JP2000284093A - Treatment method of reactor pressure vessel - Google Patents

Treatment method of reactor pressure vessel

Info

Publication number
JP2000284093A
JP2000284093A JP11085995A JP8599599A JP2000284093A JP 2000284093 A JP2000284093 A JP 2000284093A JP 11085995 A JP11085995 A JP 11085995A JP 8599599 A JP8599599 A JP 8599599A JP 2000284093 A JP2000284093 A JP 2000284093A
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor pressure
reactor
protective cover
large module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11085995A
Other languages
Japanese (ja)
Other versions
JP3340398B2 (en
Inventor
Masataka Aoki
昌隆 青木
Takahiro Adachi
隆裕 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I C C KK
Hitachi Ltd
Original Assignee
I C C KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I C C KK, Hitachi Ltd filed Critical I C C KK
Priority to JP08599599A priority Critical patent/JP3340398B2/en
Publication of JP2000284093A publication Critical patent/JP2000284093A/en
Application granted granted Critical
Publication of JP3340398B2 publication Critical patent/JP3340398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method of reactor pressure vessel. capable of making the reactor pressure vessel in one piece with the reactor outside structures to be a large module, reducing repulse force added to a protect cover itself, the attaching mechanism of a protect cover and the reactor pressure vessel when turning the large module in the state the reactor outside structures with the protect cover and reducing the strength necessary for them for reducing the cost. SOLUTION: In a treatment method of a reactor pressure vessel attaching a protect cover 101 so as to cover the reactor outside structures 7 and 8 in the state of a large module 100 which the reactor pressure vessel 1 is made one body with the reactor outside structures 7 and 8 and reversing the posture between a vertically hung posture and a horizontally put posture on the large module 100 of the attached state, a reversing shaft 26 is provided to the reversal ring 15 of the protect cover 101 and reversing is made at the posture reversal around the reversing shaft 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、原子力発電所の建
屋内に設けられる原子炉圧力容器に係わり、特に、原子
力発電所の建設、予防保全、リニューアル、あるいは廃
炉等の場合において、原子炉圧力容器を建屋内に搬出・
搬入するために反転させる原子炉圧力容器の取り扱い方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor pressure vessel provided in a building of a nuclear power plant, and more particularly to a reactor pressure vessel for nuclear power plant construction, preventive maintenance, renewal, or decommissioning. Take the pressure vessel into the building
The present invention relates to a method of handling a reactor pressure vessel which is turned over to be carried in.

【0002】[0002]

【従来の技術】例えば、沸騰水型原子力発電所では、原
子炉建屋に設けられた原子炉格納容器(Primary Conten
ment Vessel)内に原子炉圧力容器(Reactor Pressure
Vessel、以下適宜、RPVと略す)が配置されている。
この原子炉圧力容器内には、多数の燃料集合体を装荷し
た炉心が設けられている。原子炉建屋に導入された冷却
材は、炉心下方から炉心内に流入した後、炉心で加熱さ
れて沸騰し、気泡を含んだ気液混合状態となって炉心上
方の気水分離器や乾燥器へ導かれ、液体成分が除去され
た蒸気がタービン建屋へ供給され発電が行われる。
2. Description of the Related Art For example, in a boiling water nuclear power plant, a primary containment vessel (Primary Container) provided in a reactor building is used.
Reactor Pressure Vessel (ment Vessel)
Vessel, hereinafter abbreviated as RPV as appropriate).
A reactor core loaded with a number of fuel assemblies is provided in the reactor pressure vessel. After the coolant introduced into the reactor building flows into the core from below the core, it is heated and boiled in the core, forming a gas-liquid mixed state containing bubbles, and a steam-water separator and dryer above the core. The steam from which the liquid component has been removed is supplied to the turbine building to generate power.

【0003】このような運転が行われるにつれて、各設
備・機器が劣化していくことから、通常、既存の原子力
発電所では、各設備・機器の補修、取替が適時行われて
おり、リフレッシュ化が講じられている。
[0003] As such an operation is performed, each facility and equipment deteriorates. Therefore, in an existing nuclear power plant, repair and replacement of each facility and equipment are usually performed in a timely manner, and the refreshment is performed. Is being implemented.

【0004】但しこのとき、原子炉圧力容器、その内部
にある炉内構造物(例えば、上記気水分離器、上記乾燥
器、シュラウド、上部格子板、ジェットポンプ、炉心支
持板、制御棒、及び制御棒案内管等)、原子炉圧力容器
の外部にある炉外構造物(例えば、制御棒駆動機構、イ
ンコアモニターハウジング等)のうち、比較的容易に着
脱可能な構造となっている炉外構造物のみ、その補修・
取り替えが行われていた。原子炉圧力容器及び炉内構造
物については、予め通常の供用期間内でのプラント運転
に対応した構造とすることで、従来、補修・取り替えは
必要なかった。
However, at this time, the reactor pressure vessel and the internal structure inside the reactor (for example, the steam separator, the dryer, the shroud, the upper grid plate, the jet pump, the core support plate, the control rod, and Control rod guide tube, etc.), out-of-reactor structures outside the reactor pressure vessel (e.g., control rod drive mechanism, in-core monitor housing, etc.), are relatively easily detachable structures. Only the thing, its repair
A replacement had been made. Conventionally, repair and replacement were not required for the reactor pressure vessel and reactor internals by adopting a structure corresponding to the plant operation during the normal service period in advance.

【0005】近年、我国においては、新しい原子力発電
所を建設することが非常に難しくなってきており、既存
の発電所をできるだけ長い期間使うことが最重要課題と
なっている。そのため、従来取り替えを行っていなかっ
た原子炉圧力容器及び炉内構造物を含め、劣化した各設
備・機器を適切な時期に交換し、発電所全体の寿命を延
ばす必要がある。
[0005] In recent years, in Japan, it has become very difficult to construct a new nuclear power plant, and the most important task is to use an existing power plant for as long as possible. Therefore, it is necessary to replace the deteriorated facilities and equipment, including the reactor pressure vessel and the reactor internals, which had not been replaced conventionally, at an appropriate time to extend the life of the entire power plant.

【0006】ところで、最大の設備である原子炉圧力容
器については、従来、建設時には、炉外構造物とは分離
された状態で単独で建屋内に搬入し、原子炉建屋内のペ
デスタル上に据付けた後、別途搬入した例えば約180
本の制御棒駆動機構ハウジングや約40本のインコアモ
ニターハウジングを、既にペデスタル内に据付けられた
原子炉圧力容器に取り付けていた。また、搬入前に建屋
近傍へ運搬される間は、工場で新規に製作された原子炉
圧力容器を横置き状態にしてトレーラーで原子炉建屋近
傍まで輸送した後、建屋近傍に設置された大型揚重機で
吊上げて、横置きから縦吊に吊り上げて反転させ、この
状態で建屋上方へと移送していた。
[0006] By the way, the reactor pressure vessel, which is the largest facility, has conventionally been carried into a building alone at the time of construction while being separated from the external structure, and installed on a pedestal in the reactor building. After that, for example, about 180
The control rod drive mechanism housing and about 40 in-core monitor housings were mounted on a reactor pressure vessel already installed in the pedestal. Also, while transported to the vicinity of the building before loading, the reactor pressure vessel newly manufactured at the factory is placed horizontally and transported to the vicinity of the reactor building by trailer, and then a large lift installed near the building is installed. It was lifted by heavy equipment, lifted from horizontal to vertical, turned upside down, and transported above the building in this state.

【0007】ここで、原子炉圧力容器の取り替えでは、
上記の建設時における原子炉圧力容器の搬入と異なり、
運転している原子力発電所を一時的に停止させて行うた
め、放射化した原子炉圧力容器をいかに短時間で搬出
し、新規の原子炉圧力容器をいかに短時間で搬入して、
プラント停止期間をできるだけ短縮することが重要であ
る。すなわち、原子力発電所の建設においては、その全
体工程が約3〜4年と長いため、制御棒駆動機構ハウジ
ングやインコアモニターハウジングの据付けのための時
間を余裕を持って確保しても、全体行程の長さに影響を
与えなかった。したがって、制御棒駆動機構ハウジング
やインコアモニターハウジングをあらかじめ原子炉圧力
容器に取り付けた状態で搬入する必要がなかった。
Here, when replacing the reactor pressure vessel,
Unlike the loading of the reactor pressure vessel during the above construction,
In order to temporarily shut down the operating nuclear power plant, we need to take out the activated reactor pressure vessel in a short time and bring in a new reactor pressure vessel in a short time.
It is important to minimize the plant outage period. That is, in the construction of a nuclear power plant, since the entire process is as long as about 3 to 4 years, even if the time for installation of the control rod drive mechanism housing and the in-core monitor housing is secured with sufficient time, the entire process is not completed. Did not affect the length. Therefore, there is no need to carry the control rod drive mechanism housing and the in-core monitor housing in a state where they are previously attached to the reactor pressure vessel.

【0008】これに対し、原子炉圧力容器の取り替え時
には、上記のようにプラント停止期間の短縮化を図る観
点から、炉内構造物や炉外構造物(制御棒駆動機構ハウ
ジング、インコアモニターハウジング等)を原子炉圧力
容器と一体とし大型モジュール化して原子炉建屋外に搬
出する手法や、新たに搬入する原子炉圧力容器について
も、上記炉外構造物をあらかじめ工場などで原子炉圧力
容器に取りつけた状態で原子炉建屋内に搬入する手法が
考えられている。
On the other hand, when replacing the reactor pressure vessel, from the viewpoint of shortening the plant shutdown period as described above, in-reactor structures and out-of-furnace structures (control rod drive mechanism housing, in-core monitor housing, etc.) ) Is integrated with the reactor pressure vessel to form a large module and carry it out of the reactor building. For the reactor pressure vessel to be newly brought in, the above-mentioned external structure is attached to the reactor pressure vessel at a factory or the like in advance. A method of bringing the reactor into the reactor building in a state of being considered has been considered.

【0009】そして、これらの場合、原子炉圧力容器を
搬出入する際の原子炉圧力容器を縦吊から横置きに(あ
るいはその逆に)変える反転時においても、制御棒駆動
機構ハウジングやインコアモニターハウジングが原子炉
圧力容器に取りつけられた形状のまま反転できる構造が
必要となる。この際、制御棒駆動機構ハウジング、イン
コアモニターハウジングは原子炉圧力容器の底部から突
出した状態となるが、これらは精密な重要機器であるた
め、反転時に障害物に衝突しないように安全確実に作業
しなければならない。
In these cases, the control rod drive mechanism housing and the in-core monitor are used even when the reactor pressure vessel is changed from vertical suspension to horizontal placement (or vice versa) when loading / unloading the reactor pressure vessel. A structure is required in which the housing can be inverted with the shape attached to the reactor pressure vessel. At this time, the control rod drive mechanism housing and the in-core monitor housing protrude from the bottom of the reactor pressure vessel.Because these are precision important devices, they work safely and securely so as not to collide with obstacles during reversal. Must.

【0010】このような点に配慮した従来技術として、
例えば、特開昭55−2134号公報に記載のように、
新しい原子炉圧力容器の据え付け時に、製造工場内にお
いて原子炉圧力容器の底部に制御棒駆動機構ハウジング
及びインコアモニターハウジングを覆うように防護カバ
ー(スカート)を取り付け、原子炉圧力容器と防護カバ
ーとが一体となった大型モジュールとし、この状態で原
子炉建屋近傍への運搬及び反転を行わせる方法が提唱さ
れている。この従来技術では、防護カバーの底部を支持
構造物によって回動自在に支持しつつ原子炉圧力容器の
頭部をクレーンで徐々に吊り上げることにより、上記大
型モジュールの状態のままでの、横置きから縦吊りへの
反転動作を可能としている。
As a prior art in consideration of such a point,
For example, as described in JP-A-55-2134,
When installing a new reactor pressure vessel, a protective cover (skirt) is attached to the bottom of the reactor pressure vessel in the manufacturing plant so as to cover the control rod drive mechanism housing and the in-core monitor housing, and the reactor pressure vessel and the protective cover are attached. A method has been proposed in which a large module is integrated and transported and turned around near the reactor building in this state. In this conventional technique, the head of the reactor pressure vessel is gradually lifted with a crane while the bottom of the protective cover is rotatably supported by a support structure, so that the state of the large module can be maintained in a horizontal position. Inverting operation to vertical suspension is enabled.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、以下の課題が存在する。すなわち、上記従
来技術では、原子炉圧力容器と防護カバーとが一体とな
った大型モジュールの状態で反転を行う。このとき、こ
の大型モジュールは高さ約25m、直径6m、重量10
00トンにもなる。この大重量の構造物を、防護カバー
底部の回動軸を中心に回転させて反転させる場合、反転
の際、防護カバーの底部にある回動中心から、防護カバ
ーの上縁にある原子炉圧力容器底部との接続部での間に
大きな距離があるため、この距離によって上記接続部を
はじめ防護カバーのそれ以外の部分にも数百トンにもな
る極めて大きな反力(曲げ力)が加わる。そのため、防
護カバー自体や、防護カバーと原子炉圧力容器との取付
構造を、この反力に耐えられる極めて強い強度が得られ
るように製作する必要があり、コストの増大を招く。
However, the above prior art has the following problems. That is, in the above-described conventional technology, the reversal is performed in a state of a large module in which the reactor pressure vessel and the protective cover are integrated. At this time, this large module has a height of about 25 m, a diameter of 6 m, and a weight of 10 m.
It will be 00 tons. When this heavy structure is rotated around the rotation axis of the bottom of the protective cover and inverted, the reactor pressure at the upper edge of the protective cover is changed from the rotation center at the bottom of the protective cover during the inversion. Since there is a large distance between the connecting portion and the bottom of the container, an extremely large reaction force (bending force) of several hundred tons is applied to the connecting portion and other portions of the protective cover by this distance. Therefore, it is necessary to manufacture the protective cover itself and the mounting structure between the protective cover and the reactor pressure vessel so as to obtain an extremely strong strength capable of withstanding the reaction force, which leads to an increase in cost.

【0012】また、上記従来技術の方法を、原子炉圧力
容器取り替え時の搬出に適用する場合、高放射能の炉内
構造物を含んだままの大型ブロック化された状態の使用
済み原子炉圧力容器の周囲には、放射線を遮蔽する遮蔽
体が必要となるが、この遮蔽体の重量は約400トンに
も及ぶ。そのため、さらに上記反転時の反力が大きく作
用することになる。
In the case where the above-mentioned prior art method is applied to unloading of a reactor pressure vessel when it is replaced, the used reactor pressure in a large block state including high-activity internal structures is included. Around the container, a shield for shielding radiation is required, and the weight of the shield is about 400 tons. Therefore, the reaction force at the time of the reversal acts more greatly.

【0013】本発明の目的は、原子炉圧力容器を炉外構
造物と一体化させて大型モジュールとし、さらに炉外構
造物を防護カバーで覆った状態でその大型モジュールを
反転させるときに、防護カバー自体や防護カバーと原子
炉圧力容器との取付構造に加わる反力を低減し、それら
に必要な強度を低減してコストダウンを図ることができ
る原子炉圧力容器の取り扱い方法を提供することにあ
る。
An object of the present invention is to provide a large module by integrating a reactor pressure vessel with a structure outside the reactor, and furthermore, when the large module is turned over while the structure outside the reactor is covered with a protective cover, protection is required. To provide a method of handling a reactor pressure vessel that can reduce the reaction force applied to the cover itself or the protective cover and the mounting structure between the reactor pressure vessel and the strength required for them to reduce costs. is there.

【0014】[0014]

【課題を解決するための手段】(1)上記目的を達成す
るために、本発明は、原子炉圧力容器を少なくとも炉外
構造物と一体化させた大型モジュールの状態のまま、前
記原子炉圧力容器の底部に前記炉外構造物を覆うように
防護カバーを取り付け、この防護カバーを取り付けた状
態の前記大型モジュールに、前記原子炉圧力容器の長手
方向を略鉛直方向とする縦姿勢及び該原子炉圧力容器の
長手方向を略水平方向とする横姿勢の相互間で姿勢反転
を行わせる原子炉圧力容器の取り扱い方法において、前
記防護カバーのうち前記原子炉圧力容器との接続部に、
前記姿勢反転のための回動軸を設け、前記縦姿勢及び横
姿勢の相互間で行う前記大型モジュールの姿勢反転時
に、前記回動軸を回動中心として反転を行わせる。
(1) In order to achieve the above object, the present invention provides a reactor pressure vessel in a state of a large module in which a reactor pressure vessel is integrated with at least an external structure. A protective cover is attached to the bottom of the vessel so as to cover the outer structure, and the large module with the protective cover attached is provided with a vertical posture in which the longitudinal direction of the reactor pressure vessel is substantially vertical and In a method of handling a reactor pressure vessel that performs a position reversal between horizontal postures in which the longitudinal direction of the reactor pressure vessel is substantially horizontal, in the connection portion between the reactor pressure vessel and the protective cover,
A rotation axis for reversing the posture is provided, and when the posture of the large module is reversed between the vertical posture and the horizontal posture, the reversal is performed about the rotation shaft as a rotation center.

【0015】反転のための回動中心となる回動軸を、防
護カバーのうち原子炉圧力容器との接続部に設けること
により、従来構造のように回動中心からの大きな距離に
よって大きな曲げ力が発生することがなく、反転の際、
防護カバーの上記接続部やそれ以外の部分に対して加わ
る力を著しく低減することができる。したがって、防護
カバー自体や、防護カバーと原子炉圧力容器との取り付
け構造の強度を低減できるので、コストダウンを図るこ
とができる。特に、防護カバーのうち接続部以外の大部
分については、単に炉外構造物を覆う機能があれば足り
るので、必要強度を極めて低減することができる。
By providing a rotation axis, which is a rotation center for reversing, at a connection portion of the protective cover with the reactor pressure vessel, a large bending force due to a large distance from the rotation center as in the conventional structure. Does not occur, and when reversing,
The force applied to the connection portion and other portions of the protective cover can be significantly reduced. Therefore, the strength of the protective cover itself and the structure for mounting the protective cover and the reactor pressure vessel can be reduced, so that the cost can be reduced. In particular, for most of the protective cover other than the connection portion, it is sufficient to simply have a function of covering the external structure, so that the required strength can be extremely reduced.

【0016】(2)上記(1)において、好ましくは、
前記防護カバーは、有底無蓋の容器状形状を備えてお
り、前記防護カバーの接続部は、前記容器状形状の上縁
部に設けられている。
(2) In the above (1), preferably,
The protective cover has a closed bottomed container shape, and a connection portion of the protective cover is provided at an upper edge of the container shape.

【0017】(3)上記(1)又は(2)において、ま
た好ましくは、前記防護カバーは、前記原子炉圧力容器
との接続部として、前記原子炉圧力容器に着脱可能なリ
ング部材を備えており、前記回動軸は、該リング部材に
設けられている。
(3) In the above (1) or (2), preferably, the protective cover includes a ring member detachably attached to the reactor pressure vessel as a connection portion with the reactor pressure vessel. The rotation shaft is provided on the ring member.

【0018】(4)上記(1)〜(3)のいずれか1つ
において、また好ましくは、前記防護カバーの接続部
は、前記原子炉圧力容器のスカートフランジに対し着脱
可能に構成されている。
(4) In any one of the above (1) to (3), preferably, the connecting portion of the protective cover is configured to be detachable from a skirt flange of the reactor pressure vessel. .

【0019】(5)上記目的を達成するために、また本
発明は、原子炉圧力容器を少なくとも炉外構造物と一体
化させた大型モジュールの状態のまま、前記原子炉圧力
容器の長手方向を略鉛直方向とする縦姿勢で原子炉建屋
外へ搬出し、この搬出した大型モジュールに対し、前記
原子炉圧力容器の底部に前記炉外構造物を覆うように防
護カバーを取り付け、この防護カバーを取り付けた大型
モジュールを、前記縦姿勢から、前記原子炉圧力容器の
長手方向を略水平方向とする横姿勢へと姿勢反転を行わ
せ、この横姿勢となった大型モジュールを運搬手段に積
載して運搬する原子炉圧力容器の取り扱い方法におい
て、前記防護カバーのうち前記原子炉圧力容器との接続
部に、前記姿勢反転のための回動軸を設け、前記縦姿勢
から前記横姿勢への姿勢反転時に、前記回動軸を回動中
心として反転を行わせる。
(5) In order to achieve the above object, the present invention also provides a reactor pressure vessel in a state of a large module in which the reactor pressure vessel is integrated with at least an out-of-pile structure. It is carried out to the outside of the reactor building in a vertical posture in a substantially vertical direction, and a protective cover is attached to the large module that has been carried out so as to cover the outer structure at the bottom of the reactor pressure vessel. The mounted large module is inverted from the vertical position to a horizontal position in which the longitudinal direction of the reactor pressure vessel is substantially horizontal, and the large module in the horizontal position is loaded on the transport means. In the method for handling a reactor pressure vessel to be transported, a rotation axis for reversing the attitude is provided at a connection portion of the protective cover with the reactor pressure vessel, and the vertical attitude is changed from the horizontal attitude to the horizontal attitude. When energized inversion to perform the inversion as the pivot center of the pivot shaft.

【0020】(6)上記目的を達成するために、また本
発明は、原子炉圧力容器を少なくとも炉外構造物と一体
化させて大型モジュールの状態とし、この大型モジュー
ルを前記原子炉圧力容器の長手方向を略水平方向とする
横姿勢として運搬手段に積載するとともに、前記原子炉
圧力容器の底部に前記炉外構造物を覆うように防護カバ
ーを取り付け、この防護カバーを取り付けた大型モジュ
ールを原子炉建屋近傍まで運搬し、この運搬した大型モ
ジュールを、前記横姿勢から、前記原子炉圧力容器の長
手方向を略鉛直方向とする縦姿勢へと姿勢反転を行わ
せ、この縦姿勢となった大型モジュールを前記原子炉建
屋内に搬入する原子炉圧力容器の取り扱い方法におい
て、前記防護カバーのうち前記原子炉圧力容器との接続
部に、前記姿勢反転のための回動軸を設け、前記横姿勢
から前記縦姿勢への姿勢反転時に、前記回動軸を回動中
心として反転を行わせる。
(6) In order to achieve the above object, the present invention relates to a reactor pressure vessel integrated with at least an external structure to form a large module. Along with loading the transport means in a lateral posture in which the longitudinal direction is substantially horizontal, a protective cover is attached to the bottom of the reactor pressure vessel so as to cover the outer structure, and a large module with the protective cover is attached to the reactor. The large module transported to the vicinity of the reactor building is inverted from the horizontal position to a vertical position in which the longitudinal direction of the reactor pressure vessel is substantially vertical. In the method for handling a reactor pressure vessel for loading a module into the reactor building, the connection of the protective cover with the reactor pressure vessel may include the posture inversion. It provided the rotation axis of the eye, when the posture inverted from the horizontal posture to the vertical posture, causes the reversal as the pivot center of the pivot shaft.

【0021】[0021]

【発明の実施の形態】以下、本発明の一実施形態による
原子炉圧力容器の取り扱い方法を図面を参照しつつ詳細
に説明する。本実施形態は、経年発電プラントにてさら
なる稼働期間の延長を図るべく使用済の原子炉圧力容器
を取り替えを行うときに、使用済原子炉圧力容器を搬出
する場合の実施形態である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for handling a reactor pressure vessel according to one embodiment of the present invention will be described in detail with reference to the drawings. This embodiment is an embodiment in which a used reactor pressure vessel is carried out when a used reactor pressure vessel is replaced in order to further extend an operation period in an aged power plant.

【0022】図2は、本実施形態の対象となる原子力発
電プラントの原子炉圧力容器が格納されている原子炉格
納容器内の構造を表す断面図である。
FIG. 2 is a cross-sectional view showing the structure in the reactor containment vessel in which the reactor pressure vessel of the nuclear power plant to which the present embodiment is applied is stored.

【0023】図2において、原子炉建屋内4には原子炉
格納容器3があり、原子炉圧力容器1が収納されてい
る。原子炉圧力容器1内には、炉心を形成する機器から
なる炉内構造物2(例えば気水分離器、乾燥器、シュラ
ウド、上部格子板、ジェットポンプ、炉心支持板、制御
棒、制御棒案内管等)が収納されている。原子炉格納容
器3の上部には、燃料交換時や炉内構造物2を取り出す
際に水を張るための原子炉ウェル35がある。
In FIG. 2, a reactor containment vessel 3 is provided in a reactor building 4, and a reactor pressure vessel 1 is housed therein. Inside the reactor pressure vessel 1, a reactor internal structure 2 (e.g., a steam separator, a dryer, a shroud, an upper grid plate, a jet pump, a core support plate, a control rod, a control rod guide, etc.) Pipe etc.) are stored. A reactor well 35 is provided at the upper part of the containment vessel 3 for filling water when refueling or removing the reactor internals 2.

【0024】原子炉圧力容器1は、原子炉圧力容器1の
基礎としての機能を果たす原子炉圧力容器ペデスタル6
にリングガーダー36を介し据え付けられている。この
据え付け構造を表す図2中A部拡大図を図3に示す。
The reactor pressure vessel 1 includes a reactor pressure vessel pedestal 6 serving as a basis for the reactor pressure vessel 1.
Is installed via a ring girder 36. FIG. 3 is an enlarged view of a portion A in FIG. 2 showing the installation structure.

【0025】図3において、原子炉圧力容器ペデスタル
6には、リングガーダー用埋込基礎ボルト37を介して
リングガーダー36が固定されており、このリングガー
ダー36の上部フランジ部36aに原子炉圧力容器スカ
ート1aのフランジ部1bが固定されている。この原子
炉圧力容器スカートフランジ部1bは、厚さが例えば約
100〜120mmの強度部材となっている。またこの
とき、原子炉圧力容器基礎ボルト5は、リングガーダー
上部フランジ部36aの貫通孔36aaと原子炉圧力容
器スカートフランジ部1bの貫通孔1baとを挿通して
おり、これを締結することにより、原子炉圧力容器1は
原子炉圧力容器ペデスタル6に位置決めされ、固定され
る。
In FIG. 3, a ring girder 36 is fixed to the reactor pressure vessel pedestal 6 via a ring girder embedding base bolt 37, and an upper flange portion 36a of the ring girder 36 is attached to the reactor pressure vessel 36a. The flange portion 1b of the skirt 1a is fixed. The reactor pressure vessel skirt flange portion 1b is a strength member having a thickness of, for example, about 100 to 120 mm. At this time, the reactor pressure vessel base bolt 5 is inserted through the through-hole 36aa of the ring girder upper flange 36a and the through-hole 1ba of the reactor pressure vessel skirt flange 1b. The reactor pressure vessel 1 is positioned and fixed on the reactor pressure vessel pedestal 6.

【0026】図2に戻り、この原子炉圧力容器1には、
主蒸気ノズル38、給水ノズル39、再循環入口ノズル
40、再循環出口ノズル41などが設けられており、主
蒸気配管42、給水配管43、再循環入口配管44、再
循環出口配管45等の各系統配管につながっている。ま
た、原子炉圧力容器1の外周には、原子炉圧力容器保温
材46及び放射線(γ線等)を遮蔽する原子炉圧力容器
遮蔽体(RSW)9が備えられており、原子炉圧力容器
1の上部側方には、原子炉ウェル35と原子炉格納容器
3内を仕切る燃料交換ベローズ46とバルクヘッドプレ
ート47が備えられている。さらに、原子炉圧力容器1
の頂部には、原子炉圧力容器蓋(RPVトップヘッド)
48がある。また、原子炉圧力容器1の底部には、炉外
構造物である、制御棒駆動装置(Control Rod Drive、
図示せず)を収納する制御棒駆動装置ハウジング7や、
中性子束検出器(In Core Monitor、図示せず)を収納
するICMハウジング1が配置されている。
Returning to FIG. 2, this reactor pressure vessel 1 includes:
A main steam nozzle 38, a water supply nozzle 39, a recirculation inlet nozzle 40, a recirculation outlet nozzle 41, and the like are provided. Each of a main steam pipe 42, a water supply pipe 43, a recirculation inlet pipe 44, a recirculation outlet pipe 45, and the like is provided. Connected to system piping. A reactor pressure vessel heat insulator 46 and a reactor pressure vessel shield (RSW) 9 for shielding radiation (γ-rays or the like) are provided on the outer periphery of the reactor pressure vessel 1. A fuel exchange bellows 46 and a bulkhead plate 47 for partitioning the reactor well 35 and the containment vessel 3 from the upper side are provided. Further, the reactor pressure vessel 1
At the top of the reactor pressure vessel lid (RPV top head)
There are 48. In addition, a control rod drive (Control Rod Drive,
A control rod drive housing 7 for accommodating the
An ICM housing 1 containing a neutron flux detector (In Core Monitor, not shown) is arranged.

【0027】本実施形態は、使用済みの原子炉圧力容器
1を大型揚重機であるクローラクレーンにより搬出する
ものである。以下、その一連の作業手順を示すフローチ
ャートである図4に沿って説明する。
In this embodiment, a used reactor pressure vessel 1 is carried out by a crawler crane which is a large-sized hoist. Hereinafter, description will be given with reference to FIG. 4 which is a flowchart showing a series of the work procedure.

【0028】まず、始めに、図4のステップ10で、原
子炉圧力容器1を、原子炉圧力容器遮蔽体9、炉内構造
物2、制御棒駆動機構ハウジング7、及びインコアモニ
ターハウジング8と一体にした構造物(大型モジュー
ル)100の状態のまま、原子炉建屋4外に搬出する。
このときの搬出手順は公知の方法で行えば足りる。例え
ば、図5に示すように、予め原子炉建屋4の屋上に、原
子炉建屋仮開口部12と、原子炉建屋4内の放射性物質
の放出を低減させるためのシャッター13を設置してお
いた後、シャッター13を開けつつ、原子炉建屋4の近
傍に配置した大型揚重機15で大型モジュール100を
原子炉圧力容器1の長手方向を略鉛直方向とするような
縦吊り姿勢で吊り上げ、原子炉建屋4外に搬出する。搬
出が完了したら、原子炉建屋4のシャッター13を閉じ
る。
First, in step 10 of FIG. 4, the reactor pressure vessel 1 is integrated with the reactor pressure vessel shield 9, the reactor internals 2, the control rod drive mechanism housing 7, and the in-core monitor housing 8. The structure (large module) 100 is carried out of the reactor building 4 in the state of the structure 100.
The unloading procedure at this time may be performed by a known method. For example, as shown in FIG. 5, a temporary opening 12 of the reactor building and a shutter 13 for reducing the emission of radioactive materials in the reactor building 4 are previously installed on the roof of the reactor building 4. Thereafter, while opening the shutter 13, the large module 100 is lifted by the large lifting machine 15 arranged near the reactor building 4 in a vertically suspended posture such that the longitudinal direction of the reactor pressure vessel 1 is substantially vertical. Take it out of building 4. When the carrying out is completed, the shutter 13 of the reactor building 4 is closed.

【0029】次に、ステップ20に移り、大型モジュー
ル100を、大型揚重機15による縦吊り姿勢から、ト
レーラー28に積載するための横置き姿勢(後述)へと
反転する作業を実施する。
Next, the process proceeds to step 20, in which the large module 100 is reversed from a vertically suspended position by the large lifting machine 15 to a horizontal position (described later) for loading on the trailer 28.

【0030】詳細には、まず、ステップ21で、トレー
ラー28上に原子炉圧力容器1を反転させるための反転
軸受29(詳細は後述)を設け、さらにこの反転軸受の
上に、その反転させるときに炉外構造物を保護するため
の防護カバー101(同)を設ける。この手順を図6
(a)、図6(b)、及び図6(c)により説明する。
図6(a)は、この状態を示す斜視図であり、図6
(b)は、図6(a)中B方向から見た側面図であり、
図6(c)は、図6(a)中C方向から見た正面図であ
る。
More specifically, first, in step 21, a reversing bearing 29 (details will be described later) for reversing the reactor pressure vessel 1 is provided on the trailer 28, and the reversing bearing 29 is provided on the reversing bearing. Is provided with a protective cover 101 (same as above) for protecting structures outside the furnace. This procedure is shown in FIG.
This will be described with reference to (a), FIG. 6 (b), and FIG. 6 (c).
FIG. 6A is a perspective view showing this state, and FIG.
FIG. 6B is a side view as viewed from a direction B in FIG.
FIG. 6C is a front view seen from the direction C in FIG. 6A.

【0031】これら図6(a)〜(c)において、トレ
ーラー28は、大型モジュール100を横置き(後述)
にした状態で積載し、保管庫設備へ輸送するためのもの
であり、運転室28aからの操作によってそれぞれが自
由に操舵される多数の車輪28bを備えている。このト
レーラー28の上には、架台33が設けられており、こ
の架台33の上には、大型モジュール100を横置き状
態(原子炉圧力容器1の長手方向を略水平方向とする状
態)で載置し固定するための原子炉圧力容器受台30
と、この原子炉圧力容器受台30上に載置された大型モ
ジュール100をワイヤー34等で固定するためのブラ
ケット31と、それら原子炉圧力容器受台30及びブラ
ケット31を固定するための受台32とが予め設けられ
ている。
6 (a) to 6 (c), the trailer 28 has a large module 100 placed horizontally (described later).
It is intended to be loaded and transported to a storage facility in a state where the vehicle is in a state where the vehicle is operated. A gantry 33 is provided on the trailer 28, and the large module 100 is placed on the gantry 33 in a horizontal state (a state in which the longitudinal direction of the reactor pressure vessel 1 is substantially horizontal). Reactor pressure vessel cradle 30 for placing and fixing
And a bracket 31 for fixing the large module 100 mounted on the reactor pressure vessel pedestal 30 with wires 34 and the like, and a pedestal for securing the reactor pressure vessel pedestal 30 and the bracket 31 32 are provided in advance.

【0032】このようなトレーラー28の架台33上
に、反転軸受29を設置する。この反転軸受29は、反
転リング25(後述)の反転軸26(同)を回転自在に
支持する溝29cを備え、反転リング25をはさみ込む
ように設置された2本の支持脚29dと、これら支持脚
29dが倒れないよう補強するサポート29a,29b
とを備えている。
The reversing bearing 29 is installed on the base 33 of the trailer 28. The reversing bearing 29 includes a groove 29c for rotatably supporting a reversing shaft 26 (same) of a reversing ring 25 (described later), and two support legs 29d installed so as to sandwich the reversing ring 25; Supports 29a and 29b for reinforcing support legs 29d so as not to fall down
And

【0033】その後、この反転軸受29上に、大型モジ
ュール100の炉外構造物7,8を覆うための防護カバ
ー101を設置する。この防護カバー101の詳細構造
を表す斜視図を図7に示す。図7において、防護カバー
101は、有底無蓋の略円筒容器状形状を備えており、
その上縁部に位置し原子炉圧力容器1との接続部として
の機能を果たす反転リング部25と、この反転リング部
25の下方に固定され、炉外構造物である制御棒駆動機
構ハウジング7やインコアモニターハウジング8を保護
する略薄板円筒状のハウジングカバー部27とを備えて
いる。
Thereafter, a protective cover 101 for covering the out-of-furnace structures 7 and 8 of the large module 100 is installed on the reversing bearing 29. FIG. 7 is a perspective view showing a detailed structure of the protective cover 101. As shown in FIG. In FIG. 7, the protective cover 101 has a substantially cylindrical container shape with no bottomed lid.
An inversion ring portion 25 located at the upper edge thereof and serving as a connection portion with the reactor pressure vessel 1, and a control rod drive mechanism housing 7 fixed below the inversion ring portion 25 and serving as an external structure And a substantially thin cylindrical housing cover 27 for protecting the in-core monitor housing 8.

【0034】反転リング部25には、前述したリングガ
ーダー上部フランジ部36aの貫通孔36aaと同数の
貫通孔25aが設けられており、前述した原子炉圧力容
器基礎ボルト5と同様のボルト(同一のボルトでもよ
い)を貫通させて締結することにより、原子炉圧力容器
スカートフランジ部1bの貫通孔1baと着脱できるよ
うになっている。またこの反転リング部25には、反転
時の回動中心軸となる反転軸26が固定されている。こ
の反転軸26を、前述した反転軸受支持脚29dの溝2
9cに挿入し係合させることにより、防護カバー101
を反転軸受29上に回転自在に設置する。このとき、図
6(a)〜(c)に示されるように、防護カバー101
は、反転リング部25が最上部となるようにしておく。
The reversing ring portion 25 is provided with the same number of through holes 25a as the through holes 36aa of the ring girder upper flange portion 36a described above. A bolt (which may be a bolt) is penetrated and fastened so that it can be attached to and detached from the through hole 1ba of the reactor pressure vessel skirt flange portion 1b. Further, a reversing shaft 26 serving as a rotation center axis at the time of reversing is fixed to the reversing ring portion 25. The reversing shaft 26 is inserted into the groove 2 of the reversing bearing support leg 29d.
9c, the protective cover 101
Is rotatably installed on the reversing bearing 29. At this time, as shown in FIGS. 6A to 6C, the protective cover 101
Is set such that the reversal ring 25 is at the top.

【0035】なお、このように防護カバー101を設置
した後に、反転軸26が溝29cから離脱しないよう
に、反転軸26の先端部には略フランジ状のストッパ部
26aが設けられている。また、前述の図5中には、こ
のステップ21が終了し反転軸受29及び防護カバー1
01が設置された状態のトレーラー28を併せて示して
いる。
After the protective cover 101 is installed in this manner, a substantially flange-shaped stopper portion 26a is provided at the tip of the reversing shaft 26 so that the reversing shaft 26 does not come off the groove 29c. Further, in FIG. 5 described above, this step 21 is completed and the reversing bearing 29 and the protective cover 1
Also, the trailer 28 in a state where 01 is installed is shown.

【0036】以上のようにしてステップ21gが終了し
たら、ステップ22に移り、図8に示すように、大型揚
重機15で縦吊り状態の大型モジュール100を徐々に
吊り降ろしてゆく。さらに、図9に示すように、原子炉
圧力容器1の底部から突出している炉外構造物7,8を
防護カバー101のハウジングカバー部27に貫入させ
た後、上記反転リング部25と原子炉圧力容器スカート
フランジ部1bとを上述したようなボルト(図9中に符
号49で略示する)によって固定する。これにより、大
型モジュール100の炉外構造物7,8は、ハウジング
カバー部27に収納されてその周囲を覆われ、周囲構造
物との干渉から保護された状態となる。
When step 21g is completed as described above, the process proceeds to step 22, where the large module 100 in the vertically suspended state is gradually lowered by the large lifting machine 15 as shown in FIG. Further, as shown in FIG. 9, after the external structures 7, 8 projecting from the bottom of the reactor pressure vessel 1 penetrate into the housing cover 27 of the protective cover 101, the reversal ring 25 and the reactor The pressure vessel skirt flange portion 1b is fixed by the above-mentioned bolt (schematically indicated by reference numeral 49 in FIG. 9). As a result, the out-of-furnace structures 7 and 8 of the large-sized module 100 are housed in the housing cover 27 and covered around the same, and are protected from interference with surrounding structures.

【0037】その後、ステップ23に移り、図1に示す
ように、大型揚重機15で大型モジュール100を吊っ
たままさらにゆっくりと吊り下しつつ、トレーラー28
を、大型モジュール100を反転させたい方向(この場
合は図1中の時計回り)に応じた方向(この場合図1中
左方向)にゆっくりと移動させていく。これにより、防
護カバー101が反転軸26を回動中心として回動し、
大型モジュール100は、縦吊り状態から徐々に傾き反
転していく。この際、反転リング部25の反転軸26に
加わる荷重が例えば大型モジュール100全重量の約半
分となるように、トレーラー28の移動距離及び速度
と、大型モジュール100を吊り下ろす距離及び速度等
を互いに適宜調整又は制御する。このようにして、反転
軸26や反転軸受29に過大な荷重やモーメントが加わ
らないようにしながら、次第に大型モジュール100を
トレーラー28上の原子炉圧力容器受台30上に向かっ
て横置きにしていく。
Thereafter, the process proceeds to step 23, and as shown in FIG. 1, while the large module 100 is suspended by the large hoist 15 more slowly, the trailer 28 is suspended.
Is slowly moved in a direction (in this case, leftward in FIG. 1) according to the direction in which the large module 100 is to be inverted (in this case, clockwise in FIG. 1). Thereby, the protective cover 101 rotates about the reversing shaft 26 as a rotation center,
The large module 100 is gradually inverted from the vertically suspended state. At this time, the moving distance and speed of the trailer 28 and the distance and speed at which the large module 100 is suspended are mutually set so that the load applied to the reversing shaft 26 of the reversing ring 25 becomes, for example, about half of the total weight of the large module 100. Adjust or control as appropriate. In this way, the large module 100 is gradually placed laterally toward the reactor pressure vessel cradle 30 on the trailer 28 while preventing excessive load and moment from being applied to the reversing shaft 26 and the reversing bearing 29. .

【0038】そして、ステップ24で、図10(a)及
び図10(a)中D方向からの矢視図である図10
(b)に示すように、トレーラー28上の原子炉圧力容
器受台30に大型モジュール100を横置きに載置し、
ワイヤー34等で固定する。
Then, in step 24, FIG. 10 (a) and FIG.
As shown in (b), the large module 100 is placed horizontally on the reactor pressure vessel cradle 30 on the trailer 28,
It is fixed with a wire 34 or the like.

【0039】以上のようにして、ステップ20における
反転手順が終了する。
As described above, the inversion procedure in step 20 is completed.

【0040】その後、ステップ40に移り、上記のよう
にしてトレーラー28に積載した大型モジュール100
を、その積載状態のまま、例えば原子力発電所構内に設
置された原子炉圧力容器1の保管庫(図示せず)へ輸送
し、搬入する。
Thereafter, the process proceeds to step 40, where the large module 100 loaded on the trailer 28 as described above is loaded.
Is transported to a storage (not shown) of the reactor pressure vessel 1 installed in, for example, the premises of a nuclear power plant while being in the loaded state.

【0041】以上により、原子炉圧力容器1を、原子炉
圧力容器遮蔽体9、炉内構造物2、制御棒駆動機構ハウ
ジング7、及びインコアモニターハウジング8と一体に
した構造物(大型モジュール)100の搬出作業が完了
する。
As described above, a structure (large module) 100 in which the reactor pressure vessel 1 is integrated with the reactor pressure vessel shield 9, the reactor internal structure 2, the control rod drive mechanism housing 7, and the in-core monitor housing 8 Is completed.

【0042】なお、上記において、反転リング部25
が、原子炉圧力容器との接続部として設けられ原子炉圧
力容器に着脱可能なリング部材を構成し、反転軸26
が、姿勢反転のための回動軸を構成する。また、大型揚
重機15による大型モジュール101の縦吊り状態が、
原子炉圧力容器の長手方向を略鉛直方向とする縦姿勢に
相当し、トレーラー28上での横置き状態が、原子炉圧
力容器の長手方向を略水平方向とする横姿勢に相当す
る。さらに、トレーラー28が、横姿勢となった大型モ
ジュールを積載して運搬する運搬手段を構成する。
In the above description, the reversal ring 25
Constitutes a ring member provided as a connection portion with the reactor pressure vessel and detachable from the reactor pressure vessel.
Constitute a rotation axis for reversing the posture. In addition, the vertically suspended state of the large module 101 by the large lifting machine 15 is as follows.
The horizontal orientation on the trailer 28 corresponds to a vertical orientation in which the longitudinal direction of the reactor pressure vessel is substantially vertical, and the horizontal orientation in which the longitudinal direction of the reactor pressure vessel is substantially horizontal. Further, the trailer 28 constitutes a transporting means for loading and transporting the large module in the horizontal posture.

【0043】本実施形態によれば、反転軸26を設けた
防護カバー101を強度部材である原子炉圧力容器スカ
ートフランジ1bに取り付け、トレーラー28に設置さ
れた反転軸受29に大型モジュール100を吊り下ろ
し、トレーラー28を移動させながら大型モジュール1
00を縦吊りから横置き姿勢に傾けていくことにより、
炉外構造物である制御棒駆動機構ハウジング7、インコ
アモニターハウジング8等の障害物への衝突を防止して
それらの安全を確保しつつ、それらを一体にした状態で
容易に反転を行い、短時間で反転を完了することができ
る。
According to the present embodiment, the protective cover 101 provided with the reversing shaft 26 is attached to the reactor pressure vessel skirt flange 1b, which is a strength member, and the large module 100 is hung on the reversing bearing 29 provided on the trailer 28. , Large module 1 while moving trailer 28
By tilting 00 from the vertical suspension to the horizontal position,
In order to prevent collisions with obstacles such as the control rod drive mechanism housing 7 and the in-core monitor housing 8 which are the structures outside the furnace and to ensure their safety, they are easily inverted in a state where they are integrated, Reversal can be completed in time.

【0044】またこのとき、反転のための回動中心とな
る反転軸26を、防護カバー101のうち原子炉圧力容
器1との接続部である反転リング部25に設ける。これ
により、特開昭55−2134号公報に記載の従来構造
のように回動中心からの大きな距離によって大きな曲げ
力が発生することがなく、反転の際、防護カバー101
に対して加わる力を著しく低減することができる。した
がって、防護カバー101自体や、防護カバー101と
原子炉圧力容器1との取り付け構造(例えば反転リング
部25や締結用のボルト等)の強度を低減できるので、
コストダウンを図ることができる。特に、防護カバー1
01のうち原子炉圧力容器1との接続部ではないハウジ
ングカバー部27については、単に炉外構造物7、8を
覆う機能があれば足りるので、必要強度を極めて低減す
ることができる。
At this time, a reversing shaft 26 serving as a rotation center for reversing is provided on a reversing ring portion 25 of the protective cover 101, which is a connection portion with the reactor pressure vessel 1. As a result, a large bending force is not generated due to a large distance from the center of rotation as in the conventional structure described in Japanese Patent Application Laid-Open No. 55-2134, and the protective cover 101 is turned over when it is turned over.
Can be significantly reduced. Therefore, the strength of the protective cover 101 itself and the structure for attaching the protective cover 101 to the reactor pressure vessel 1 (for example, the reversal ring 25 and fastening bolts) can be reduced.
Cost can be reduced. In particular, protective cover 1
Of the parts 01, the housing cover 27 which is not the connection part with the reactor pressure vessel 1 only needs to have a function of simply covering the out-of-pile structures 7, 8, so that the required strength can be extremely reduced.

【0045】なお、上記実施形態においては、既に原子
炉建屋4内で原子炉圧力容器1の周囲に配置されて使用
された原子炉圧力容器遮蔽体9を、使用済の原子炉圧力
容器1と一体にし大型モジュール100に含めた形で搬
出したが、これに限られない。すなわち、使用済の原子
炉圧力容器遮蔽体9については搬出を行わず、これに代
わって搬出用原子炉圧力容器遮蔽体を別途新規に製作し
ておき、これを原子炉圧力容器1に取付けて大型モジュ
ール100に組み込んで搬出してもよい。さらに、上記
では、炉外構造物7,8に加えて炉内構造物2も大型モ
ジュール100に含めた形で一緒に搬出したが、これに
限られず、それらを除いて炉外構造物7,8のみを原子
炉圧力容器1とともに大型モジュール100として搬出
してもよい。これらの場合も、同様の効果を得る。
In the above-described embodiment, the reactor pressure vessel shield 9 which has been disposed and used around the reactor pressure vessel 1 in the reactor building 4 is replaced with the used reactor pressure vessel 1. Although unified and carried out in the form included in the large-sized module 100, it is not restricted to this. In other words, the used reactor pressure vessel shield 9 is not carried out, and instead a new reactor pressure vessel shield for carrying out is separately manufactured and attached to the reactor pressure vessel 1. It may be carried out while being incorporated in the large module 100. Further, in the above, in addition to the out-of-furnace structures 7 and 8, the in-furnace structure 2 was also carried out in a form included in the large-sized module 100, but is not limited to this, and excluding them, the out-of-furnace structures 7 and 8 are excluded. Only 8 may be carried out as a large module 100 together with the reactor pressure vessel 1. In these cases, a similar effect is obtained.

【0046】また、上記実施形態においては、原子炉圧
力容器1の原子炉建屋4からの搬出時を例にとって説明
したが、上記のように本発明の要部は、大型モジュール
100の反転時における手法にあり、これを応用して原
子炉圧力容器1の原子炉建屋4内への搬入時においても
適用できることは言うまでもない。この場合の手順は、
基本的に上記搬出作業の逆の手順となり、すなわち例え
ば、製造工場内において、原子炉圧力容器1を少なくと
も炉外構造物7,8と一体化させて大型モジュール10
0の状態とし、この大型モジュール100をトレーラー
28上に横置きにするとともに、このときに原子炉圧力
容器1の底部に炉外構造物7,8を覆うように防護カバ
ー101を取り付けた後、原子炉建屋4近傍まで運搬す
る。そして、この運搬した大型モジュール100を、大
型揚重機15で吊り上げるとともにトレーラー28を反
転方向に応じた方向に移動させ、反転軸26を回動中心
として反転させて横置き状態から徐々に起こし縦吊り状
態とする。その後、この縦吊り状態となった大型モジュ
ール100を原子炉建屋4内に搬入すればよい。但し、
防護カバー101の原子炉圧力容器1への取り付けは、
トレーラーへ28への積載前に工場等で行うことも可能
である。
Further, in the above embodiment, the case where the reactor pressure vessel 1 is carried out of the reactor building 4 has been described as an example. However, as described above, the main part of the present invention is that when the large module 100 is turned over. It is needless to say that the method can be applied to the loading of the reactor pressure vessel 1 into the reactor building 4 by applying the method. The steps in this case are:
Basically, the procedure is the reverse of the above-described unloading operation. That is, for example, in a manufacturing plant, the reactor pressure vessel 1 is integrated with at least
0, the large module 100 is placed horizontally on the trailer 28, and at this time, a protective cover 101 is attached to the bottom of the reactor pressure vessel 1 so as to cover the outer structures 7, 8; It is transported to the vicinity of the reactor building 4. Then, the transported large module 100 is lifted by the large lifting machine 15 and the trailer 28 is moved in the direction corresponding to the reversing direction. State. Thereafter, the large module 100 in the vertically suspended state may be carried into the reactor building 4. However,
The attachment of the protective cover 101 to the reactor pressure vessel 1
It is also possible to carry out at a factory or the like before loading the trailer on the 28.

【0047】このように搬入を行う場合についても、上
記実施形態と同様の効果を得ることができる。
The same effect as in the above embodiment can be obtained also in the case of carrying in as described above.

【0048】さらに、本実施形態は、本発明を、経年発
電プラントにて使用済の原子炉圧力容器1を取り替え、
さらなる稼働期間の延長を図る場合の実施形態であった
が、これに限られない。すなわち、新規の発電プラント
の建設時において、何らかの事情で炉外構造物7,8等
を含めた大型モジュール100の形で原子炉圧力容器1
を搬入する場合に適用することもできるし、また経年発
電プラントにて稼働期間の延長を図ることなく当初の稼
働期間の終了とともに廃炉にするときに何らかの事情で
炉外構造物7,8等を含めた大型モジュール100の形
で原子炉圧力容器1を搬出する場合にも適用できる。こ
れらの場合も、同様の効果を得る。
Further, the present embodiment replaces the present invention with a reactor pressure vessel 1 used in an aged power plant,
Although the embodiment is for the case of further extending the operation period, the present invention is not limited to this. That is, when constructing a new power plant, the reactor pressure vessel 1 in the form of a large module 100 including the out-of-reactor structures 7, 8 and the like for some reason.
It can also be applied to the transport of refuse, and when the decommissioning of the aging power plant is to be carried out at the end of the initial operation period without extending the operation period, the external structures 7, 8 etc. The present invention can also be applied to the case where the reactor pressure vessel 1 is carried out in the form of a large module 100 including In these cases, a similar effect is obtained.

【0049】[0049]

【発明の効果】本発明によれば、原子炉圧力容器を炉外
構造物と一体化させて大型モジュールとし、さらに炉外
構造物を防護カバーで覆った状態でその大型モジュール
を反転させるときに、防護カバー自体や防護カバーと原
子炉圧力容器との取付構造に加わる反力を低減し、それ
らに必要な強度を低減してコストダウンを図ることがで
きる。
According to the present invention, when a reactor pressure vessel is integrated with a structure outside the reactor to form a large module, and when the large module is turned over while the structure outside the reactor is covered with a protective cover, In addition, the reaction force applied to the protective cover itself or the mounting structure between the protective cover and the reactor pressure vessel can be reduced, and the strength required for them can be reduced to reduce costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による原子炉圧力容器の取
り扱い方法によって大型モジュールを縦吊り状態から徐
々に傾き反転させていく様子を表す図である。
FIG. 1 is a diagram illustrating a state in which a large module is gradually tilted and inverted from a vertically suspended state by a method for handling a reactor pressure vessel according to an embodiment of the present invention.

【図2】本発明の一実施形態の対象となる原子力発電プ
ラントの原子炉圧力容器が格納されている原子炉格納容
器内の構造を表す断面図である。
FIG. 2 is a cross-sectional view illustrating a structure inside a reactor containment vessel in which a reactor pressure vessel of a nuclear power plant to which an embodiment of the present invention is applied is stored.

【図3】図2中A部拡大図である。FIG. 3 is an enlarged view of a portion A in FIG. 2;

【図4】使用済の原子炉圧力容器を搬出する一連の作業
手順を表すフローチャートである。
FIG. 4 is a flowchart showing a series of operation procedures for unloading a used reactor pressure vessel.

【図5】大型モジュールを原子炉建屋から搬出している
様子を表す図である。
FIG. 5 is a diagram illustrating a state in which a large module is carried out of a reactor building.

【図6】トレーラー上に反転軸受及び防護カバーを設け
ている様子を示す斜視図、B方向から見た側面図、及び
C方向から見た正面図である。
FIG. 6 is a perspective view showing a state in which a reversing bearing and a protective cover are provided on a trailer, a side view seen from a B direction, and a front view seen from a C direction.

【図7】防護カバーの詳細構造を表す斜視図である。FIG. 7 is a perspective view illustrating a detailed structure of a protective cover.

【図8】原子炉建屋から搬出した大型モジュールを徐々
に吊り下ろしている様子を表す図である。
FIG. 8 is a diagram illustrating a state where a large module carried out of a reactor building is gradually suspended.

【図9】炉外構造物を防護カバーのハウジングカバー部
に貫入させ、固定した様子を表す図である。
FIG. 9 is a diagram illustrating a state in which the external structure is penetrated into a housing cover portion of a protective cover and fixed.

【図10】反転させた大型モジュールをトレーラー上に
横置きにした状態を表す側面図及びD方向から見た矢視
図である。
FIG. 10 is a side view showing a state in which the inverted large module is placed horizontally on the trailer, and is a view seen from an arrow D direction.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 1a 原子炉圧力容器スカート 1b スカートフランジ 2 炉内構造物 7 制御棒駆動機構ハウジング(炉外構造
物) 8 インコアモニターハウジング(炉外構
造物) 25 反転リング部(リング部材、容器状形
状の上縁部、接続部) 26 反転軸(回動軸) 27 ハウジングカバー部 28 トレーラー(運搬手段) 29 反転軸受 100 大型モジュール 101 防護カバー
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 1a Reactor pressure vessel skirt 1b Skirt flange 2 In-furnace structure 7 Control rod drive mechanism housing (out-of-furnace structure) 8 In-core monitor housing (out-of-furnace structure) 25 Inversion ring part (ring member, vessel) Upper edge, connecting portion) 26 reversing shaft (rotating shaft) 27 housing cover 28 trailer (transportation means) 29 reversing bearing 100 large module 101 protective cover

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】原子炉圧力容器を少なくとも炉外構造物と
一体化させた大型モジュールの状態のまま、前記原子炉
圧力容器の底部に前記炉外構造物を覆うように防護カバ
ーを取り付け、この防護カバーを取り付けた状態の前記
大型モジュールに、前記原子炉圧力容器の長手方向を略
鉛直方向とする縦姿勢及び該原子炉圧力容器の長手方向
を略水平方向とする横姿勢の相互間で姿勢反転を行わせ
る原子炉圧力容器の取り扱い方法において、 前記防護カバーのうち前記原子炉圧力容器との接続部
に、前記姿勢反転のための回動軸を設け、 前記縦姿勢及び横姿勢の相互間で行う前記大型モジュー
ルの姿勢反転時に、前記回動軸を回動中心として反転を
行わせることを特徴とする原子炉圧力容器の取り扱い方
法。
1. A protection cover is attached to a bottom portion of the reactor pressure vessel so as to cover the outer structure while maintaining a state of a large module in which the reactor pressure vessel is integrated with at least the outer structure. The large module with the protective cover attached is positioned between a vertical position in which the longitudinal direction of the reactor pressure vessel is substantially vertical and a horizontal position in which the longitudinal direction of the reactor pressure vessel is substantially horizontal. In the method for handling a reactor pressure vessel that performs reversal, a rotation axis for reversing the attitude is provided at a connection portion of the protective cover with the reactor pressure vessel, and a space between the vertical attitude and the horizontal attitude is provided. Wherein when the attitude of the large module is reversed, the reversal is performed about the rotation axis as a rotation center.
【請求項2】請求項1記載の原子炉圧力容器の取り扱い
方法において、前記防護カバーは、有底無蓋の容器状形
状を備えており、前記防護カバーの接続部は、前記容器
状形状の上縁部に設けられていることを特徴とする原子
炉圧力容器の取り扱い方法。
2. The method for handling a reactor pressure vessel according to claim 1, wherein said protective cover has a closed bottomed container shape, and a connection portion of said protective cover is provided on said container shape. A method for handling a reactor pressure vessel provided at an edge.
【請求項3】請求項1又は2記載の原子炉圧力容器の取
り扱い方法において、前記防護カバーは、前記原子炉圧
力容器との接続部として、前記原子炉圧力容器に着脱可
能なリング部材を備えており、前記回動軸は、該リング
部材に設けられていることを特徴とする原子炉圧力容器
の取り扱い方法。
3. The method for handling a reactor pressure vessel according to claim 1, wherein the protective cover includes a ring member detachable from the reactor pressure vessel as a connection portion with the reactor pressure vessel. Wherein the rotating shaft is provided on the ring member.
【請求項4】請求項1〜3のいずれか1項記載の原子炉
圧力容器の取り扱い方法において、前記防護カバーの接
続部は、前記原子炉圧力容器のスカートフランジに対し
着脱可能に構成されていることを特徴とする原子炉圧力
容器の取り扱い方法。
4. The method for handling a reactor pressure vessel according to claim 1, wherein the connection portion of the protective cover is configured to be detachable from a skirt flange of the reactor pressure vessel. A method for handling a reactor pressure vessel, characterized in that:
【請求項5】原子炉圧力容器を少なくとも炉外構造物と
一体化させた大型モジュールの状態のまま、前記原子炉
圧力容器の長手方向を略鉛直方向とする縦姿勢で原子炉
建屋外へ搬出し、この搬出した大型モジュールに対し、
前記原子炉圧力容器の底部に前記炉外構造物を覆うよう
に防護カバーを取り付け、この防護カバーを取り付けた
大型モジュールを、前記縦姿勢から、前記原子炉圧力容
器の長手方向を略水平方向とする横姿勢へと姿勢反転を
行わせ、この横姿勢となった大型モジュールを運搬手段
に積載して運搬する原子炉圧力容器の取り扱い方法にお
いて、 前記防護カバーのうち前記原子炉圧力容器との接続部
に、前記姿勢反転のための回動軸を設け、 前記縦姿勢から前記横姿勢への姿勢反転時に、前記回動
軸を回動中心として反転を行わせることを特徴とする原
子炉圧力容器の取り扱い方法。
5. The reactor pressure vessel is unloaded outside the reactor building in a vertical position with the longitudinal direction of the reactor pressure vessel being substantially vertical while the reactor pressure vessel is in the state of a large module integrated with at least the external structure. Then, for the large module taken out,
A protective cover is attached to the bottom of the reactor pressure vessel so as to cover the outer structure, and the large module with the protective cover is attached, from the vertical position, the longitudinal direction of the reactor pressure vessel is defined as a substantially horizontal direction. In a method of handling a reactor pressure vessel in which a large-sized module in the lateral attitude is loaded on a transporting means and transported, the connection between the protective cover and the reactor pressure vessel is performed. A rotating shaft for reversing the posture, wherein when the posture is reversed from the vertical posture to the horizontal posture, the reversal is performed about the rotation shaft as a rotation center, How to handle.
【請求項6】原子炉圧力容器を少なくとも炉外構造物と
一体化させて大型モジュールの状態とし、この大型モジ
ュールを前記原子炉圧力容器の長手方向を略水平方向と
する横姿勢として運搬手段に積載するとともに、前記原
子炉圧力容器の底部に前記炉外構造物を覆うように防護
カバーを取り付け、この防護カバーを取り付けた大型モ
ジュールを原子炉建屋近傍まで運搬し、この運搬した大
型モジュールを、前記横姿勢から、前記原子炉圧力容器
の長手方向を略鉛直方向とする縦姿勢へと姿勢反転を行
わせ、この縦姿勢となった大型モジュールを前記原子炉
建屋内に搬入する原子炉圧力容器の取り扱い方法におい
て、 前記防護カバーのうち前記原子炉圧力容器との接続部
に、前記姿勢反転のための回動軸を設け、 前記横姿勢から前記縦姿勢への姿勢反転時に、前記回動
軸を回動中心として反転を行わせることを特徴とする原
子炉圧力容器の取り扱い方法。
6. The reactor pressure vessel is integrated with at least a structure outside the reactor to form a large module state, and the large module is placed in a horizontal posture in which the longitudinal direction of the reactor pressure vessel is substantially horizontal, and the transportation means Along with loading, a protective cover is attached to the bottom of the reactor pressure vessel so as to cover the outer structure, the large module with the protective cover is transported to the vicinity of the reactor building, and the transported large module is A reactor pressure vessel for reversing the attitude from the horizontal attitude to a vertical attitude in which the longitudinal direction of the reactor pressure vessel is substantially vertical, and carrying the large module in this vertical attitude into the reactor building. In the handling method, a rotation axis for reversing the attitude is provided at a connection portion of the protective cover with the reactor pressure vessel, and the vertical attitude is changed from the horizontal attitude to the vertical attitude. During posture inverted, the reactor pressure vessel handling method, characterized in that to perform the inversion as the pivot center of the pivot shaft.
JP08599599A 1999-03-29 1999-03-29 How to handle the reactor pressure vessel Expired - Fee Related JP3340398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08599599A JP3340398B2 (en) 1999-03-29 1999-03-29 How to handle the reactor pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08599599A JP3340398B2 (en) 1999-03-29 1999-03-29 How to handle the reactor pressure vessel

Publications (2)

Publication Number Publication Date
JP2000284093A true JP2000284093A (en) 2000-10-13
JP3340398B2 JP3340398B2 (en) 2002-11-05

Family

ID=13874255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08599599A Expired - Fee Related JP3340398B2 (en) 1999-03-29 1999-03-29 How to handle the reactor pressure vessel

Country Status (1)

Country Link
JP (1) JP3340398B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218879B1 (en) * 2011-05-02 2013-01-09 한국원자력연구원 Trailer for spent nuclear fuel carring vessel and loading method for the same
KR101664869B1 (en) * 2015-05-27 2016-10-13 한국수력원자력 주식회사 Mock-up fuel assembly moving device and it's moving method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218879B1 (en) * 2011-05-02 2013-01-09 한국원자력연구원 Trailer for spent nuclear fuel carring vessel and loading method for the same
KR101664869B1 (en) * 2015-05-27 2016-10-13 한국수력원자력 주식회사 Mock-up fuel assembly moving device and it's moving method

Also Published As

Publication number Publication date
JP3340398B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US11728058B2 (en) Systems and methods for transferring spent nuclear fuel from wet storage to dry storage
JP3663924B2 (en) Method for handling reactor internal structure and apparatus used for the method
KR20140068075A (en) Nuclear reactor refueling methods and apparatuses
JP6402094B2 (en) Refueling method for nuclear reactor
US10020084B2 (en) System and method for processing spent nuclear fuel
JP4177987B2 (en) Reactor vessel handling
JPH08240693A (en) Method for removal and cutting of structure at inside of reactor pressure vessel
JP2000206294A (en) Method for bringing out large equipment
JP3679823B6 (en) How to replace the core shroud
JP3340398B2 (en) How to handle the reactor pressure vessel
JPH03115998A (en) Method and structure for shielding radiation from incore structure in storage condition
JP3343447B2 (en) How to unload the reactor pressure vessel
JP4055157B2 (en) Reactor pressure vessel replacement method
JP2002131483A (en) Method for handling large structure
JP3101095B2 (en) Decommissioning method and system for reactor pressure vessel
US6731715B2 (en) Reactor vessel handling method
JP4096911B2 (en) Reactor pressure vessel replacement method
JP4055156B2 (en) Reactor pressure vessel replacement method
Sodhi et al. Conceptual design of core component handling system in PFBR
JP2023552407A (en) nuclear power generation system
Chang et al. Code Requirements for Fuel Handling Equipment at Nuclear Power Plant
JPH0862369A (en) Carrying-in method at replacement of reactor pressure vessel and reactor internal structure, and reactor building
JPH10282285A (en) Reactor building
JP3801313B2 (en) Method for storing irradiated reactor core structure in storage container and method for carrying it out
Rassmussen et al. Packaging and transportation of the K-basin spent fuel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees