JP2000285955A - Sealed battery - Google Patents
Sealed batteryInfo
- Publication number
- JP2000285955A JP2000285955A JP11093911A JP9391199A JP2000285955A JP 2000285955 A JP2000285955 A JP 2000285955A JP 11093911 A JP11093911 A JP 11093911A JP 9391199 A JP9391199 A JP 9391199A JP 2000285955 A JP2000285955 A JP 2000285955A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- electrode
- separator
- electrode group
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Cell Separators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、薄型形状の密閉型
電池の構成方法に関するものであり、更に詳しくは、電
極とセパレータからなる電極群を、融着面を有する外装
材で覆った薄型形状の密閉型電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a thin type sealed battery, and more particularly, to a method of forming an electrode group comprising an electrode and a separator with an exterior material having a fusion surface. In the sealed type battery.
【0002】[0002]
【従来の技術】長らくポータブル機器用電源として広く
用いられてきた密閉型鉛電池やニッケルカドミウム二次
電池に代えて、近年ニッケル水素二次電池やリチウムイ
オン二次電池という新型の高容量二次電池が開発され、
ポータブル機器用電源として広く用いられるようになっ
た。これらの電池により、ポータブル機器の稼動時間が
長くなり利便性が増したとともに、ポータブル機器の小
型化、軽量化が進んだ。2. Description of the Related Art In recent years, new high-capacity secondary batteries such as nickel-metal hydride secondary batteries and lithium-ion secondary batteries have been replaced with sealed lead batteries and nickel cadmium secondary batteries which have been widely used as power supplies for portable equipment for a long time. Was developed,
It has been widely used as a power source for portable devices. These batteries have increased the operating time of portable devices and increased convenience, and also made portable devices smaller and lighter.
【0003】しかし、ニッケル水素二次電池においては
充電末期に発生する酸素ガスにより電池内圧が上昇し、
電池が膨張する。そのため、この防止策として強固な金
属製の容器に収納されて使用されている。またリチウム
イオン二次電池では、通常の充放電ではガスの発生はな
いため電池膨張は生じないが、初充電時にガスが発生し
電池が膨張する。この膨張量は少ないものの、リチウム
イオン二次電池では電解液が非水溶媒であるため液抵抗
が大きく、正極と負極の間隔が若干でも広がると電池特
性が極端に低下するため、ニッケル水素二次電池同様強
固な金属製容器に収納されて実用に供されている。However, in a nickel-metal hydride secondary battery, the internal pressure of the battery rises due to oxygen gas generated at the end of charging.
The battery expands. Therefore, as a preventive measure, it is used by being housed in a strong metal container. In a lithium ion secondary battery, gas is not generated during normal charge / discharge, so that the battery does not expand. However, gas is generated at the time of initial charging, and the battery expands. Although the expansion amount is small, the lithium ion secondary battery has a large liquid resistance because the electrolyte is a non-aqueous solvent, and even if the distance between the positive electrode and the negative electrode is slightly widened, the battery characteristics are extremely deteriorated. It is housed in a strong metal container like a battery and put to practical use.
【0004】従来の使用用途では金属製の容器であって
もその厚さが問題となることはなかったが、近年の電子
機器の実装技術の進歩と、部品の小型化により、電池に
従来以上に薄型の要求が強くなっている。この要求にこ
たえるため、厚さが5mm以下の金属容器が開発されて
いるが、金属板を絞り込んで作成する缶ではそろそろ限
界が見え始めている。In conventional use applications, the thickness of a metal container has not been a problem even with a metal container. The demand for thinner is becoming stronger. To meet this demand, metal containers having a thickness of 5 mm or less have been developed. However, the limits of cans made by narrowing down metal plates are beginning to appear.
【0005】このような金属容器に収納された電池の薄
型化の限界を打破するために、リチウムイオン二次電池
においては、このような薄型電池を従来と全く異なる方
法で作成する事により解決しようとする試みが行われ始
めている。この方法は2通りあり、一つは活物質をゲル
化材とともに集電体へ塗布し、これを同じくゲル化材を
塗布したセパレータを介して積層したのち、ゲル化材へ
電解液を含浸させる、ゲルポリマー電池と呼ばれる手法
であり、もう一つは、有機固体電解質を介して、両極を
積層したるポリマー電池である。しかし、両者とも電
池、特に電極の作成方法が従来と全く異なる為、性能が
不十分である他、エネルギー密度が缶に収納した従来型
の電池よりも低くなってしまうという問題が顕在化して
きており、実用にいたっているとは言えない状況であ
る。[0005] In order to overcome the limitation of thinning of a battery housed in such a metal container, a lithium ion secondary battery will be solved by making such a thin battery completely different from the conventional one. Attempts have begun to be made. This method has two methods. One is to apply an active material to a current collector together with a gelling material, and then stack this through a separator coated with the gelling material, and then impregnate the gelling material with an electrolytic solution. The other is a polymer battery in which both electrodes are laminated via an organic solid electrolyte. However, in both cases, the method of preparing batteries, especially electrodes, is completely different from the conventional method, so that the performance is insufficient and the problem that the energy density is lower than that of the conventional battery stored in a can has become apparent. And it is not in practical use.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上述の薄型
電池の重量の問題と、ポリマー電池の電池特性上の問題
を同時に解決するする電池作成手法を提供することを課
題としている。SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery manufacturing method which simultaneously solves the above-mentioned problem of the weight of a thin battery and the problem of the battery characteristics of a polymer battery.
【0007】[0007]
【課題を解決するための手段】本願発明者らは、上述の
問題を解決する構造を鋭意研究した結果、電極とセパレ
ータからなる電極群を電極群構成後に加熱圧着させる構
造が非常に効果的であることを見出し、本願を出願する
に至った。Means for Solving the Problems As a result of intensive studies on a structure for solving the above-mentioned problems, the present inventors have found that a structure in which an electrode group including an electrode and a separator is heat-pressed after forming the electrode group is very effective. We have found that there is, and have filed the present application.
