

【発明の実施の形態】以下に、本発明を実施の形態に沿
って詳細に説明する。本発明に使用するシリコン原料粉
末である例えば炭化シリコン粉末等については、その性
状を制限されることはないが、本発明の材料を太陽電池
用基板として使用する場合、ボロン、アルミニウムやイ
ンジウム等を炭化シリコン粉末に予めドーピングしてお
くと、基板の低抵抗化が図れ、基板自体を太陽電池の一
方の電極として利用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. The properties of the silicon raw material powder used in the present invention, such as silicon carbide powder, are not limited, but when the material of the present invention is used as a solar cell substrate, boron, aluminum, indium, or the like is used. If the silicon carbide powder is doped in advance, the resistance of the substrate can be reduced, and the substrate itself can be used as one electrode of a solar cell.

【0011】また、樹脂としては、特に望ましい樹脂で
ある熱可塑性樹脂として、ポリエチレン、ポリスチレ
ン、ポリプロピレン、ポリメタクリル酸メチル、ポリエ
チレンテレフタレート、ポリエーテルスルフォン、ポリ
カーボネート、ポリオキサメチレン、ポリアミド、ポリ
イミド、ポリアミドイミド、ポリビニルアルコール、ポ
リビニルクロライド、フッ素樹脂、ポリフェニールサル
フォン、ポリエーテルケトン、ポリアリレート、ポリエ
ーテルイミドやポリメチルペンテン等の周知の樹脂を挙
げることができ、特に限定されるものではない。
[0011] As the resin, particularly preferable thermoplastic resins are polyethylene, polystyrene, polypropylene, polymethyl methacrylate, polyethylene terephthalate, polyether sulfone, polycarbonate, polyoxamethylene, polyamide, polyimide, polyamideimide, and the like. Well-known resins such as polyvinyl alcohol, polyvinyl chloride, fluororesin, polyphenylsulfone, polyetherketone, polyarylate, polyetherimide, and polymethylpentene can be exemplified, and are not particularly limited.

【0012】さらに、本発明で用いられる望ましい樹脂
である熱硬化性樹脂としては、ポリカルボジイミド樹
脂、フェノール樹脂、フルフリルアルコール樹脂、セル
ロース、エポキシ樹脂、尿素樹脂やメラミン樹脂等の周
知の樹脂を挙げることができ、特に限定されるものでは
ない。
Further, the thermosetting resin which is a desirable resin used in the present invention includes well-known resins such as polycarbodiimide resin, phenol resin, furfuryl alcohol resin, cellulose, epoxy resin, urea resin and melamine resin. And is not particularly limited.

【0013】上記した樹脂の性状は、粉末状であっても
よいし、適当な溶媒に溶かして溶液状であってもよい。
一方、本発明で使用する炭素粉末についても、その性状
を制限されることはなく、例えば、天然黒鉛、熱分解黒
鉛、キッシュ黒鉛等、通常の炭素素材の製造に用いられ
るあらゆる原料を使用することができる。
The above resin may be in the form of a powder, or may be dissolved in an appropriate solvent to form a solution.
On the other hand, the properties of the carbon powder used in the present invention are not limited, and, for example, natural graphite, pyrolytic graphite, quiche graphite, and any other raw materials used in the production of ordinary carbon materials may be used. Can be.

【0014】本発明の炭素複合材料は、これらの炭素粉
末、樹脂、及び炭化シリコン粉末を混合し、成形するこ
とで得られる。成形方法として、例えば、ロールによる
圧延成形が適用でき、厚さ数100μm〜数mmまで必
要に応じて厚さを制御したシート状に加工できる。ま
た、この成形方法によれば、得られるシート表面はロー
ル表面をトレースするため、ロール表面粗さを制御する
ことで、シート表面粗さも容易に制御することが可能と
なる。これらの3種類の物質の混合比は、目的とする炭
素複合材料の物性値、特に熱膨張係数に合せて決定すれ
ばよいが、例えば、シリコンを発電層とする太陽電池用
の基板に利用するためには、シリコンとの熱膨張の整合
性を考慮して、炭化シリコンの割合を20〜65体積%
とし、残部を樹脂、或いは炭素粉末と樹脂で構成するの
が適当である(図1)。
The carbon composite material of the present invention is obtained by mixing and molding these carbon powder, resin and silicon carbide powder. As a forming method, for example, roll forming using a roll can be applied, and the sheet can be processed into a sheet having a thickness of several hundred μm to several mm with a controlled thickness as needed. Further, according to this molding method, since the obtained sheet surface traces the roll surface, it is possible to easily control the sheet surface roughness by controlling the roll surface roughness. The mixing ratio of these three types of substances may be determined according to the physical property value of the target carbon composite material, particularly the coefficient of thermal expansion. For example, the mixing ratio is used for a solar cell substrate having silicon as a power generation layer. For this purpose, the ratio of silicon carbide is set to 20 to 65% by volume in consideration of the matching of thermal expansion with silicon.
It is appropriate that the remainder is made of resin or carbon powder and resin (FIG. 1).

【0015】さらに、シリコンとの濡れ性や材料自体の
導電性も考慮すると、炭化シリコンの割合は20〜40
体積%に制御することが好ましい(図1)。残部の樹脂
と炭素粉末の混合比に関しては、特に限定されるもので
はないが、溶融シリコンの含浸を防止できる程度の緻密
度を達成させるためには、樹脂の割合を20体積%以上
にすることが好ましい。炭素粉末の役割は、炭化焼成時
の脱ガスを促進させるものであるから、特に混合しなく
ても良いが、炭化処理時間を短縮して生産性を高めるた
めに、0〜80体積%の割合で混合させることができ
る。上記内容は、図2に示すように、炭化シリコン粉末
2を基板全体1に均一分散させる様にしている。この図
2にはシリコン層までの記載しかないが、このシリコン
層形成後、熱拡散法、イオン注入法等によってN型層及
びP型層を形成し、この2つの層のPN接合界面でキャ
リアが発生する太陽電池素子を形成する事ができる。こ
の場合、発電層はシリコンのN型層及びP型層となる。
また、夫々の層に別途形成された電極(図示せず)によ
って起電力を取り出す事ができる。また、本発明は図3
に示すように基板表面だけをこのような物質で覆っても
よい。
Further, considering the wettability with silicon and the conductivity of the material itself, the proportion of silicon carbide is 20 to 40.
It is preferable to control the volume% (FIG. 1). The mixing ratio between the remaining resin and the carbon powder is not particularly limited. However, in order to achieve a denseness sufficient to prevent impregnation of molten silicon, the proportion of the resin should be 20% by volume or more. Is preferred. Since the role of the carbon powder is to promote degassing during carbonization and firing, it is not particularly necessary to mix the carbon powder. However, in order to shorten the carbonization time and increase productivity, a ratio of 0 to 80% by volume is used. Can be mixed. The above content is such that the silicon carbide powder 2 is uniformly dispersed over the entire substrate 1 as shown in FIG. Although FIG. 2 only shows the description up to the silicon layer, after the formation of the silicon layer, an N-type layer and a P-type layer are formed by a thermal diffusion method, an ion implantation method or the like, and a carrier is formed at a PN junction interface between the two layers. Can be formed. In this case, the power generation layer becomes an N-type layer and a P-type layer of silicon.
Further, an electromotive force can be taken out by an electrode (not shown) separately formed on each layer. FIG.
Only the substrate surface may be covered with such a substance as shown in FIG.

【0016】混合した原料を成形する温度については、
使用する樹脂に合せて適宜選択すれば良いが、概ね、常
温から400℃の範囲で適応する。もちろん、常温で成
形した後にこれらの温度で安定化熱処理を施しても構わ
ない。
Regarding the temperature at which the mixed raw material is formed,
It may be appropriately selected according to the resin to be used, but it is generally applied in a range of room temperature to 400 ° C. Of course, after forming at normal temperature, a stabilizing heat treatment may be performed at these temperatures.

【0017】このようにして得られた成形体を、アルゴ
ン雰囲気等の非酸化性雰囲気下で焼成する。焼成温度
は、1000℃から3000℃が適当であり、1000
℃より低いと十分に炭化が進行せず、3000℃を越え
る温度は、焼成炉の劣化が激しくなり現実的な生産に適
さない。このとき、焼成後の樹脂は炭化して非晶質の炭
素となる。
The compact thus obtained is fired in a non-oxidizing atmosphere such as an argon atmosphere. The firing temperature is suitably from 1000 ° C to 3000 ° C.
If the temperature is lower than ℃, carbonization does not proceed sufficiently, and if the temperature exceeds 3,000 ℃, the firing furnace is greatly deteriorated and is not suitable for practical production. At this time, the fired resin is carbonized into amorphous carbon.

【0018】本発明は、炭化シリコン粉末をシリコン粉
末で代用してもよい。すなわち、シリコン粉末を混合し
た場合でも、炭化熱処理時にシリコンと炭素が反応して
炭化シリコンが形成され、予め炭化シリコンを混合した
場合と同様な効果が得られるためである。
In the present invention, silicon carbide powder may be replaced with silicon powder. That is, even when silicon powder is mixed, silicon and carbon react during the carbonization heat treatment to form silicon carbide, and the same effect as when silicon carbide is mixed in advance can be obtained.

【0019】[0019]

【実施例】以下、例示的ではあるが限定的ではない実施
例によって本発明を深く理解する事ができる。図2に示
した構造の基板、太陽電池を以下の工程に沿って作成し
た。
The present invention can be better understood with reference to the following illustrative but non-limiting examples. A substrate and a solar cell having the structure shown in FIG. 2 were prepared according to the following steps.

【0020】まず、平均粒径が1μmの炭素粉末と、フ
ェノール樹脂と、平均粒径1μmの炭化シリコン粉末
(シリコン原料粉末)を、体積率で40:40:20に
なるように混合して出発原料を作成した。その後、この
出発原料を200℃の非酸化性雰囲気で、双ロール型の
圧延機を用い、200kg/cm2の圧力をかけて、15
0mm角、1mm厚さのシート状の成形体にした。その
後、同じく非酸化性雰囲気で2000℃まで昇温し、炭
素複合材料を得た。焼成後のシートサイズは、130m
m角、0.8mm厚さであり、熱膨張係数は約4.0×
10-6/Kであった。
First, carbon powder having an average particle size of 1 μm, a phenol resin, and silicon carbide powder (silicon raw material powder) having an average particle size of 1 μm are mixed so as to have a volume ratio of 40:40:20. Raw materials were created. Thereafter, this starting material was subjected to a pressure of 200 kg / cm 2 in a non-oxidizing atmosphere at 200 ° C. using a twin-roll type rolling mill to obtain
It was formed into a sheet-like molded body having a size of 0 mm square and a thickness of 1 mm. Thereafter, the temperature was raised to 2000 ° C. in the same non-oxidizing atmosphere to obtain a carbon composite material. Sheet size after firing is 130m
m square, 0.8 mm thickness, thermal expansion coefficient is about 4.0 ×
It was 10 -6 / K.

【0021】比較材Aとして、同じ平均粒径が1μmの
炭素粉末を用い、通常の焼結プロセスで150mm角の
ブロック状に成形し、厚さ1mmに切り出した炭素材料
を作製した。この比角材Aの熱膨張係数は約5.6×1
-6/Kであった。その他は、実施例と同一にした。
As the comparative material A, a carbon material having the same average particle diameter of 1 μm was formed into a block shape of 150 mm square by a usual sintering process, and a carbon material cut out to a thickness of 1 mm was produced. The thermal expansion coefficient of this specific square material A is about 5.6 × 1
0 -6 / K. Others were the same as the example.

【0022】また、比較材Bとして同じ平均粒径が1μ
mの炭素粉末とフェノール樹脂を体積率で60:40に
なるように混合し、200℃の非酸化性雰囲気で、双ロ
ール型の圧延機を用い、200kg/cm2の圧力をかけ
て、150mm角、1mm厚さのシート状に成形した。
その後、同じく非酸化性雰囲気で2000℃まで昇温
し、炭素複合材料を得た。焼成後のシートサイズは、1
30mm角、0.8mm厚さであり、熱膨張係数は約
3.6×10-6/Kであった。その他は、実施例と同一
とした。
The average particle size of the comparative material B is 1 μm.
m of carbon powder and phenol resin in a volume ratio of 60:40, and in a non-oxidizing atmosphere at 200 ° C., using a twin-roll type rolling mill, applying a pressure of 200 kg / cm 2 to obtain 150 mm The sheet was formed into a square, 1 mm thick sheet.
Thereafter, the temperature was raised to 2000 ° C. in the same non-oxidizing atmosphere to obtain a carbon composite material. The sheet size after firing is 1
It was 30 mm square, 0.8 mm thick, and had a coefficient of thermal expansion of about 3.6 × 10 −6 / K. Others were the same as the example.

【0023】これらの基板の表面にCVDによって厚さ
10μmのシリコン膜を成膜した後、ランプで加熱し
て、このシリコン膜を溶融・再結晶化させた。その結
果、本発明による炭素複合材料では、大粒径の高い結晶
品質をもつシリコン膜が形成され、良好に溶融・再結晶
化が行われることが確認された。
After a silicon film having a thickness of 10 μm was formed on the surface of these substrates by CVD, the silicon film was heated by a lamp to melt and recrystallize the silicon film. As a result, in the carbon composite material according to the present invention, it was confirmed that a silicon film having a large grain size and a high crystal quality was formed, and the melting and recrystallization were favorably performed.

【0024】一方、比較材Aでは、シリコンが溶融した
瞬間に、基板内に溶融したシリコンが含浸してしまい、
再結晶化ができなかった。また、比較材Bでは、シリコ
ンが溶融した瞬間に、1箇所に溶融シリコンが凝集して
しまい、厚さが均一なシリコン膜を得ることができなか
った。
On the other hand, in the comparative material A, the molten silicon is impregnated into the substrate at the moment when the silicon is melted,
Recrystallization failed. Further, in the comparative material B, at the moment when the silicon was melted, the molten silicon was aggregated at one place, and a silicon film having a uniform thickness could not be obtained.

【0025】本発明の炭素複合基板を用いて溶融・再結
晶化を行ったシリコン膜表面に、n型シリコン層と、表
面電極を順次積層させて、太陽電池を作製したことろ、
12%を越える高い光電変換効率が達成された。このよ
うに、本実施例の複合材料基板を用いれば、シリコンを
半導体としたデバイスを成形する際、半導体薄膜の破損
につながる熱応力の発生を押さえることが可能となり、
効率の高い太陽電池素子を作製することができる。
A solar cell was fabricated by sequentially laminating an n-type silicon layer and a surface electrode on the surface of a silicon film that had been melted and recrystallized using the carbon composite substrate of the present invention.
High photoelectric conversion efficiencies exceeding 12% were achieved. As described above, the use of the composite material substrate of the present embodiment makes it possible to suppress the generation of thermal stress that leads to breakage of the semiconductor thin film when molding a device using silicon as a semiconductor.
A highly efficient solar cell element can be manufactured.

【0026】[0026]

【発明の効果】上記構成によって、溶融したシリコンの
含浸防止・良好な濡れ性を示すと言った実用可能な太陽
電池用の基板をカーボン系基板で実現する事ができる。
According to the above-mentioned structure, a carbon substrate can be used to realize a practical solar cell substrate which is capable of preventing impregnation of molten silicon and exhibiting good wettability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 基板の組成と物性との関係を示した図。FIG. 1 is a view showing the relationship between the composition and physical properties of a substrate.

【図2】 発明の実施の形態の断面図。FIG. 2 is a cross-sectional view of the embodiment of the present invention.

【図3】 発明の実施の形態の断面図。FIG. 3 is a cross-sectional view of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 炭素基板全体 2 炭化シリコン 1 whole carbon substrate 2 silicon carbide

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】炭素粉末、樹脂、及びシリコン原料粉末を
混合した出発原料を形成する工程と、この出発原料に圧
力を加えてシート状の成形体にする工程と、この成形体
を焼成して基板を形成する工程とを具備する事を特徴と
する太陽電池用基板の製造方法。
1. A step of forming a starting material by mixing carbon powder, a resin, and a silicon raw material powder, a step of applying pressure to the starting material to form a sheet-shaped compact, and firing the compact. Forming a substrate. A method for manufacturing a substrate for a solar cell, comprising:
【請求項2】前記樹脂は熱可塑性或いは熱硬化性の樹脂
である事を特徴とする請求項1に記載の太陽電池用基板
の製造方法。
2. The method according to claim 1, wherein the resin is a thermoplastic or thermosetting resin.
【請求項3】炭素粉末と、熱可塑性或いは熱硬化性の樹
脂と、シリコン原料粉末を混合すして出発原料を形成す
る工程と、この出発原料に圧力を加えてシート状の成形
体にする工程と、この成形体を焼成して基板を形成する
工程と、前記基板上にシリコン層を溶射法によって形成
する工程と、前記シリコン層を発電層とする太陽電池素
子を形成する工程とを具備する事を特徴とする太陽電池
の製造方法。
3. A step of mixing a carbon powder, a thermoplastic or thermosetting resin, and a silicon raw material powder to form a starting raw material, and applying pressure to the starting raw material to form a sheet-shaped molded body. And a step of firing the molded body to form a substrate, a step of forming a silicon layer on the substrate by thermal spraying, and a step of forming a solar cell element using the silicon layer as a power generation layer. A method for manufacturing a solar cell, comprising:
【請求項4】前記シリコン層を溶射法によって形成した
後、前記シリコン層を加熱して溶融再結晶化させる工程
を具備することを特徴とする請求項3に記載の太陽電池
の製造方法。
4. The method for manufacturing a solar cell according to claim 3, further comprising a step of heating and melting and recrystallizing the silicon layer after forming the silicon layer by thermal spraying.
JP11092031A 1999-03-31 1999-03-31 Manufacture of solar battery and manufacture of substrate therefor Pending JP2000286435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11092031A JP2000286435A (en) 1999-03-31 1999-03-31 Manufacture of solar battery and manufacture of substrate therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11092031A JP2000286435A (en) 1999-03-31 1999-03-31 Manufacture of solar battery and manufacture of substrate therefor

Publications (1)

Publication Number Publication Date
JP2000286435A true JP2000286435A (en) 2000-10-13

Family

ID=14043174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11092031A Pending JP2000286435A (en) 1999-03-31 1999-03-31 Manufacture of solar battery and manufacture of substrate therefor

Country Status (1)

Country Link
JP (1) JP2000286435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235267A (en) * 2003-01-28 2004-08-19 Kyocera Corp Solar cell element
CN113224191A (en) * 2021-04-28 2021-08-06 宜兴市昱元能源装备技术开发有限公司 Photovoltaic cell substrate and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235267A (en) * 2003-01-28 2004-08-19 Kyocera Corp Solar cell element
CN113224191A (en) * 2021-04-28 2021-08-06 宜兴市昱元能源装备技术开发有限公司 Photovoltaic cell substrate and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110591131B (en) Nanoporous composite separators with increased thermal conductivity
KR101136191B1 (en) Process for solid oxide fuel cell manufacture
CN103059761B (en) High-heat conductivity coefficient graphite heat-radiation adhesive tape
KR101773719B1 (en) Silicon based active material for rechargeable battery and method of fabricating the same
JP2007510255A5 (en)
US5057362A (en) Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells
JP3259561B2 (en) Anode material for lithium secondary battery and method for producing the same
JP2009129790A (en) Lithium ion secondary battery and, manufacturing method thereof
CN109360962B (en) High-stability silicon-carbon negative electrode material for lithium battery and preparation method thereof
JP2010170854A (en) Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5934711B2 (en) Photocell and method for producing photovoltaic cell
KR102105658B1 (en) Manufacturin method of thin film electrode and electrolyte for thermal batteries using the colloidal inorganic binder, thin film electrode and electrolyte for thermal batteries manufactured by the same, and thermal batteries including thereof
JP2000286435A (en) Manufacture of solar battery and manufacture of substrate therefor
JP2018537828A (en) Fuel cell electrolyte management device
KR102144070B1 (en) Ti METALIZING STRUCTURE FOR SKUTTERUDITE THERMOELECTRIC MATERIALS WITH ITO INTERLAYER, Ti METALIZING METHOD, SKUTTERUDITE THERMOELECTRIC MATERIALS WITH Ti METALIZING AND MANUFACTURING METHOD FOR THE SAME
JP2015071519A (en) POROUS SiC SINTERED BODY AND METHOD OF PRODUCING POROUS SiC SINTERED BODY
KR20200144073A (en) Manufacturing method for composite material and the composite material
KR102144071B1 (en) Co-Mo COMPOSITE METALIZING METHOD FOR SKUTTERUDITE THERMOELECTRIC MATERIALS, Co-Mo COMPOSITE METALIZING STRUCTURE FOR SKUTTERUDITE THERMOELECTRIC MATERIALS, STRUCTURE AND MANUFACTURING METHOD FOR SKUTTERUDITE THERMOELECTRIC MATERIALS WITH Co-Mo COMPOSITE METALIZING
US20190088384A1 (en) Thermally conductive insulator
TWI772176B (en) Method of fabricating cathode film layer by spraying lithium ions through plasma
JP3091280B2 (en) Manufacturing method of hollow ceramic plate
JPS59195514A (en) Molded impermeable carbon body and its manufacture
US12027692B2 (en) Methods of forming electrochemical cells with a combination formation charge rate
US20230096349A1 (en) Method of Fabricating Cathode Film Layer of Lithium Ion Battery by Plasma Spraying
KR102117739B1 (en) Method of preparing anode-supported solid oxide fuel cell

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606