JP2000281608A - Production of bisphenol a - Google Patents

Production of bisphenol a

Info

Publication number
JP2000281608A
JP2000281608A JP11087122A JP8712299A JP2000281608A JP 2000281608 A JP2000281608 A JP 2000281608A JP 11087122 A JP11087122 A JP 11087122A JP 8712299 A JP8712299 A JP 8712299A JP 2000281608 A JP2000281608 A JP 2000281608A
Authority
JP
Japan
Prior art keywords
phenol
group
catalyst
exchange resin
bisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11087122A
Other languages
Japanese (ja)
Inventor
Hideaki Nakamura
英昭 中村
Masasane Inomata
将実 猪俣
Kenta Takahashi
堅太 高橋
Kazuyo Matsu
和世 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP11087122A priority Critical patent/JP2000281608A/en
Publication of JP2000281608A publication Critical patent/JP2000281608A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing bisphenol A at a low cost while preventing the deterioration of a catalyst through the stable exhibition of purifying effect on phenol used as a raw material when producing bisphenol A by bringing phenol into contact with a storing acid-type cation exchange resin, and then by reacting the phenol obtained by distillation treatment with acetone in the presence of a solid acid catalyst having mercapto group- containing hydrocarbon group. SOLUTION: When producing bisphenol A by bringing phenol into contact with a strong acid-type cation exchange resin, by subjecting the phenol to distillation treatment and by reacting the treated phenol with acetone in the presence of a solid acid catalyst having mercapto group-containing hydrocarbon group, this method is to feed the reactant phenol subjected to distillation treatment into a reactor without bringing it into contact with oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビスフェノールA
の製造方法に関するものである。さらに詳しくは、スル
ホン酸基含有炭化水素基とメルカプト基含有炭化水素基
を共に有する有機高分子シロキサンの存在下、アセトン
とフェノールを反応させてビスフェノールAを製造する
方法に関するものである。
TECHNICAL FIELD The present invention relates to a bisphenol A
And a method for producing the same. More specifically, the present invention relates to a method for producing bisphenol A by reacting acetone and phenol in the presence of an organic polymer siloxane having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group.

【0002】[0002]

【従来の技術】ビスフェノールA[2,2−ビス(4−
ヒドロキシフェニル)プロパン]は通常、フェノールと
アセトンを酸触媒の存在下に脱水縮合反応させることに
より製造されている。
2. Description of the Related Art Bisphenol A [2,2-bis (4-
[Hydroxyphenyl) propane] is generally produced by subjecting phenol and acetone to a dehydration condensation reaction in the presence of an acid catalyst.

【0003】代表的な酸触媒としてはスルホン酸型陽イ
オン交換樹脂が用いられ、さらには、反応系内にメルカ
プト基を含有する化合物を共存させることにより、触媒
活性および選択率を向上させることができることが知ら
れている。具体的には、スルホン酸型陽イオン交換樹脂
を充填した固定床反応器に原料であるフェノールおよび
アセトンと共にアルキルメルカプタン等の遊離型のメル
カプト基含有化合物を流通させる方法(特公昭45−1
0337号)、スルホン酸型陽イオン交換樹脂のスルホ
ン酸基の一部とメルカプト基含有化合物を共有結合で結
合させる方法、スルホン酸型陽イオン交換樹脂のスルホ
ン酸基の一部とメルカプト基含有化合物をイオン結合で
結合させる方法がある。スルホン酸型陽イオン交換樹脂
のスルホン酸基の一部にメルカプト基含有化合物を結合
させる方法(以下、変性イオン交換樹脂法)は、遊離型
メルカプト基含有化合物を反応系に存在させる方法と比
較して、メルカプト基含有化合物の損失が少ない、メル
カプト基含有化合物を回収する必要がない等の利点があ
る。
As a typical acid catalyst, a sulfonic acid type cation exchange resin is used. Further, by coexisting a compound containing a mercapto group in the reaction system, the catalyst activity and selectivity can be improved. It is known that it can be done. Specifically, a method of flowing a free mercapto group-containing compound such as alkyl mercaptan together with phenol and acetone as raw materials in a fixed bed reactor filled with a sulfonic acid type cation exchange resin (Japanese Patent Publication No. 45-1)
No. 0337), a method of covalently bonding a part of a sulfonic acid group of a sulfonic acid type cation exchange resin to a mercapto group-containing compound, and a method of combining a part of a sulfonic acid group of a sulfonic acid type cation exchange resin with a mercapto group-containing compound Are bonded by an ionic bond. The method of binding a mercapto group-containing compound to a part of the sulfonic acid groups of the sulfonic acid type cation exchange resin (hereinafter referred to as a modified ion exchange resin method) is compared with a method in which a free mercapto group-containing compound is present in a reaction system. Therefore, there are advantages that the loss of the mercapto group-containing compound is small and that there is no need to recover the mercapto group-containing compound.

【0004】しかしながら、変性イオン交換樹脂法は触
媒活性の劣化があり、使用している間にアセトン転化率
の低下およびビスフェノールA選択率の低下が観察され
る。
However, in the modified ion exchange resin method, the catalytic activity is deteriorated, and a decrease in acetone conversion and a decrease in bisphenol A selectivity are observed during use.

【0005】また、スルホン酸型陽イオン交換樹脂以外
の固体酸触媒にメルカプト基含有化合物を結合させたも
のとして、スルホン酸基含有炭化水素基とメルカプト基
含有炭化水素基を共に有する有機高分子シロキサン触媒
が報告されている(特開平8−208545号、特開平
9−110767号、特開平9−110989号、特開
平10−225638号)。この方法は変性イオン交換
樹脂法と比較して、高活性、高選択率であり、ビスフェ
ノールA製造触媒として優れているが、通常のクメン法
やトルエン酸化法で製造されたフェノールを未処理のま
ま使用すると、変性イオン交換樹脂法よりも触媒の劣化
速度が高く、アセトン転化率の低下およびビスフェノー
ルA選択率の低下が観察される。この触媒はスルホン酸
型陽イオン交換樹脂よりも高価なので、触媒寿命をより
長く維持させることが望まれている。
Further, an organic polymer siloxane having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group is obtained by bonding a mercapto group-containing compound to a solid acid catalyst other than a sulfonic acid type cation exchange resin. Catalysts have been reported (JP-A-8-208545, JP-A-9-110767, JP-A-9-110989, JP-A-10-225638). This method has higher activity and higher selectivity than the modified ion exchange resin method, and is excellent as a catalyst for producing bisphenol A. However, phenol produced by the ordinary cumene method or toluene oxidation method remains untreated. When used, the degradation rate of the catalyst is higher than in the modified ion exchange resin method, and a decrease in acetone conversion and a decrease in bisphenol A selectivity are observed. Since this catalyst is more expensive than the sulfonic acid type cation exchange resin, it is desired to maintain the catalyst life longer.

【0006】変性イオン交換樹脂の触媒劣化防止方法と
して、原料として使用するフェノールを予め、スルホン
酸型陽イオン交換樹脂と接触させることを特徴とするビ
スフェノールAの製造方法(特開昭57−72927
号)、酸性反応基とメルカプト基を有する化合物で少な
くとも一部変性した酸性イオン交換樹脂にフェノールを
接触させることを特徴とするフェノールからのカルボニ
ル基および/または不飽和基を含んでなる化合物の除去
方法(特開昭58−79942号)、アセトンとして蒸
留処理されかつ実質的に溶存酸素を含有しないものを用
いるとともに、フェノールとして強酸型イオン交換樹脂
と接触させた後蒸留処理したものを用いることを特徴と
するビスフェノールAの製造方法(特開平6−3405
64号)等がある。これらの方法はいずれも、未処理の
フェノールをそのまま使用する方法と比較して触媒劣化
は少ないが、蒸留後のフェノールの取り扱い方法によっ
ては上記処理の効果が十分に発揮されないことがある。
As a method for preventing catalyst deterioration of a modified ion exchange resin, a method for producing bisphenol A, which comprises contacting phenol used as a raw material with a sulfonic acid type cation exchange resin in advance (JP-A-57-72927).
No.), contacting the phenol with an acidic ion exchange resin at least partially modified with a compound having an acidic reactive group and a mercapto group, and removing the compound comprising a carbonyl group and / or an unsaturated group from the phenol. Method (Japanese Patent Application Laid-Open No. 58-79942), using, as acetone, a substance subjected to distillation treatment and containing substantially no dissolved oxygen, and using, as phenol, a substance subjected to distillation treatment after contact with a strong acid-type ion exchange resin. Characteristic method for producing bisphenol A (Japanese Patent Laid-Open No. 6-3405)
No. 64). In any of these methods, the catalyst is less deteriorated than the method using untreated phenol as it is, but the effect of the above treatment may not be sufficiently exhibited depending on the method of handling phenol after distillation.

【0007】[0007]

【発明が解決しようとする課題】本発明は、メルカプト
基含有炭化水素基を有する固体酸触媒の存在下、強酸型
陽イオン交換樹脂と接触させた後、さらに蒸留処理をし
て得られたフェノールとアセトンとを反応させてビスフ
ェノールAを製造する方法において、原料として使用す
るフェノールの精製効果を安定に発揮させることにより
触媒劣化を防止し、安定的かつ低コストのビスフェノー
ルAの製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a phenol obtained by contacting with a strong acid type cation exchange resin in the presence of a solid acid catalyst having a mercapto group-containing hydrocarbon group, and further subjecting the phenol to a distillation treatment. In the method for producing bisphenol A by reacting phenol and acetone, a stable and low-cost production method of bisphenol A is provided by stably exhibiting the purification effect of phenol used as a raw material to prevent catalyst deterioration. Things.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、メルカプト基含有炭
化水素基を有する固体酸触媒を使用してビスフェノール
Aを製造する際に、原料フェノールとして強酸型陽イオ
ン交換樹脂と接触させ、さらに蒸留処理して得られた精
製フェノールを酸素と接触させないことで触媒の劣化を
防止できることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, when producing bisphenol A using a solid acid catalyst having a mercapto group-containing hydrocarbon group, The present inventors have found that the catalyst can be prevented from deteriorating by contacting a purified phenol obtained by contacting a strong acid type cation exchange resin with phenol as a phenol and further subjecting the phenol to a distillation treatment, thereby completing the present invention.

【0009】すなわち、本発明は、メルカプト基含有炭
化水素を有する固体酸触媒の存在下、強酸型陽イオン交
換樹脂と接触させた後、さらに蒸留処理をして得られた
フェノールとアセトンとを反応させてビスフェノールA
を製造する方法において、該フェノールとして、蒸留処
理をした後、酸素と接触させずに反応器へ導入すること
を特徴とするビスフェノールAの製造方法である。
That is, the present invention relates to a method of reacting phenol and acetone obtained by contacting with a strong acid type cation exchange resin in the presence of a solid acid catalyst having a mercapto group-containing hydrocarbon, followed by a further distillation treatment. Let's bisphenol A
In the method for producing bisphenol A, the phenol is subjected to a distillation treatment and then introduced into a reactor without contacting with oxygen.

【0010】[0010]

【発明の実施の形態】本発明で原料として用いられるフ
ェノールは、予め強酸型陽イオン交換樹脂で処理された
ものである。強酸型陽イオン交換樹脂で処理されるフェ
ノールは、通常入手できる工業用フェノールを用いるこ
とができる。工業用フェノールには、クメン法またはト
ルエン酸化法等で製造されたものがあるが、いずれの方
法で製造されたものでも良い。一般的に、純度98%以
上のフェノールが市販されている。
BEST MODE FOR CARRYING OUT THE INVENTION The phenol used as a raw material in the present invention has been previously treated with a strong acid type cation exchange resin. As the phenol treated with the strong acid type cation exchange resin, commercially available industrial phenol can be used. Industrial phenols include those manufactured by the cumene method or the toluene oxidation method, but may be manufactured by any method. Generally, phenols with a purity of 98% or more are commercially available.

【0011】強酸型陽イオン交換樹脂についても通常入
手できるもので良く、例えば三菱化学社製のダイヤイオ
ン、ロームアンドハース社製のアンバーライトおよびア
ンバーリスト、バイエル社製のレバチット等が挙げられ
る。この強酸型陽イオン交換樹脂は、ゲル型、マクロポ
ーラス型のいずれも用いることができるが、架橋度2〜
8%のゲル型のものを用いる方が長期間安定的に使用で
きるので好ましい。
As the strong acid type cation exchange resin, those which can be usually obtained may be used. Examples thereof include Diaion manufactured by Mitsubishi Chemical Corporation, Amberlite and Amberlyst manufactured by Rohm and Haas, and Levatit manufactured by Bayer Corporation. As the strong acid type cation exchange resin, any of a gel type and a macroporous type can be used.
It is preferable to use an 8% gel type because it can be used stably for a long period of time.

【0012】上記のような強酸型陽イオン交換樹脂でフ
ェノールを連続式または回分式に処理するが、強酸型陽
イオン交換樹脂を充填塔に充填し、フェノールを連続的
に流通させる方法が樹脂の破砕が少なく、効率的にフェ
ノールを処理できるので好ましい。処理温度は41〜1
50℃、好ましくは50℃〜120℃である。フェノー
ルを強酸型陽イオン交換樹脂で処理する時間は、5分〜
10時間、好ましくは10分〜2時間である。このよう
にして得られたフェノールをさらに蒸留する。蒸留方法
については特に制限はないが、圧力は常圧〜10mmH
g、温度は70〜200℃で行うことが好ましい。
[0012] The phenol is treated continuously or batchwise with the strong acid type cation exchange resin as described above. A method in which the strong acid type cation exchange resin is packed in a packed column and the phenol is continuously flowed is used. It is preferable because crushing is small and phenol can be efficiently treated. Processing temperature is 41 ~ 1
The temperature is 50C, preferably 50C to 120C. The time for treating phenol with a strong acid type cation exchange resin is 5 minutes to
10 hours, preferably 10 minutes to 2 hours. The phenol thus obtained is further distilled. The distillation method is not particularly limited, but the pressure is normal pressure to 10 mmH
g, preferably at a temperature of 70 to 200 ° C.

【0013】このような処理で得られた精製フェノール
を、酸素と接触させずに反応器に導入する。精製フェノ
ールを反応器に導入する前に酸素と接触させた場合、酸
素と接触させない場合と比較して触媒の経時劣化が大き
くなる。この理由は明らかではないが、フェノールが酸
素と接触することで微量の触媒劣化原因物質が生成する
か、または、精製フェノール中にわずかに残存する触媒
劣化に影響しない不純物が酸素と接触することで触媒劣
化原因物質に変化するためであろうと思われる。精製フ
ェノールは直接反応器に送りアセトンと反応させても良
いが、一連のビスフェノールA製造プロセスにおける別
の工程で使用した後、反応器に送りアセトンと反応させ
ても良い。例えば、反応液の冷却により生成するビスフ
ェノールAとフェノールの等モル付加物結晶を母液と分
離した後、付加物結晶を精製フェノールで洗浄し、この
洗浄液をフェノール源として反応器に送りアセトンと反
応させても良い。重要なことは、強酸型陽イオン交換樹
脂と接触させさらに蒸留処理をして精製されたフェノー
ルが、反応器に送られるまでに酸素と接触しないという
ことである。精製フェノールを反応器に送る前に、一
旦、タンク等に貯蔵しても良いが、この場合、タンクの
気相部分を窒素等の不活性ガスで置換し、酸素濃度を1
%以下、好ましくは0.1%以下とする。また、精製フ
ェノールが反応器に送られるまでの配管に関しても、使
用前に十分に窒素等の不活性ガスで置換することが好ま
しい。不活性ガスの代わりに、予め十分に酸素を除去し
たフェノール等の溶剤を使用しても良い。
[0013] The purified phenol obtained by such treatment is introduced into the reactor without contact with oxygen. When the purified phenol is brought into contact with oxygen before being introduced into the reactor, the catalyst deteriorates with time more than in the case where it is not brought into contact with oxygen. The reason for this is not clear, but phenol comes into contact with oxygen to produce a small amount of catalyst deterioration-causing substances, or the phenol that is slightly remaining in the purified phenol and does not affect catalyst deterioration comes into contact with oxygen. It is thought to be due to the change to a catalyst deterioration-causing substance. The purified phenol may be sent directly to the reactor and reacted with acetone, or may be used in another step in a series of bisphenol A production processes and then sent to the reactor and reacted with acetone. For example, after separating the equimolar adduct crystals of bisphenol A and phenol generated by cooling the reaction solution from the mother liquor, washing the adduct crystals with purified phenol, sending the washing solution to the reactor as a phenol source and reacting with acetone. May be. What is important is that the phenol purified by contact with the strong acid cation exchange resin and further distillation treatment does not come into contact with oxygen before being sent to the reactor. Before sending the purified phenol to the reactor, it may be temporarily stored in a tank or the like. In this case, the gas phase of the tank is replaced with an inert gas such as nitrogen, and the oxygen concentration is reduced to 1%.
%, Preferably 0.1% or less. Also, it is preferable that the piping until the purified phenol is sent to the reactor is sufficiently replaced with an inert gas such as nitrogen before use. Instead of the inert gas, a solvent such as phenol from which oxygen has been sufficiently removed may be used.

【0014】本発明で用いるアセトンには特に制限はな
く、通常入手できる市販の工業用アセトンで良い。一般
的には純度99%以上のものが入手可能である。
The acetone used in the present invention is not particularly limited, and commercially available commercially available acetone may be used. Generally, those having a purity of 99% or more are available.

【0015】上記のようなフェノールとアセトンを、メ
ルカプト基含有炭化水素基を有する固体酸触媒の存在下
に反応させ、ビスフェノールを製造する。本発明で使用
される触媒の例としては、スルホン酸型陽イオン交換樹
脂のスルホン酸基の一部とメルカプト基含有化合物を共
有結合で結合させたもの、スルホン酸型陽イオン交換樹
脂のスルホン酸基の一部とメルカプト基含有化合物をイ
オン結合で結合させたものおよびスルホン酸基含有炭化
水素基とメルカプト基含有炭化水素基を共に有する有機
高分子シロキサンが挙げられる。スルホン酸基含有炭化
水素基とメルカプト基含有炭化水素基を共に有する有機
高分子シロキサン触媒は、変性イオン交換樹脂よりも高
活性、高選択率で優れた触媒であるが、フェノールの精
製を行わずにビスフェノールAの合成反応を行うと変性
イオン交換樹脂よりも触媒の経時劣化が激しく、また、
酸素と接触した精製フェノールを使用した場合の活性劣
化も大きい。従って、本発明の方法を、スルホン酸基含
有炭化水素基とメルカプト基含有炭化水素基を共に有す
る有機高分子シロキサン触媒を使用するビスフェノール
Aの製造方法に適用した場合に、特に効果が大きい。ス
ルホン酸基含有炭化水素基とメルカプト基含有炭化水素
基を共に有する有機高分子シロキサン触媒の例として
は、特開平8−208545号、特開平9−11098
9号および特開平10−225638号に記載されてい
るような、シロキサン結合からなるシリカマトリックス
中に部分的にスルホン酸基を有する炭化水素基とメルカ
プト基を有する炭化水素基が直接シリカマトリックス中
のケイ素原子と炭素−ケイ素結合により結合した構造を
有する有機高分子シロキサンが挙げられる。
The above phenol and acetone are reacted in the presence of a solid acid catalyst having a mercapto group-containing hydrocarbon group to produce bisphenol. Examples of the catalyst used in the present invention include those in which a part of the sulfonic acid group of the sulfonic acid type cation exchange resin and a mercapto group-containing compound are bonded by a covalent bond, and the sulfonic acid of the sulfonic acid type cation exchange resin. An organic polymer siloxane having both a part of the group and a mercapto group-containing compound bonded by an ionic bond and an organic polymer siloxane having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group are exemplified. The organic polymer siloxane catalyst having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group is a catalyst with higher activity and higher selectivity than the modified ion exchange resin, but without purifying phenol. When the synthesis reaction of bisphenol A is performed, the deterioration of the catalyst with time is more severe than that of the modified ion exchange resin,
When the purified phenol in contact with oxygen is used, the activity is greatly deteriorated. Therefore, when the method of the present invention is applied to a method for producing bisphenol A using an organic polymer siloxane catalyst having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group, the effect is particularly large. Examples of the organic polymer siloxane catalyst having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group are described in JP-A-8-208545 and JP-A-9-11098.
No. 9 and JP-A-10-225638, a hydrocarbon group partially having a sulfonic acid group and a hydrocarbon group having a mercapto group are directly contained in a silica matrix comprising a siloxane bond. An organic polymer siloxane having a structure in which a silicon atom is bonded to a carbon-silicon bond is exemplified.

【0016】反応は、通常、アセトンに対するフェノー
ルのモル比が2〜30、好ましくは4〜20で行われ
る。アセトンに対するフェノールのモル比が2以上で有
れば、反応終了後のアセトンの残存量が少なく、また、
アセトンから副生するメシチルオキシド等の不純物の生
成が少なくなる。また、このモル比が30以下であれ
ば、未反応のフェノールの循環量が少なくなるので、反
応器および晶析器等の機器が小さくなり、また循環に要
する動力等が節減され経済的である。圧力は本反応が液
相で行われるので、原料であるフェノールおよびアセト
ンがガス化しない程度であれば良いが、通常、常圧〜0.
5MPaの範囲で行われる。反応温度は40〜200
℃、好ましくは50〜120℃である。反応温度が40
℃未満だと、反応時間が極端に長くなり巨大な反応器を
設置する必要が生じる。反応温度が200℃を超える
と、好ましくない副反応が生じ、選択率が低下する。反
応時間は、通常、1分〜15時間、好ましくは10分〜
5時間である。
The reaction is usually carried out at a phenol to acetone molar ratio of 2 to 30, preferably 4 to 20. If the molar ratio of phenol to acetone is 2 or more, the residual amount of acetone after the reaction is small,
The generation of impurities such as mesityl oxide by-produced from acetone is reduced. When the molar ratio is 30 or less, the amount of unreacted phenol circulated is reduced, so that equipment such as a reactor and a crystallizer are reduced, and power required for circulation is reduced, which is economical. . The pressure may be such that the phenol and acetone as raw materials do not gasify since the reaction is carried out in a liquid phase, but is usually from normal pressure to 0.
It is performed in the range of 5 MPa. Reaction temperature is 40-200
° C, preferably 50 to 120 ° C. Reaction temperature 40
If the temperature is lower than 0 ° C., the reaction time becomes extremely long, and it becomes necessary to install a huge reactor. When the reaction temperature exceeds 200 ° C., an undesired side reaction occurs, and the selectivity decreases. The reaction time is generally 1 minute to 15 hours, preferably 10 minutes to
5 hours.

【0017】このようにして得られた反応液は、必要に
応じ反応生成水、未反応アセトンおよび未反応フェノー
ルの一部が除去された後、冷却され、ビスフェノールA
とフェノールの等モル付加物結晶の形でビスフェノール
Aが分離される。さらに、この等モル付加物からフェノ
ールが除去され、ビスフェノールAが単離される。
The reaction solution thus obtained is cooled after removing reaction water, unreacted acetone and a part of unreacted phenol, if necessary, and then cooling the mixture to obtain bisphenol A.
Bisphenol A is separated in the form of an equimolar adduct of phenol and phenol. Further, phenol is removed from this equimolar adduct and bisphenol A is isolated.

【0018】[0018]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0019】実施例1 市販の工業用フェノールを、50Lステンレス製容器に
入れ50℃に保温し、容器内下部に備えた環状ノズルか
ら窒素を導入しながら20時間放置した。このフェノー
ルを、スルホン酸型イオン交換樹脂(バイエル社製K1
221)500mlを充填した内径50mmの円筒型反
応器に、イオン交換樹脂との接触時間を30分となるよ
うに連続的に供給し、70℃で処理を行った。さらに、
得られたフェノールを、圧力40mmHg、蒸留釜の温
度を160℃で連続的に蒸留し、精製フェノールを得
た。得られた精製フェノールは、内部を窒素で置換し酸
素濃度が10ppm以下となった50Lステンレス容器
へ送られ、50℃で保存した。この精製フェノール3
8.0g/hとアセトン2.3g/hを、スルホン酸基
の15%をシステアミンで均一に変性したバイエル社製
K1221を30ml充填した反応器に連続的に供給
し、75℃でビスフェノールAの合成反応を行った。な
お、各ステンレス製フェノール貯蔵容器からのフェノー
ルの送液にはプランジャーポンプを使用し、各装置間は
ステンレス製の配管で接続されており、使用前に窒素で
装置内を十分に置換し、フェノールと酸素が接触しない
ようにして行った。
Example 1 Commercially available industrial phenol was placed in a 50 L stainless steel container, kept at 50 ° C., and left for 20 hours while introducing nitrogen from an annular nozzle provided in the lower part of the container. This phenol is converted to a sulfonic acid type ion exchange resin (K1 manufactured by Bayer AG).
221) It was continuously supplied to a cylindrical reactor having an inner diameter of 50 mm filled with 500 ml so as to have a contact time of 30 minutes with the ion exchange resin, and treated at 70 ° C. further,
The obtained phenol was continuously distilled at a pressure of 40 mmHg and a temperature of the still of 160 ° C. to obtain a purified phenol. The obtained purified phenol was sent to a 50 L stainless steel container in which the inside was replaced with nitrogen and the oxygen concentration became 10 ppm or less, and stored at 50 ° C. This purified phenol 3
8.0 g / h and 2.3 g / h of acetone were continuously supplied to a reactor filled with 30 ml of Bayer K1221 in which 15% of sulfonic acid groups were uniformly modified with cysteamine. A synthesis reaction was performed. In addition, a plunger pump is used to send phenol from each stainless steel phenol storage container, and each device is connected with stainless steel piping. The reaction was performed without contact between phenol and oxygen.

【0020】反応開始24時間後におけるアセトン転化
率は83.7%であり、ビスフェノールA選択率は9
4.3%だった。さらに、この状態で反応を継続し、5
00時間後に分析を行ったところ、アセトン転化率は8
3.1%、ビスフェノールA選択率は94.2%だっ
た。
After 24 hours from the start of the reaction, the conversion of acetone was 83.7%, and the selectivity of bisphenol A was 9%.
4.3%. Further, the reaction is continued in this state, and 5
When the analysis was carried out after 00 hours, the acetone conversion was 8
3.1%, bisphenol A selectivity was 94.2%.

【0021】実施例2 [触媒の調製]以下の手順(a)、(b)にしたがい、
スルホン酸基含有炭化水素基とメルカプト基含有炭化水
素基を有する有機高分子シロキサン触媒を調製した。
Example 2 [Preparation of catalyst] According to the following procedures (a) and (b),
An organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group was prepared.

【0022】(a)スルホン酸基含有アルコキシシラン
の合成 滴下ロートを取り付けた2口の500mlの丸底フラス
コに塩化メチレンを200ml入れ、これにフェニルト
リクロロシラン124.0g(0.585mol)を加
え、氷冷した。これに無水硫酸46.8g(0.585
mol)を塩化メチレン100mlに溶解させた溶液を
窒素気流下30分かけて滴下した後、氷浴を取り外し室
温で5時間攪拌し、スルホン化を行った。滴下ロートを
取り外し、窒素気流下、油浴を用いて100℃に加熱
し、塩化メチレン、及び未反応の無水硫酸を留去した。
放冷後、室温でエタノール160gを3時間かけて滴下
し、次いで窒素でバブリングしながら2時間還流して発
生する塩化水素を取り除きながらエトキシ化反応を行っ
た。得られた不純物を含むフェニルスルホン酸基含有エ
トキシシランのエタノール溶液237.7gを以下のス
ルホン酸基含有炭化水素基とメルカプト基含有炭化水素
基を有する有機高分子シロキサン触媒のゾルゲル調製に
おけるスルホン酸成分の原料として用いた。
(A) Synthesis of sulfonic acid group-containing alkoxysilane 200 ml of methylene chloride was placed in a two-necked 500 ml round bottom flask equipped with a dropping funnel, and 124.0 g (0.585 mol) of phenyltrichlorosilane was added thereto. Ice cooled. 46.8 g of sulfuric anhydride (0.585 g)
(mol) in 100 ml of methylene chloride was added dropwise over 30 minutes under a nitrogen stream, and the ice bath was removed, followed by stirring at room temperature for 5 hours to perform sulfonation. The dropping funnel was removed, and the mixture was heated to 100 ° C. using an oil bath under a nitrogen stream to distill off methylene chloride and unreacted sulfuric anhydride.
After allowing to cool, 160 g of ethanol was added dropwise at room temperature over 3 hours, followed by refluxing for 2 hours while bubbling with nitrogen to carry out an ethoxylation reaction while removing generated hydrogen chloride. Sulfonic acid component in the sol-gel preparation of the following organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group, using 237.7 g of an ethanol solution of phenyl sulfonic acid group-containing ethoxysilane containing the obtained impurities. Used as a raw material for

【0023】(b)スルホン酸基含有炭化水素基とメル
カプト基含有炭化水素基を有する有機高分子シロキサン
の調製 攪拌棒を取り付けた2口の500mlの丸底フラスコに
上記したスルホン酸基含有エトキシシランのエタノール
溶液26.0g、テトラエトキシシラン35.5g(1
70.7mmol)、メルカプトプロピルトリメトキシ
シラン6.7g(34.3mmol)、エタノール30
mlを入れて混合した。これに水7.5g(0.42m
ol)を30分かけて滴下した。ついでこれを加熱し、
65℃で4時間攪拌した。放冷後、28%アンモニア水
15mlと水75mlを混合した水溶液を滴下し、室温
で4時間攪拌した。さらに65℃で3日間攪拌し、熟成
させた。これをエバポレーターで減圧留去し、白色の固
体を得た。ついで2Nの塩酸200mlを加え、室温で
30分間攪拌した。濾別後、イオン交換水500mlで
洗浄する操作を10回繰り返して塩酸を取り除いた。最
後に減圧下、100℃で6時間乾燥した。
(B) Preparation of an organic high molecular siloxane having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group The above-mentioned sulfonic acid group-containing ethoxysilane was placed in a two-necked 500 ml round bottom flask equipped with a stirring bar. 26.0 g of ethanol solution and 35.5 g of tetraethoxysilane (1
70.7 mmol), 6.7 g (34.3 mmol) of mercaptopropyltrimethoxysilane, ethanol 30
ml and mixed. 7.5 g of water (0.42 m
ol) was added dropwise over 30 minutes. Then heat this,
Stirred at 65 ° C. for 4 hours. After cooling, an aqueous solution obtained by mixing 15 ml of 28% aqueous ammonia and 75 ml of water was added dropwise, and the mixture was stirred at room temperature for 4 hours. The mixture was further stirred at 65 ° C. for 3 days and aged. This was distilled off under reduced pressure using an evaporator to obtain a white solid. Then, 200 ml of 2N hydrochloric acid was added, and the mixture was stirred at room temperature for 30 minutes. After filtration, the operation of washing with 500 ml of ion-exchanged water was repeated 10 times to remove hydrochloric acid. Finally, it was dried at 100 ° C. under reduced pressure for 6 hours.

【0024】以上の操作によりスルホン酸基含有炭化水
素基とメルカプト基含有炭化水素基を有する有機高分子
シロキサン30gを得た。本触媒の固体酸量を測定した
ところ、1.0meq/gであった。
By the above operation, 30 g of an organic high molecular siloxane having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group was obtained. It was 1.0 meq / g when the solid acid amount of this catalyst was measured.

【0025】[ビスフェノールAの合成反応]ビスフェ
ノールAの合成触媒として、上記のようにして調製した
スルホン酸基含有炭化水素基とメルカプト基含有炭化水
素基を有する有機高分子シロキサン触媒を使用した他
は、実施例1と同様にして反応を行った。
[Synthesis reaction of bisphenol A] As a synthesis catalyst of bisphenol A, except that the organic polymer siloxane catalyst having a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group prepared as described above was used. The reaction was carried out in the same manner as in Example 1.

【0026】この結果、反応開始24時間後のアセトン
転化率は95.3%、ビスフェノールA選択率は96.
2%だった。500時間後に分析を行ったところ、アセ
トン転化率は94.7%、ビスフェノール選択率は9
6.1%だった。
As a result, the conversion of acetone 24 hours after the start of the reaction was 95.3%, and the selectivity of bisphenol A was 96.
2%. After 500 hours of analysis, the conversion of acetone was 94.7% and the selectivity of bisphenol was 9%.
It was 6.1%.

【0027】比較例1 市販の工業用フェノールをイオン交換樹脂で処理し、蒸
留後にフェノールを貯蔵するタンクを窒素置換せず、空
気雰囲気にした以外は、実施例1と同様にした。
Comparative Example 1 The procedure of Example 1 was repeated, except that a commercially available industrial phenol was treated with an ion-exchange resin, and after distillation, the tank for storing phenol was not replaced with nitrogen but had an air atmosphere.

【0028】この結果、反応開始24時間後のアセトン
転化率は83.5%、ビスフェノールA選択率は94.
3%だった。500時間後に分析を行ったところ、アセ
トン転化率は78.3%、ビスフェノールA選択率は8
3.9%であり、窒素置換を行った場合と比較して、ア
セトン転化率およびビスフェノールA選択率とも、低下
が大きかった。
As a result, the conversion of acetone after 24 hours from the start of the reaction was 83.5%, and the selectivity for bisphenol A was 94.5%.
3%. After 500 hours, the analysis showed that the conversion of acetone was 78.3% and the selectivity of bisphenol A was 8%.
It was 3.9%, and both the acetone conversion and the bisphenol A selectivity were significantly reduced as compared with the case where nitrogen substitution was performed.

【0029】比較例2 市販の工業用フェノールをイオン交換樹脂で処理し、蒸
留後にフェノールを貯蔵するタンクを窒素置換せず、空
気雰囲気にした以外は、実施例2と同様にした。
Comparative Example 2 The procedure of Example 2 was repeated except that a commercially available industrial phenol was treated with an ion-exchange resin, and after distillation, the tank for storing phenol was not replaced with nitrogen but had an air atmosphere.

【0030】この結果、反応開始24時間後のアセトン
転化率は95.2%、ビスフェノールA選択率は96.
2%であった。500時間後に分析を行ったところ、ア
セトン転化率は93.3%、ビスフェノールA選択率は
96.0%であり、実施例1よりもアセトン転化率の低
下が大きかった。
As a result, the conversion of acetone 24 hours after the start of the reaction was 95.2%, and the selectivity of bisphenol A was 96.
2%. Analysis was performed 500 hours later. As a result, the conversion of acetone was 93.3%, and the selectivity of bisphenol A was 96.0%. The decrease in the conversion of acetone was larger than that in Example 1.

【0031】[0031]

【発明の効果】本発明の方法によれば、強酸型陽イオン
交換樹脂と接触させた後、さらに蒸留処理をして得られ
たフェノールを安定的に保存することができ、メルカプ
ト基含有炭化水素基を有する固体酸触媒の劣化が防止さ
れ、経済的に有利にビスフェノールAを製造することが
できる。
According to the method of the present invention, a phenol obtained by contacting with a strong acid type cation exchange resin and further subjecting to a distillation treatment can be stably stored, and the hydrocarbon containing a mercapto group can be stably stored. Deterioration of the solid acid catalyst having a group is prevented, and bisphenol A can be produced economically advantageously.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松 和世 大阪府高石市高砂1丁目6番地 三井化学 株式会社内 Fターム(参考) 4G069 AA02 BA22A BA22B BA24A BA24B BA45A BE21A BE21B BE22A BE22B BE32A BE32B CB01 CB25 CB70 DA05 4H006 AA02 AC25 BA33 BA36 BA68 BD10 DA64 FC52 FE13 FG29 4H039 CA19 CA60 CD10 CD40  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuyo Matsu 1-6-6 Takasago, Takaishi-shi, Osaka Mitsui Chemicals, Inc. F-term (reference) 4G069 AA02 BA22A BA22B BA24A BA24B BA45A BE21A BE21B BE22A BE22B BE32A BE32B CB01 CB25 CB70 DA05 4H006 AA02 AC25 BA33 BA36 BA68 BD10 DA64 FC52 FE13 FG29 4H039 CA19 CA60 CD10 CD40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】メルカプト基含有炭化水素基を有する固体
酸触媒の存在下、強酸型陽イオン交換樹脂と接触させた
後、さらに蒸留処理をして得られたフェノールとアセト
ンとを反応させてビスフェノールAを製造する方法にお
いて、該フェノールとして、蒸留処理をした後、酸素と
接触させずに反応器へ導入することを特徴とするビスフ
ェノールAの製造方法。
1. A phenol exchanged with a strong acid type cation exchange resin in the presence of a solid acid catalyst having a mercapto group-containing hydrocarbon group, and further subjected to a distillation treatment to react phenol with acetone to obtain bisphenol. A method for producing bisphenol A, wherein the phenol is subjected to a distillation treatment and then introduced into a reactor without contacting with oxygen.
【請求項2】該触媒が、スルホン酸基含有炭化水素基と
メルカプト基含有炭化水素基を共に有する有機高分子シ
ロキサンである請求項1記載の方法。
2. The method according to claim 1, wherein the catalyst is an organic polymer siloxane having both a sulfonic acid group-containing hydrocarbon group and a mercapto group-containing hydrocarbon group.
【請求項3】該触媒が、スルホン酸型陽イオン交換樹脂
のスルホン酸基の一部とメルカプト基含有化合物を結合
させたものである請求項1記載の方法。
3. The method according to claim 1, wherein the catalyst is obtained by binding a part of a sulfonic acid group of a sulfonic acid type cation exchange resin to a mercapto group-containing compound.
JP11087122A 1999-03-29 1999-03-29 Production of bisphenol a Pending JP2000281608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087122A JP2000281608A (en) 1999-03-29 1999-03-29 Production of bisphenol a

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087122A JP2000281608A (en) 1999-03-29 1999-03-29 Production of bisphenol a

Publications (1)

Publication Number Publication Date
JP2000281608A true JP2000281608A (en) 2000-10-10

Family

ID=13906164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087122A Pending JP2000281608A (en) 1999-03-29 1999-03-29 Production of bisphenol a

Country Status (1)

Country Link
JP (1) JP2000281608A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190021A (en) * 2002-11-27 2004-07-08 Mitsui Chemicals Inc Organic polymeric siloxane and its application
JP2009196930A (en) * 2008-02-21 2009-09-03 Mitsui Chemicals Inc Method for producing bisphenol a
US8735634B2 (en) 2011-05-02 2014-05-27 Sabic Innovative Plastics Ip B.V. Promoter catalyst system with solvent purification
US9287471B2 (en) 2012-02-29 2016-03-15 Sabic Global Technologies B.V. Polycarbonate compositions containing conversion material chemistry and having enhanced optical properties, methods of making and articles comprising the same
US9290618B2 (en) 2011-08-05 2016-03-22 Sabic Global Technologies B.V. Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions
US9346949B2 (en) 2013-02-12 2016-05-24 Sabic Global Technologies B.V. High reflectance polycarbonate
US9490405B2 (en) 2012-02-03 2016-11-08 Sabic Innovative Plastics Ip B.V. Light emitting diode device and method for production thereof containing conversion material chemistry
US9553244B2 (en) 2013-05-16 2017-01-24 Sabic Global Technologies B.V. Branched polycarbonate compositions having conversion material chemistry and articles thereof
US9772086B2 (en) 2013-05-29 2017-09-26 Sabic Innovative Plastics Ip B.V. Illuminating devices with color stable thermoplastic light transmitting articles
US9771452B2 (en) 2012-02-29 2017-09-26 Sabic Global Technologies B.V. Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom
US9821523B2 (en) 2012-10-25 2017-11-21 Sabic Global Technologies B.V. Light emitting diode devices, method of manufacture, uses thereof
CN113333026A (en) * 2021-06-08 2021-09-03 中石化南京化工研究院有限公司 Solid acid catalyst for synthesizing bis-OPP-A and preparation method and application thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190021A (en) * 2002-11-27 2004-07-08 Mitsui Chemicals Inc Organic polymeric siloxane and its application
JP4571393B2 (en) * 2002-11-27 2010-10-27 三井化学株式会社 Organopolymer siloxane and its use
JP2009196930A (en) * 2008-02-21 2009-09-03 Mitsui Chemicals Inc Method for producing bisphenol a
US8735634B2 (en) 2011-05-02 2014-05-27 Sabic Innovative Plastics Ip B.V. Promoter catalyst system with solvent purification
US9056821B2 (en) 2011-05-02 2015-06-16 Sabic Global Technologies B.V. Promoter catalyst system with solvent purification
US9290618B2 (en) 2011-08-05 2016-03-22 Sabic Global Technologies B.V. Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions
US9957351B2 (en) 2011-08-05 2018-05-01 Sabic Global Technologies B.V. Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions
US9490405B2 (en) 2012-02-03 2016-11-08 Sabic Innovative Plastics Ip B.V. Light emitting diode device and method for production thereof containing conversion material chemistry
US9711695B2 (en) 2012-02-03 2017-07-18 Sabic Global Technologies B.V. Light emitting diode device and method for production thereof containing conversion material chemistry
US9771452B2 (en) 2012-02-29 2017-09-26 Sabic Global Technologies B.V. Plastic composition comprising a polycarbonate made from low sulfur bisphenol A, and articles made therefrom
US9299898B2 (en) 2012-02-29 2016-03-29 Sabic Global Technologies B.V. Polycarbonate compositions containing conversion material chemistry and having enhanced optical properties, methods of making and articles comprising the same
US9287471B2 (en) 2012-02-29 2016-03-15 Sabic Global Technologies B.V. Polycarbonate compositions containing conversion material chemistry and having enhanced optical properties, methods of making and articles comprising the same
US9821523B2 (en) 2012-10-25 2017-11-21 Sabic Global Technologies B.V. Light emitting diode devices, method of manufacture, uses thereof
US9346949B2 (en) 2013-02-12 2016-05-24 Sabic Global Technologies B.V. High reflectance polycarbonate
US9553244B2 (en) 2013-05-16 2017-01-24 Sabic Global Technologies B.V. Branched polycarbonate compositions having conversion material chemistry and articles thereof
US9772086B2 (en) 2013-05-29 2017-09-26 Sabic Innovative Plastics Ip B.V. Illuminating devices with color stable thermoplastic light transmitting articles
CN113333026A (en) * 2021-06-08 2021-09-03 中石化南京化工研究院有限公司 Solid acid catalyst for synthesizing bis-OPP-A and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5817061B2 (en) Method for producing phenol
JP2000281608A (en) Production of bisphenol a
KR0150388B1 (en) Process for preparing bisphenol-a
KR100469197B1 (en) Improved Bisphenol Preparation
JPH07103058B2 (en) Method for producing bisphenol A
JPS60218343A (en) Manufacture of alkylene glycol under presence organomethalate
WO2002070443A1 (en) Process for producing bisphenol a
JP3888799B2 (en) Method for producing bisphenol A
JP2000281607A (en) Production of bisphenol a
CS203171B2 (en) Method of processing waste products at the production of diphenylolpropane
JPH08319248A (en) Production of bisphenol a
RU2337753C1 (en) Modified ion exchange resin and method for obtaining bisphenols
JP2001233812A (en) Method for producing bisphenol a
JP3770634B2 (en) Method for producing bisphenol A
JP2000327611A (en) Production of bisphenol a
JP2000344699A (en) Production of bisphenol a
JPH08119892A (en) Production of hydroxyaromatic compound
JP2004010566A (en) Method for producing bisphenol a
JP2000302715A (en) Production of bisphenol a
JP2001039913A (en) Purification of binaphthol
JP2000319215A (en) Production of bisphenol a
JPH09255607A (en) Production of bisphenol a
JP2008247771A (en) Method for producing dihydroxy aromatic compound
WO1991008181A1 (en) Process for producing 4,4'-diisopropylbiphenyl
JP3761342B2 (en) Method for regenerating catalyst for bisphenol A production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320