【0008】本願の電池は正極と負極とをセパレータを
介して積層したる電極群を内面に融着面を有する薄膜で
覆った密閉型電池において、前記電極群構成後に加熱圧
着させることにより、前記電極とセパレータを相互に融
着させ、前記電極群を密着させることを特徴とする密閉
型電池である。The battery of the present invention is a sealed battery in which an electrode group in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween is covered with a thin film having a fusion surface on the inner surface. A sealed battery, wherein an electrode and a separator are fused to each other to bring the electrode group into close contact with each other.
【0009】前記電極と前記セパレータの間に予め熱融
着樹脂を配置することが好ましい。It is preferable that a heat-sealing resin is previously disposed between the electrode and the separator.
【0010】更に前記電極群がリチウムを活物質とし、
電解液として非水電解液を使用する電池であることが好
ましい。Further, the electrode group uses lithium as an active material,
It is preferable that the battery uses a non-aqueous electrolyte as the electrolyte.
【0011】また、前記熱融着樹脂の融着温度が前記セ
パレータの閉孔温度より低温であることが好ましい。Further, it is preferable that the fusion temperature of the heat-fusion resin is lower than the pore closing temperature of the separator.
【0012】また、前記電池がアルカリ水溶液を電解液
として用いるアルカリ電池あってもかまわない。Further, the battery may be an alkaline battery using an alkaline aqueous solution as an electrolytic solution.
【0013】また、前記熱融着樹脂が少なくともその表
層がポリエチレンからなる短繊維で、前記短繊維を前記
電極群構成時に前記電極と前記セパレータ間に散布しな
がら電極群を構成することが電池製造工程上からは好ま
しい。[0013] It is also preferable that the heat-fusing resin is a short fiber whose surface layer is at least made of polyethylene, and that the short fiber is sprinkled between the electrode and the separator when the electrode group is formed to form an electrode group. It is preferable from the viewpoint of the process.
【0014】熱融着樹脂の融着温度がセパレータの微細
孔の閉孔温度(シャットダウン温度ともいう)よりも高
い場合にはセパレータの微細孔の閉孔を避けながら電極
群を熱融着時することが非常に困難となるほか、熱融着
強度も不十分となり電池特性が低下する。When the fusion temperature of the heat-sealing resin is higher than the closing temperature of the micropores of the separator (also referred to as shutdown temperature), the electrodes are heat-fused while avoiding the closing of the micropores of the separator. In addition to this, the heat fusion strength becomes insufficient and the battery characteristics deteriorate.
【0015】このような密閉型電池を構成する電池構成
としては、特段限定する必要はなく、ニッケル水素二次
電池、リチウムイオン二次電池等の新型高容量二次電池
は勿論、従来から広く使用されてきている、ニッケルカ
ドミウム二次電池に対しても適用可能である。そのた
め、電極材料としても、ニッケル水素二次電池の場合で
あれば、正極に焼結式やペースト式の水酸化ニッケル電
極を負極にLaNi5系やラーベス相の水素吸蔵合金電
極を、リチウムイオン二次電池であれば、正極にLiC
oO2、LiNiO2、LiMnO2、LiMn2O4
等の材料を、負極にコークス、グラファイト、金属Li
等の使用が可能である。There is no particular limitation on the battery configuration of such a sealed battery, and it has been widely used as well as new high-capacity secondary batteries such as nickel-metal hydride secondary batteries and lithium ion secondary batteries. The present invention is also applicable to nickel cadmium secondary batteries. Therefore, in the case of a nickel-metal hydride secondary battery, a sintered or paste-type nickel hydroxide electrode is used as a positive electrode, a LaNi5 or Laves phase hydrogen storage alloy electrode is used as a negative electrode, and a lithium ion secondary battery is used as an electrode material. For batteries, the positive electrode is LiC
oO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4
Materials such as coke, graphite, metal Li
Etc. can be used.
【0016】また電解液も特段限定されるものではな
く、上述の電池系に適合した電解液を適宜選択して使用
することが可能である。例えば、ニッケル水素二次電池
であればKOH、NaOH、LiOH等のアルカリ水溶
液を単独ないしは混合した電解液を、リチウムイオン二
次電池であればEC,PC,MEC,DMC,DEC等
の炭酸エステルにLiPF6やLIBF4等の支持塩を
適当量加えたものを使用する。勿論ここに記した以外の
組み合わせでも、電池系として成り立つものであれば使
用可能である。Also, the electrolyte is not particularly limited, and an electrolyte suitable for the above-described battery system can be appropriately selected and used. For example, in the case of a nickel-hydrogen secondary battery, an electrolyte solution containing an alkali aqueous solution such as KOH, NaOH, or LiOH alone or in a mixture is used. In the case of a lithium-ion secondary battery, an electrolytic solution such as EC, PC, MEC, DMC, or DEC is used. A solution to which a suitable amount of a supporting salt such as LiPF6 or LIBF4 is added is used. Of course, combinations other than those described here can be used as long as they can be realized as a battery system.
【0017】セパレータもその選択を特に限定する必要
はないが、外装材との融着が可能となる材料を選択する
必要がある。しかし、何ら特殊な材料を選択する必要は
なく、ニッケル水素二次電池あればナイロンやポリプロ
ピレンの不織布を、リチウムイオン二次電池であれば、
ポリエチレンやポリプロピレンの多孔膜を使用すればよ
い。It is not necessary to particularly limit the selection of the separator, but it is necessary to select a material that can be fused with the exterior material. However, there is no need to select any special materials. For nickel-metal hydride secondary batteries, nylon or polypropylene non-woven fabrics, for lithium-ion secondary batteries,
A porous film of polyethylene or polypropylene may be used.
【0018】外装材も非水電解液系電池の場合にはアル
ミ等のバリア層を挿入した多層膜が好ましいが、ニッケ
ル水素二次電池のような水系電解液の場合にはポリプロ
ピレンのような、ポリオレフィンの膜で十分である。ま
た融着面の材料も特に特殊な材料を使用する必要はな
く、多くの場合、ポリエチレンやポリプロピレンのよう
なポリオレフィンやアイオノマーで使用可能である。 (作用)本願の電池の作成の一例を図1に示す。このよ
うに、予め集電体に活物質を添着させて作成した正極2
と負極4を、合成樹脂からなるセパレータ3を介して積
層し、電極群を構成する。ついでこの電極群を内面に融
着材層を有する外装材にて包み、圧迫しながら熱を加え
ることによりセパレータの一部が融解し前記電極と熱融
着させ、電極群が一体化される。図1では電極が正負極
各一枚の電極群を示しているが、複数層積層すること
や、長尺電極を捲回して作成した電極群でも同様の手法
により電極群の一体化が行える。In the case of a non-aqueous electrolyte battery, the exterior material is preferably a multilayer film in which a barrier layer of aluminum or the like is inserted, but in the case of an aqueous electrolyte such as a nickel-hydrogen secondary battery, such as polypropylene. A polyolefin membrane is sufficient. Also, it is not necessary to use a special material for the material of the fusion surface, and in many cases, a polyolefin such as polyethylene or polypropylene or an ionomer can be used. (Operation) FIG. 1 shows an example of the production of the battery of the present invention. As described above, the positive electrode 2 prepared by previously adhering the active material to the current collector was used.
And a negative electrode 4 are laminated via a separator 3 made of a synthetic resin to form an electrode group. Next, this electrode group is wrapped in an exterior material having a fusion material layer on the inner surface, and heat is applied while pressing, whereby a part of the separator is melted and thermally fused with the electrode, whereby the electrode group is integrated. Although FIG. 1 shows one electrode group for each of the positive and negative electrodes, the electrode groups can be integrated by a similar method in a case where a plurality of layers are stacked or an electrode group formed by winding a long electrode.
【0019】ついで、電解液を注入した後、外装材1を
完全密閉させて電池を完成させる。Next, after injecting the electrolytic solution, the exterior material 1 is completely sealed to complete the battery.
【0020】このような構成の電池とすることにより、
充電末期や初充電時の発生ガスによる電池内圧の上昇に
より電極間隔が広がることや、電池形状が膨張すること
を抑制することが可能となり、電極間隔の拡大に起因す
る電池特性の劣化を抑制することが可能となる。With the battery having such a configuration,
Increase in battery internal pressure due to gas generated at the end of charging or initial charging makes it possible to prevent electrode spacing from expanding and battery shape from expanding, thereby suppressing deterioration of battery characteristics due to the increase in electrode spacing. It becomes possible.
【0021】つまり、本願に示す、電極とセパレータ積
層したる電極群を加熱圧着させることにより、電極群を
一体化させるとう簡便な手法により、ポリマー電池のよ
うな特殊な電極をまったく使用することなく、薄型でエ
ネルギー密度の高いリチウムイオン二次電池を提供する
ことが可能となるほか、従来金属缶以外では実現が実質
的に不可能であったニッケル水素二次電池や、ニッケル
カドミウム二次電池の薄型化が可能となった。That is, the electrode group formed by laminating the electrode and the separator shown in the present application is heat-pressed to integrate the electrode group without using a special electrode such as a polymer battery at all. In addition to being able to provide thin, high-energy-density lithium-ion secondary batteries, nickel-hydrogen secondary batteries and nickel-cadmium Thinning has become possible.
【0022】また、金属缶のような缶成形上の限界もな
いため、厚さ1mm以下の電池の作成も容易である他、
電池に柔軟性を付与できるという特徴を有している。Further, since there is no limit in forming a can like a metal can, it is easy to prepare a battery having a thickness of 1 mm or less.
It has the feature that flexibility can be imparted to the battery.
【0023】以下実施例をもとに詳細に説明を行う。Hereinafter, a detailed description will be given based on embodiments.
【0024】[0024]
【発明の実施の形態】(実施例) (実施例1〜3、比較例1)下記の方法によりニッケル
水素二次電池用の正極と負極を作成した。DESCRIPTION OF THE PREFERRED EMBODIMENTS (Examples) (Examples 1 to 3, Comparative Example 1) A positive electrode and a negative electrode for a nickel-metal hydride secondary battery were prepared by the following method.
【0025】正極:水酸化ニッケル90gと一酸化コバ
ルト10gに練り剤としてポリアクリル酸ナトリウム
0.175gとCMC0.15g、更にPTFEを3.
5gを加え、十分混合した後、水を加えて更に混練しニ
ッケル活物質ペーストを調製する。次いで、これらのペ
ーストを三次元構造を有するニッケル発泡基板(住友電
工製セルメット)へ擦り込んだ後、温風乾燥器中に放置
することで乾燥を行う。十分乾燥の後、二段式圧延機を
用いて、所定の厚みまでプレスを行ない、最後に打ち抜
きプレスにより、40mm×60mmに打ち抜いた。こ
の電極の重量から求めた水酸化ニッケル含有量を基にし
て算出された理論容量は約1000mAhである。Positive electrode: 90 g of nickel hydroxide and 10 g of cobalt monoxide, 0.175 g of sodium polyacrylate and 0.15 g of CMC as a kneading agent, and further 3.10 g of PTFE.
After adding 5 g and mixing well, water is added and further kneaded to prepare a nickel active material paste. Next, these pastes are rubbed on a nickel foam substrate having a three-dimensional structure (Celmet manufactured by Sumitomo Electric Industries, Ltd.), and then dried by being left in a hot air dryer. After sufficient drying, pressing was performed to a predetermined thickness using a two-stage rolling mill, and finally punching was performed to 40 mm x 60 mm by a punching press. The theoretical capacity calculated based on the nickel hydroxide content obtained from the weight of this electrode is about 1000 mAh.
【0026】負極:まずLmNi4.0Co0.4Mn
0.3Al0.3100gにケッチェンブラック1g、
更に練り剤としてCMC0.1g、ポリアクリル酸ナト
リウム0.3g及びPTFE2gを加え十分混合した
後、水を加えて水素吸蔵合金活物質ペーストを作成す
る。ついで、このペーストを正極と同様に三次元構造を
有するニッケル発泡基板(住友電工製 セルメット)へ
擦り込んだ後、温風乾燥器中で放置することで乾燥を行
う。十分乾燥の後、二段式圧延機を用いて、所定の厚み
までプレスを行い、最後に打ち抜きプレスにより、42
mm×62mmに打ち抜いた。Negative electrode: First, LmNi 4.0 Co 0.4 Mn
100 g of 0.3 Al 0.3, 1 g of Ketjen black,
Further, 0.1 g of CMC, 0.3 g of sodium polyacrylate, and 2 g of PTFE are added as a kneading agent and sufficiently mixed, and then water is added to prepare a hydrogen storage alloy active material paste. Next, this paste is rubbed on a nickel foam substrate (Celmet, manufactured by Sumitomo Electric Industries, Ltd.) having a three-dimensional structure in the same manner as the positive electrode, and then dried by leaving it in a hot air drier. After sufficient drying, pressing was performed to a predetermined thickness using a two-stage rolling mill.
It was punched to a size of 62 mm × 62 mm.
【0027】ついでこれらの電極を使用して、以下詳述
する比較例1、実施例1、実施例2、実施例3の電極群
を作成した。Then, using these electrodes, electrode groups of Comparative Example 1, Example 1, Example 2, and Example 3, which will be described in detail below, were prepared.
【0028】比較例1:上述の電極をポリプロピレン製
の不織布セパレータを介して積層したものをPET製フ
ィルムの表面にアイオノマー製の熱融着面を形成したラ
ミネートフィルムにより外部を覆った。ついでラミネー
トフィルムの周辺部を注液用の開口部を除いて熱融着に
より密着させた後、注液用の未融着部からシリンジによ
り8規定の水酸化カリウム水溶液を注入し、電解液が電
極群に十分吸収されるまで放置した。その後注液に使用
した未融着部を熱融着により密着することで比較例1の
密閉型電池を作成した。電池断面を図2に示す。なお、
ラミネートフィルムの熱融着はアイオノマーの融点より
は高く、セパレータ23を構成するポリプロピレンの融
点よりは低温である105℃で行い、さらに、ラミネー
トフィルム周辺部に限定して加熱したため、電極とセパ
レータ、電極とアイオノマーの融着は生じていない。こ
こで、21は外装材、22は正極、23はセパレータ、
24は負極である。Comparative Example 1: The above-mentioned electrodes were laminated via a nonwoven fabric separator made of polypropylene, and the outside was covered with a laminate film having a heat-sealed surface made of an ionomer formed on the surface of a PET film. Then, the peripheral portion of the laminated film was adhered by heat fusion except for the opening for liquid injection, and then an 8N aqueous potassium hydroxide solution was injected with a syringe from the unfused portion for liquid injection, and the electrolyte was discharged. It was left until it was sufficiently absorbed by the electrode group. Thereafter, the unfused portion used for the injection was brought into close contact by heat fusion to produce a sealed battery of Comparative Example 1. FIG. 2 shows a cross section of the battery. In addition,
The heat-sealing of the laminate film was performed at 105 ° C., which is higher than the melting point of the ionomer and lower than the melting point of the polypropylene constituting the separator 23, and further, heating was performed only in the peripheral portion of the laminate film. There is no fusion of the ionomer with the ionomer. Here, 21 is an exterior material, 22 is a positive electrode, 23 is a separator,
24 is a negative electrode.
【0029】実施例1:上述の電極をポリプロピレン製
の芯材をポリエチレンで薄く覆った繊維により作成され
た不織布セパレータを介して積層した電極群をPET製
フィルムの表面にアイオノマー製の熱融着面を形成した
ラミネートフィルムにより外部を覆った。ラミネートフ
ィルム外面より電極群を圧迫しながら140℃に加熱
し、セパレータ中のポリエチレンを融解してセパレータ
と電極を、またアイオノマーを融解して電極とラミネー
トフィルムをそれぞれ熱融着させた。ついでラミネート
フィルムの周辺部を注液用の開口部を除いて熱融着によ
り密着させた後、注液用の未融着部からシリンジにより
8規定の水酸化カリウム水溶液を注入し、電解液が電極
群に十分吸収されるまで放置した。その後注液に使用し
た未融着部を熱融着により密着することで実施例1の密
閉型電池を作成した。電池断面を図3に示す。図2と同
一部分は同一番号を付しその詳細説明は省略した。尚、
30は熱融着層である。Example 1 An electrode group obtained by laminating the above-mentioned electrodes via a non-woven fabric separator made of a fiber in which a core material made of polypropylene was thinly covered with polyethylene was heat-bonded to a surface of a PET film by an ionomer. The outside was covered with the laminated film formed with. The laminate was heated to 140 ° C. while compressing the electrode group from the outer surface of the laminate film. The polyethylene in the separator was melted to fuse the separator and the electrode, and the ionomer was melted to fuse the electrode and the laminate film. Then, the peripheral portion of the laminated film was adhered by heat fusion except for the opening for liquid injection, and then an 8N aqueous potassium hydroxide solution was injected with a syringe from the unfused portion for liquid injection, and the electrolyte was discharged. It was left until it was sufficiently absorbed by the electrode group. Thereafter, the unfused portion used for the liquid injection was adhered by heat fusion to produce a sealed battery of Example 1. FIG. 3 shows a cross section of the battery. 2 are denoted by the same reference numerals, and detailed description thereof is omitted. still,
Reference numeral 30 denotes a heat-sealing layer.
【0030】実施例2:上述の電極をポリプロピレン製
の不織布セパレータを介して積層した。この際、電極と
セパレータの間にポリエチレンの微粒子を散布しながら
積層を行った。このようにして作成した電極群をPET
製フィルムの表面にアイオノマー製の熱融着面を形成し
たラミネートフィルムにより外部を覆った。ラミネート
フィルム外面より電極群を圧迫しながら140℃に加熱
し、セパレータと電極の間に散布したポリエチレンを融
解してセパレータと電極をポリエチレン微粒子の散布個
所において、またアイオノマーを融解して電極とラミネ
ートフィルムをそれぞれ熱融着させた。ついでラミネー
トフィルムの周辺部を注液用の開口部を除いて熱融着に
より密着させた後、注液用の未融着部からシリンジによ
り8規定の水酸化カリウム水溶液を注入し、電解液が電
極群に十分吸収されるまで放置した。その後注液に使用
した未融着部を熱融着により密着することで実施例2の
密閉型電池を作成した。電池断面を図3に示す。Example 2 The above-mentioned electrodes were laminated via a nonwoven fabric separator made of polypropylene. At this time, lamination was performed while fine particles of polyethylene were being sprayed between the electrode and the separator. The electrode group created in this way is PET
The outside was covered with a laminate film having a heat-sealed surface made of an ionomer formed on the surface of the film. Heat to 140 ° C while pressing the electrode group from the outer surface of the laminated film, melt the polyethylene sprayed between the separator and the electrode, melt the separator and the electrode at the place where the polyethylene fine particles are scattered, and melt the ionomer and the electrode and the laminated film. Were heat-sealed. Then, the peripheral portion of the laminated film was adhered by heat fusion except for the opening for liquid injection, and then an 8N aqueous potassium hydroxide solution was injected with a syringe from the unfused portion for liquid injection, and the electrolyte was discharged. It was left until it was sufficiently absorbed by the electrode group. Thereafter, the unfused portion used for the injection was brought into close contact by heat fusion to produce a sealed battery of Example 2. FIG. 3 shows a cross section of the battery.
【0031】実施例3:上述の電極をポリプロピレン製
の不織布セパレータを介して積層した。この際、電極と
セパレータの間にポリプロピレンの芯材の表面を薄くポ
リエチレンで覆った短繊維を散布しながら積層を行っ
た。このようにして作成した電極群をPET製フィルム
の表面にアイオノマー製の熱融着面を形成したラミネー
トフィルムにより外部を覆った。ラミネートフィルム外
面より電極群を圧迫しながら140℃に加熱し、セパレ
ータと電極の間に散布した短繊維のポリエチレンを融解
してセパレータと電極を、またアイオノマーを融解して
電極とラミネートフィルムをそれぞれ熱融着させた。つ
いでラミネートフィルムの周辺部を注液用の開口部を除
いて熱融着により密着させた後、注液用の未融着部から
シリンジにより8規定の水酸化カリウム水溶液を注入
し、電解液が電極群に十分吸収されるまで放置した。そ
の後注液に使用した未融着部を熱融着により密着するこ
とで実施例3の密閉型電池を作成した。電池断面を図3
に示す。Example 3 The above-mentioned electrodes were laminated via a nonwoven fabric separator made of polypropylene. At this time, lamination was performed while spraying short fibers between the electrodes and the separator, the surfaces of the polypropylene core being thinly covered with polyethylene. The outside of the electrode group thus formed was covered with a laminate film having a heat-sealed surface made of an ionomer formed on the surface of a PET film. The laminate is heated to 140 ° C while compressing the electrodes from the outer surface of the laminate film.The polyethylene of short fibers sprayed between the separator and the electrode is melted to heat the separator and the electrode, and the ionomer is melted to heat the electrode and the laminate film. Fused. Then, the peripheral portion of the laminated film was adhered by heat fusion except for the opening for liquid injection, and then an 8N aqueous potassium hydroxide solution was injected with a syringe from the unfused portion for liquid injection, and the electrolyte was discharged. It was left until it was sufficiently absorbed by the electrode group. Thereafter, the unfused portion used for the liquid injection was adhered by heat fusion to produce a sealed battery of Example 3. Figure 3 shows a cross section of the battery.
Shown in
【0032】これらの電池を1Aの電流で1時間20分
充電した後、1Aの電流で0.8Vまで放電する充放電
を繰り返し行い、初期の放電容量に対する、サイクル進
行に伴う放電容量の変化を測定したその結果を図4に示
す。After charging these batteries at a current of 1 A for 1 hour and 20 minutes, the battery was repeatedly charged and discharged at a current of 1 A to 0.8 V, and the change in the discharge capacity with the cycle progression with respect to the initial discharge capacity was measured. FIG. 4 shows the measurement results.
【0033】図4より明らかなとおり、実施例の電池で
はサイクル進行に伴う容量低下が少ないのに対し、比較
例の電池では、急激に容量が低下している。この原因を
探るため、電池の外形検査を行なったところ、表1に示
すように、実施例の電池ではその厚さの変化が少ないの
に対し、比較例1の電池では大きく膨らんでいることが
わかった。As is clear from FIG. 4, the capacity of the battery of the example is small with the progress of the cycle, whereas the capacity of the battery of the comparative example is sharply reduced. When the outer shape of the battery was inspected to find out the cause, as shown in Table 1, the change in thickness of the battery of the example was small, while the battery of Comparative Example 1 was greatly expanded. all right.
【0034】このことと、透過X線撮影の結果から、比
較例1の電池で容量低下が大きかったのは、充電末期に
正極で発生する酸素ガスにより電池内圧が上昇し、周辺
部でのみ固定されている比較例1の電池では電池の膨れ
を抑制する事ができず、電極間隔が広がってしまい放電
容量が低下したものと考えられる。これに対し、実施例
の各電池では手法こそ異なるものの電極とセパレータ、
外装材が少なくともその一部において相互に結着されて
いるため、電池の膨張が抑制され、容量低下が少なかっ
たものと考えられる。From this and the results of transmission X-ray photography, the reason for the large decrease in the capacity of the battery of Comparative Example 1 was that the internal pressure of the battery increased due to the oxygen gas generated at the positive electrode at the end of charging and was fixed only in the peripheral portion It is considered that the battery of Comparative Example 1 in which the swelling of the battery was not able to be suppressed, the electrode gap was widened, and the discharge capacity was reduced. On the other hand, in each battery of the example, although the method is different, the electrode and the separator,
It is considered that since the exterior material was bonded to at least a part of the exterior material, the expansion of the battery was suppressed and the capacity reduction was small.
【表1】 (比較例2〜3、実施例4)下記の方法によりリチウム
イオン二次電池用の正極と負極を作製した。[Table 1] (Comparative Examples 2-3, Example 4) A positive electrode and a negative electrode for a lithium ion secondary battery were produced by the following method.
【0035】正極:LiCoO2100gへ導電材とし
てアセチレンブラックを6g添加し、PVdF3g(固
形分)とともに十分混連しペースト化したものを、アル
ミ箔へ塗布し、乾燥・プレスを行って作成した。この電
極を300mm×50mmに切り出し使用した。この正
極の活物質量から算出される理論容量は800mAhで
ある。Positive electrode: A positive electrode was prepared by adding 6 g of acetylene black as a conductive material to 100 g of LiCoO 2 , mixing well with 3 g (solid content) of PVdF and forming a paste, applying the paste to an aluminum foil, drying and pressing. This electrode was cut out to 300 mm × 50 mm and used. The theoretical capacity calculated from the amount of the active material of the positive electrode is 800 mAh.
【0036】負極:繊維状グラファイトであるMCF1
00gへPVdFを6g(固形分)添加し、十分混練
し、ペーストとしたものを銅箔へ塗布し、乾燥・プレス
をおこなって作製した。この電極を340mm×52m
mに切り出して使用した。Negative electrode: MCF1 which is a fibrous graphite
6 g (solid content) of PVdF was added to 00 g, kneaded well, and a paste was applied to a copper foil, followed by drying and pressing. This electrode is 340mm x 52m
m.
【0037】これらの電極を外径20mmの巻き芯にポ
リエチレン製の多孔性膜セパレータにより絶縁しながら
捲回した。この際、正負両電極とセパレータの間に融点
92℃のアイオノマーの粉末を散布しながら積層を行な
った。このようにして捲回した電極を巻き芯から抜き取
り、押しつぶすことにより偏平な電極群を作成した。こ
の電極群をアイオノマーとアルミ箔のラミネート材にて
外部を覆った。その後、ラミネートフィルム外面より電
極群を圧迫しながら100℃に加熱し、セパレータと電
極との間をアイオノマーの散布個所において、また電極
群とラミネートフィルム内面のアイオノマーを熱融着
し、ついでラミネートフィルム外周部を注液用の場所を
残して電極周辺部にあわせて熱融着した。その後、外周
部の注液用の個所からシリンジによりエチレンカーボネ
ートとメチルエチルカーボネートを等量混合したものへ
1モルのLiPF6を溶解させたものを電解液として注
液し、注液穴を熱融着し塞いだ。この電池を実施例4と
する。These electrodes were wound around a winding core having an outer diameter of 20 mm while insulating with a porous membrane separator made of polyethylene. At this time, lamination was performed while spraying ionomer powder having a melting point of 92 ° C. between the positive and negative electrodes and the separator. The electrode wound in this manner was removed from the winding core and crushed to form a flat electrode group. This electrode group was covered with an ionomer and an aluminum foil laminate. Then, the laminate is heated to 100 ° C. while pressing the electrode group from the outer surface of the laminate film, and the ionomer between the electrode group and the inner surface of the laminate film is thermally fused between the separator and the electrode. The part was heat-sealed in accordance with the periphery of the electrode except for a place for liquid injection. Thereafter, a solution obtained by dissolving 1 mol of LiPF6 in a mixture of equal amounts of ethylene carbonate and methyl ethyl carbonate was injected with a syringe from an injection portion on the outer peripheral portion as an electrolytic solution, and the injection hole was thermally fused. I blocked it. This battery is referred to as Example 4.
【0038】上記実施例4とアイオノマー粉末を散布し
ない以外はまったく同一の手順で作成した電池を比較例
2とする。A battery prepared in exactly the same procedure as in Example 4 except that the ionomer powder was not sprayed is referred to as Comparative Example 2.
【0039】また、上記実施例4のアイオノマー粉末の
代わりにポリエチレンの粉末を散布し、熱融着温度をポ
リエチレンの融点以上である140℃で行った電池を比
較例3とする。A battery in which polyethylene powder was sprayed instead of the ionomer powder of Example 4 and the heat fusion temperature was 140 ° C., which is higher than the melting point of polyethylene, is referred to as Comparative Example 3.
【0040】これらを400mAの電流で4.2Vまで
定電流で、4.2Vになってからは定電圧で充電を計5
時間行なった後、800mAで3Vまで放電するサイク
ルを繰り返し、サイクル進行に伴う放電容量の変化を測
定した。その結果を図5に示す。These were charged at a constant current up to 4.2 V at a current of 400 mA, and then charged at a constant voltage after reaching 4.2 V for a total of 5 times.
After performing the test for a period of time, a cycle of discharging to 3 V at 800 mA was repeated, and a change in discharge capacity with progress of the cycle was measured. The result is shown in FIG.
【0041】図5より、アイオノマー粉末により電極と
セパレータを熱融着させた実施例4の電池ではほとんど
劣化は観察されないが、熱融着を行なっていない比較例
2では急激な劣化が生じていることが、またポリエチレ
ン粉末で熱融着を行った比較例3ではサイクル初期か
ら、全く容量が得られていないことがわかる。この原因
を調査するため、サイクル後の電池を解体し、観察した
ところ実施例4の電池では電極群が一体化し正負極間が
密着しているのに対し、比較例2の電池では負極上に多
くの放電し残りの金属リチウムの析出が観察された。こ
のことから、融着させなかった比較例2では充放電サイ
クルの進行に伴い電極間隔が広がり電流分布が不均一と
なってしまい金属リチウムの析出が生じ、その結果サイ
クル進行に伴い容量低下が起こったものと考えられる。FIG. 5 shows that little deterioration was observed in the battery of Example 4 in which the electrode and the separator were heat-sealed with the ionomer powder, but rapid deterioration occurred in Comparative Example 2 in which no heat-sealing was performed. It can be seen that no capacity was obtained from the beginning of the cycle in Comparative Example 3 in which thermal fusion was performed with polyethylene powder. In order to investigate the cause, the battery after the cycle was disassembled and observed. As a result, in the battery of Example 4, the electrode group was integrated and the positive and negative electrodes were in close contact with each other. Many discharges and precipitation of the remaining metallic lithium were observed. From this, in Comparative Example 2 in which no fusion was performed, the electrode spacing was widened with the progress of the charge / discharge cycle, the current distribution became nonuniform, and metal lithium was precipitated. As a result, the capacity was reduced with the progress of the cycle. It is thought that it was.
【0042】また、比較例3ではポリエチレン粉末によ
る熱融着が行われていることから電極群は実施例同様強
固に一体化されているものの、電池のインピーダンス測
定の結果、インピーダンスが非常に高いことが確認され
た。その後電池を強制的に解体しセパレータを走査型電
子顕微鏡にて観察したところセパレータに予め設けれら
ている微細孔がほとんど全て収縮し閉孔していることが
わかった。このことから、比較例3の電池では熱融着に
ポリエチレン粉末を使用し、融着温度を140℃と高く
したためセパレータの有する安全機構であるシャットダ
ウン機構が作用し閉孔してしまい、イオンの移動が妨げ
られてしまい電池として機能しなかったものと考えられ
る。In Comparative Example 3, the electrode group was firmly integrated as in the embodiment because heat fusion was performed with polyethylene powder, but the impedance was extremely high as a result of the impedance measurement of the battery. Was confirmed. Thereafter, the battery was forcibly disassembled and the separator was observed with a scanning electron microscope. As a result, it was found that almost all the fine holes provided in the separator had been contracted and closed. For this reason, in the battery of Comparative Example 3, polyethylene powder was used for heat fusion, and the fusion temperature was increased to 140 ° C., so that the shutdown mechanism, which is a safety mechanism of the separator, acted to close the pores, resulting in ion migration. It was considered that the battery did not function as a battery.
【0043】このことより、熱融着に使用する熱融着樹
脂はセパレータの閉孔温度より低温で融着しうるものを
選択することが必要であることがわかる。This indicates that it is necessary to select a heat-sealing resin to be used for heat-sealing at a temperature lower than the closing temperature of the separator.
【0044】[0044]
【発明の効果】電極とセパレータを相互に熱融着すると
いう簡便にして効果的な電池構成手法を見出すことによ
り、ポリマー電池のような特殊な電極をまったく使用す
ることなく、薄型でエネルギー密度の高いリチウムイオ
ン二次電池を提供することが可能となるほか、従来金属
缶以外では実現が実質的に不可能であったニッケル水素
二次電池や、ニッケルカドミウム二次電池の薄型化が可
能となった。The present invention finds a simple and effective battery construction method in which the electrode and the separator are heat-sealed to each other. In addition to being able to provide high lithium-ion secondary batteries, it is also possible to make nickel-metal hydride secondary batteries and nickel cadmium secondary batteries thinner, which were practically impossible only with metal cans. Was.
【0045】また、金属缶のような缶成形上の限界もな
いため、厚さ1mm以下の電池の作成も容易という特徴
を有しており、その工業的寄与は大なる物がある。Further, since there is no limit in forming a can like a metal can, it is easy to produce a battery having a thickness of 1 mm or less, and its industrial contribution is significant.
【図1】本発明の一構成例を示す図。FIG. 1 is a diagram showing a configuration example of the present invention.
【図2】比較例1の電池の一部を示す電池断面図。FIG. 2 is a cross-sectional view of a part of the battery of Comparative Example 1.
【図3】実施例1〜3の電池の一部を示す電池断面図。FIG. 3 is a cross-sectional view of a part of the batteries of Examples 1 to 3.
【図4】実施例1〜3、比較例1の電池の充放電サイク
ル特性図。FIG. 4 is a charge / discharge cycle characteristic diagram of the batteries of Examples 1 to 3 and Comparative Example 1.
【図5】実施例4、比較例2の電池の充放電サイクル特
性図。FIG. 5 is a charge / discharge cycle characteristic diagram of the batteries of Example 4 and Comparative Example 2.
1 外装材 2 正極 3 セパレータ 4 負極 DESCRIPTION OF SYMBOLS 1 Exterior material 2 Positive electrode 3 Separator 4 Negative electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大崎 隆久 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 神田 基 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 Fターム(参考) 5H028 AA01 AA07 BB04 BB05 CC02 EE06 HH08 5H029 AL07 AL12 AM01 BJ04 CJ02 CJ03 EJ12 HJ14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takahisa Osaki 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Pref. F-term in Toshiba Kawasaki Office (reference) 5H028 AA01 AA07 BB04 BB05 CC02 EE06 HH08 5H029 AL07 AL12 AM01 BJ04 CJ02 CJ03 EJ12 HJ14
Claims (6)
したる電極群を内面に融着面を有する薄膜で覆った密閉
型電池において、前記電極群構成後加熱圧着する事によ
り、前記電極と前記セパレータが少なくともその一部に
おいて相互に融着することを特徴とする密閉型電池。In a sealed battery in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween with a thin film having a fusion surface on an inner surface, the electrode group is formed by applying heat and pressure after forming the electrode group. A sealed battery, wherein the separators are fused to each other at least in a part thereof.
て用いるアルカリ電池であることを特徴とする請求項1
に記載の密閉型電池。2. The battery according to claim 1, wherein the battery is an alkaline battery using an alkaline aqueous solution as an electrolyte.
A sealed battery according to claim 1.
じめ熱融着樹脂を配置した電極群を使用することを特徴
とする請求項1に記載の密閉型電池。3. The sealed battery according to claim 1, wherein an electrode group in which a heat-sealing resin is disposed between the electrode and the separator in advance is used.
解液として非水電解液を使用することを特徴とする請求
項3に記載の密閉型電池。4. The sealed battery according to claim 3, wherein the electrode group uses lithium as an active material and a non-aqueous electrolyte is used as an electrolyte.
ータの閉孔温度より低温であることを特徴とする請求項
4に記載の密閉型電池。5. The sealed battery according to claim 4, wherein a fusion temperature of the heat fusion resin is lower than a pore closing temperature of the separator.
ポリエチレンからなる短繊維で、前記短繊維を前記電極
群構成時に前記電極と前記セパレータ間に散布しながら
電極群を構成することを特徴とする請求項3に記載の密
閉型電池。6. The heat-fusing resin is a short fiber of which at least the surface layer is made of polyethylene, and the short fiber is formed between the electrode and the separator when forming the electrode group to form an electrode group. The sealed battery according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09391199A JP3544889B2 (en) | 1999-03-31 | 1999-03-31 | Sealed battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09391199A JP3544889B2 (en) | 1999-03-31 | 1999-03-31 | Sealed battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000285955A true JP2000285955A (en) | 2000-10-13 |
JP3544889B2 JP3544889B2 (en) | 2004-07-21 |
Family
ID=14095669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09391199A Expired - Fee Related JP3544889B2 (en) | 1999-03-31 | 1999-03-31 | Sealed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3544889B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187855A (en) * | 2001-11-29 | 2003-07-04 | Samsung Sdi Co Ltd | Manufacturing method for secondary battery |
JP2009530766A (en) * | 2006-03-14 | 2009-08-27 | エルジー・ケム・リミテッド | High safety multilayer electrochemical cell |
JP2010198987A (en) * | 2009-02-26 | 2010-09-09 | Sumitomo Chemical Co Ltd | Manufacturing method of power storage device, and power storage device |
US7981548B2 (en) | 2005-01-28 | 2011-07-19 | Nec Energy Devices, Ltd. | Multilayer secondary battery and method of making same |
WO2014073330A1 (en) * | 2012-11-12 | 2014-05-15 | 株式会社豊田自動織機 | Electricity storage device and method for manufacturing electricity storage device |
JP2014170752A (en) * | 2014-04-04 | 2014-09-18 | Hitachi Maxell Ltd | Separator for electrochemical device, electrochemical device and method for manufacturing the same |
JP2018190495A (en) * | 2017-04-28 | 2018-11-29 | トヨタ自動車株式会社 | Electrode laminate and manufacturing method of battery |
JP2019160740A (en) * | 2018-03-16 | 2019-09-19 | トヨタ自動車株式会社 | Manufacturing method of laminated battery |
-
1999
- 1999-03-31 JP JP09391199A patent/JP3544889B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187855A (en) * | 2001-11-29 | 2003-07-04 | Samsung Sdi Co Ltd | Manufacturing method for secondary battery |
JP4554148B2 (en) * | 2001-11-29 | 2010-09-29 | 三星エスディアイ株式会社 | Manufacturing method of secondary battery |
US7981548B2 (en) | 2005-01-28 | 2011-07-19 | Nec Energy Devices, Ltd. | Multilayer secondary battery and method of making same |
JP2009530766A (en) * | 2006-03-14 | 2009-08-27 | エルジー・ケム・リミテッド | High safety multilayer electrochemical cell |
JP2010198987A (en) * | 2009-02-26 | 2010-09-09 | Sumitomo Chemical Co Ltd | Manufacturing method of power storage device, and power storage device |
WO2014073330A1 (en) * | 2012-11-12 | 2014-05-15 | 株式会社豊田自動織機 | Electricity storage device and method for manufacturing electricity storage device |
JP2014096318A (en) * | 2012-11-12 | 2014-05-22 | Toyota Industries Corp | Power storage device and method of manufacturing power storage device |
JP2014170752A (en) * | 2014-04-04 | 2014-09-18 | Hitachi Maxell Ltd | Separator for electrochemical device, electrochemical device and method for manufacturing the same |
JP2018190495A (en) * | 2017-04-28 | 2018-11-29 | トヨタ自動車株式会社 | Electrode laminate and manufacturing method of battery |
JP2019160740A (en) * | 2018-03-16 | 2019-09-19 | トヨタ自動車株式会社 | Manufacturing method of laminated battery |
JP7011779B2 (en) | 2018-03-16 | 2022-02-10 | トヨタ自動車株式会社 | Manufacturing method of laminated battery |
Also Published As
Publication number | Publication date |
---|---|
JP3544889B2 (en) | 2004-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102126371B1 (en) | Electrochemical device and manufacturing method thereof | |
EP1655797B1 (en) | Lithium ion secondary cell | |
US20060216609A1 (en) | Non-aqueous electrolyte battery and method for producing the same | |
US20030134190A1 (en) | Nonaqueous electrolyte battery and production method therefor | |
JP5100082B2 (en) | Flat battery | |
JP2005235695A (en) | Lithium-ion secondary battery | |
JP2007273183A (en) | Negative electrode and secondary battery | |
JP2001176482A (en) | Nonaqueous electrolyte secondary battery | |
JP2012059396A (en) | Negative electrode for power storage device and power storage device, and method of manufacturing them | |
JPH09293537A (en) | Nonaqueous electrolyte secondary battery and manufacture thereof | |
JP2000030742A (en) | Lithium-ion secondary battery element | |
WO2005067079A1 (en) | Lithium secondary battery | |
JP2010003685A (en) | Battery | |
WO2022000314A1 (en) | Separator for electrochemical device, electrochemical device and electronic device | |
JP2002245988A (en) | Thin battery | |
JP4245429B2 (en) | Battery with spiral electrode group | |
JP3544889B2 (en) | Sealed battery | |
JP2000090979A (en) | Sealed battery | |
JPH11154534A (en) | Lithium ion secondary battery element | |
JPH11339856A (en) | Manufacture of sheet-type lithium-ion secondary battery | |
JP2011165930A (en) | Power storage device, and method of manufacturing shared negative electrode of the same | |
JP7487857B2 (en) | Pressurizing jig and method for manufacturing secondary battery using same | |
WO2020059874A1 (en) | Secondary battery | |
JP2000243427A (en) | Solid electrolyte cell and its manufacture | |
JP2000323173A (en) | Nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |