JP2000281303A - Hydrogen occlusion body - Google Patents

Hydrogen occlusion body

Info

Publication number
JP2000281303A
JP2000281303A JP11093910A JP9391099A JP2000281303A JP 2000281303 A JP2000281303 A JP 2000281303A JP 11093910 A JP11093910 A JP 11093910A JP 9391099 A JP9391099 A JP 9391099A JP 2000281303 A JP2000281303 A JP 2000281303A
Authority
JP
Japan
Prior art keywords
carbon
mixture
hydrogen storage
oxides
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11093910A
Other languages
Japanese (ja)
Inventor
Seiichi Suenaga
誠一 末永
Miho Maruyama
美保 丸山
Yasuhiro Itsudo
康広 五戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11093910A priority Critical patent/JP2000281303A/en
Publication of JP2000281303A publication Critical patent/JP2000281303A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the volume packing efficiency of a carbon-based hydrogen occlusion material by constituting a porous material from a mixture of metals and a nonmetal in org. material. SOLUTION: Oxides of transition metals such as Fe, Ni, Co having <=50 nm particle size of the primary particles, or oxides of transition metals mixed with 1 to 10 % volume ratio of fine particles such as aluminum oxide having a smaller particle size than the transition metal oxides are uniformly pulverized and mixed by a ball mill, or the like. Then the mixture is introduced into an electric furnace, and only the transition metal oxides are reduced in a hydrogen atmosphere to obtain a mixture of transition metals and oxides. Then the mixture is formed by sintering or the like. in an inert atmosphere to obtain a porous material having >=50% porosity. Then, a carbon material such as carbon nanofiber is synthesized in the open pores of the porous body by a thermal CVD method, or the like, in an atmosphere containing hydrocarbon gas such as ethylene gas or carbonic acid gas such as carbon monoxide to obtain a hydrogen occlusion material. A hydrogen occlusion alloy is preferably incorporated into the structural phase of the porous material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量水素吸蔵体
に関するものである。
[0001] The present invention relates to a high-capacity hydrogen storage material.

【0002】[0002]

【従来の技術】水素吸蔵材料はエネルギー貯蔵材料とし
て重要な材料で、特に、電気自動車等のエネルギー貯蔵
方法を考える場合、欠かすことのできないものである。
2. Description of the Related Art A hydrogen storage material is an important material as an energy storage material, and is particularly indispensable when considering an energy storage method for an electric vehicle or the like.

【0003】代表的な水素吸蔵材料としてはLaNi合
金等が挙げられ、二次電池として広い分野で使われてい
る。
A typical hydrogen storage material is a LaNi alloy or the like, which is widely used as a secondary battery.

【0004】しかし、これらの金属系水素吸蔵材料で
は、吸蔵水素量に対する重量が大きすぎ特に、電気自動
車等の用途としては適さないと言う問題があった。
[0004] However, these metal-based hydrogen storage materials have a problem that they are not suitable for use in electric vehicles and the like, in particular, because the weight relative to the amount of stored hydrogen is too large.

【0005】近年、フラーレン、カーボンナノチュー
ブ、カーボンナノファイバー等の新しい炭素系材料が見
出された。これらの材料は、軽量で、同時に、水素を多
量に吸蔵することから、次世代のエネルギー貯蔵方法と
して注目を集めている。
[0005] In recent years, new carbon-based materials such as fullerenes, carbon nanotubes, and carbon nanofibers have been discovered. These materials are attracting attention as a next-generation energy storage method because they are lightweight and simultaneously absorb a large amount of hydrogen.

【0006】これらの材料の実用上の問題点は、一定容
量の容器に、高密度に充填する方法が無いということで
ある。
A practical problem with these materials is that there is no way to densely fill containers of fixed volume.

【0007】特に、カーボンナノチューブ、カーボンナ
ノファイバー等の炭素繊維材料は、一旦合成したもの
を、直方体状・円柱状の容器に充填しようとした場合、
プレス等の方法をつかっても充填率が上がらず限界があ
る。今、炭素繊維材料自身の体積当たりの水素吸蔵量が
10kgH/m3としても、充填率が50%の場合、実
用上の水素吸蔵量は炭素繊維単体の吸蔵量の50%の5
kgH/m3に低下してしまう。
[0007] In particular, carbon fiber materials such as carbon nanotubes and carbon nanofibers, once synthesized, are intended to be filled in a rectangular parallelepiped or columnar container.
Even if a method such as pressing is used, the filling rate does not increase and there is a limit. Now, even if the hydrogen storage amount per volume of the carbon fiber material itself is 10 kgH / m3, if the filling rate is 50%, the practical hydrogen storage amount is 5% of 50% of the storage amount of carbon fiber alone.
kgH / m3.

【0008】水素の体積充填率の低さは、エネルギータ
ンクの容積が大きくなるため、さまざまの実用を考えた
場合、重量に対する密度と同様に大きな妨げになる。
[0008] The low volume filling rate of hydrogen increases the capacity of the energy tank, and as a result, it is a great hindrance to various practical uses as well as the density with respect to weight.

【0009】上記問題が解決されないため、従来材であ
る水素吸蔵合金と比較して、高容量の水素吸蔵炭素材料
が存在しているが、実用にならないという問題が存在し
ていた。
Since the above problems cannot be solved, there is a hydrogen storage carbon material having a higher capacity than a conventional hydrogen storage alloy, but there is a problem that it is not practical.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点を解決するためになされたものである。すなわ
ち、炭素系水素吸蔵材料の実用上、体積充填率を高くす
る方法を提案するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. That is, the present invention proposes a method for increasing the volume filling ratio of the carbon-based hydrogen storage material in practical use.

【0011】[0011]

【課題を解決するための手段】以下に本発明実施の形態
を順に記述する。
The embodiments of the present invention will be described below in order.

【0012】一次粒子の粒径が50nm以下のFe、N
i、Co等の遷移金属酸化物を、または、前記遷移金属
酸化物と前記遷移金属酸化物の粒径よりも小さい、酸化
アルミニウム、酸化マグネシウム、酸化ジルコニウム、
酸化珪素等の微粒子とをボールミル等により均一に砕い
て・混合する。
Fe, N having a primary particle size of 50 nm or less
i, a transition metal oxide such as Co, or aluminum oxide, magnesium oxide, zirconium oxide, which are smaller than the particle diameter of the transition metal oxide and the transition metal oxide;
Fine particles such as silicon oxide are uniformly crushed and mixed by a ball mill or the like.

【0013】前述の酸化物粒子の混合の後は、電気炉内
に導入し、水素雰囲気下で遷移金属酸化物のみを還元
し、遷移金属の微粒子と酸化アルミニウム、酸化マグネ
シウム、酸化ジルコニウム、酸化珪素等の微粒子との混
合粉とする。
After mixing the above-described oxide particles, the mixture is introduced into an electric furnace, and only the transition metal oxide is reduced under a hydrogen atmosphere, and the transition metal fine particles are mixed with aluminum oxide, magnesium oxide, zirconium oxide, and silicon oxide. And mixed powder with fine particles.

【0014】次いで、遷移金属と酸化物の微粒子混合粉
末を、焼結等の方法により、気孔率が50%以上の多孔
質体に成形する。
Next, the transition metal and oxide fine particle mixed powder is formed into a porous body having a porosity of 50% or more by a method such as sintering.

【0015】遷移金属粒子と酸化アルミニウム、酸化マ
グネシウム、酸化ジルコニウム、酸化珪素等の微粒子と
の混合比は、体積比で1%以上10%以下であると良
い。なぜなら、この範囲で効果的に遷移金属粒子の成長
を抑制することができるからである。
The mixing ratio of the transition metal particles to the fine particles of aluminum oxide, magnesium oxide, zirconium oxide, silicon oxide or the like is preferably 1% to 10% by volume. This is because the growth of the transition metal particles can be effectively suppressed in this range.

【0016】また、混合粉末は不活性雰囲気下で取扱う
ことが好ましい。なぜなら、遷移金属の微粉末が酸素存
在下に晒されると急速に酸化してしまうからである。
The mixed powder is preferably handled in an inert atmosphere. This is because the transition metal fine powder is rapidly oxidized when exposed to oxygen.

【0017】この際、還元から焼結までの過程は連続し
て大気にさらすことなく行なうことが好ましい。
At this time, it is preferable that the process from reduction to sintering is performed continuously without exposure to the atmosphere.

【0018】酸化物が微粒子が分散していることによ
り、多孔質体を構成する遷移金属の粒成長を抑制するこ
とができる。
Since the oxide has the fine particles dispersed therein, it is possible to suppress the grain growth of the transition metal constituting the porous body.

【0019】次いで、エチレンガス、アセチレンガス等
の炭化水素ガス、一酸化炭素、二酸化炭素等の炭酸ガス
を含む雰囲気下で、多孔質体の開気孔部にカーボンナノ
ファイバー、カーボンナノチューブ、フラーレン等の炭
素系材料の合成を行なう。
Next, under an atmosphere containing a hydrocarbon gas such as ethylene gas or acetylene gas, or a carbon dioxide gas such as carbon monoxide or carbon dioxide, carbon nanofibers, carbon nanotubes, fullerenes, etc. Synthesize carbon-based materials.

【0020】合成方法は特に限定しないが、例えば熱C
VD法等を挙げることができる。これにより、多孔質体
を形成している遷移金属上で原料ガスの分解が起こり、
炭素が析出する。
The synthesis method is not particularly limited.
VD method and the like can be mentioned. Thereby, decomposition of the raw material gas occurs on the transition metal forming the porous body,
Carbon deposits.

【0021】また、水素還元から炭素系材料の合成に至
るプロセスは、大気に晒すことなく、連続的に行なうこ
とが好ましい。
The process from the reduction of hydrogen to the synthesis of the carbon-based material is preferably performed continuously without exposing it to the atmosphere.

【0022】以上のプロセスにより、多孔質体とその内
部に高密度に成長した、カーボンナノチューブ、カーボ
ンナノファイバー、フラーレン等の炭素系材料との複合
体を形成することができる。
By the above process, it is possible to form a composite of a porous body and a carbon-based material such as carbon nanotubes, carbon nanofibers and fullerenes grown at a high density inside the porous body.

【0023】また本発明の第二は、多孔質体の構成相に
水素吸蔵合金を含有するものである。
A second aspect of the present invention is that the constituent phase of the porous body contains a hydrogen storage alloy.

【0024】水素吸蔵合金を混合する理由は、水素吸蔵
合金の添加により全体の水素吸蔵量を大きくすることが
できるからである。
The reason for mixing the hydrogen storage alloy is that the total amount of hydrogen storage can be increased by adding the hydrogen storage alloy.

【0025】この場合、水素吸蔵合金とFe,Ni,C
o等の触媒と粒成長抑制効果の高い酸化物の微粒子を、
混合し、次いで、所定の気孔率を有する多孔質体に成形
する。
In this case, the hydrogen storage alloy and Fe, Ni, C
o and catalysts and oxide fine particles with a high grain growth suppression effect,
After mixing, the mixture is formed into a porous body having a predetermined porosity.

【0026】多孔質体を形成後は、電気炉内等に多孔質
体を導入し、熱CVD等の方法により、炭素系材料の合
成を行なう。
After the formation of the porous body, the porous body is introduced into an electric furnace or the like, and a carbon-based material is synthesized by a method such as thermal CVD.

【0027】原料粉末の混合、成形、炭素系材料の合成
の一連のプロセスは、不活性雰囲気下で行なうことが好
ましい。
It is preferable that a series of processes of mixing, molding, and synthesizing the carbon-based material be performed in an inert atmosphere.

【0028】[0028]

【発明の実施の形態】(実施例1)図1及び図2に沿っ
て実施例を説明する。一次粒子の粒径が50nm以下の
酸化ニッケルの粉末と、粒径が前記酸化ニッケルの粉末
以下である酸化アルミニウムの粉末(粒成長抑制材)1
を均一に混合し、次いで水素雰囲気下で還元してニッケ
ル(金属触媒)2に対して体積比で5%酸化アルミニウ
ムが混合している微粉末を作製する。
(Embodiment 1) An embodiment will be described with reference to FIG. 1 and FIG. Nickel oxide powder having a primary particle size of 50 nm or less, and aluminum oxide powder (grain growth suppressing material) having a particle size of not more than the nickel oxide powder 1
Are uniformly mixed and then reduced under a hydrogen atmosphere to produce a fine powder in which 5% by volume of aluminum oxide is mixed with respect to nickel (metal catalyst) 2.

【0029】微粉末作製後は、大気に出すことなく、連
続的に焼結炉に導入して、気孔率が90%の1000m
m3の立方体形状多孔質体を形成した。
After the fine powder is produced, it is continuously introduced into a sintering furnace without being exposed to the atmosphere, and has a porosity of 90% of 1000 m
A cubic porous body of m3 was formed.

【0030】形成後は、さらに同一炉内にエチレンと水
素の1:4の混合ガスを導入し、600℃の条件でカー
ボンナノチューブ(炭素繊維)3の合成を行なった。
After the formation, a mixed gas of ethylene and hydrogen (1: 4) was further introduced into the same furnace, and carbon nanotubes (carbon fibers) 3 were synthesized at 600 ° C.

【0031】合成後、電気炉外に取り出して、気孔率を
測定したところ、7%であった。合成の手順は図1に示
す。
After the synthesis, it was taken out of the electric furnace and the porosity was measured to be 7%. The procedure of the synthesis is shown in FIG.

【0032】引き続き、前記、カーボンナノチューブと
遷移金属多孔質体の複合体を水素吸蔵装置を用いて、室
温−10気圧の水素雰囲気下での吸蔵評価を行なったと
ころ、0.1gの水素を吸蔵した。(比較例1)一方、
容積が1000mm3の立方体形状の金型内部に10t
のプレス圧力で実施例1で合成されたカーボンナノファ
イバーと同じものを充填した。このカーボンナノファイ
バーのプレス体の気孔率を測定したところ、45%であ
った。
Subsequently, the composite of the carbon nanotube and the transition metal porous body was evaluated for occlusion in a hydrogen atmosphere at room temperature and -10 atm using a hydrogen occlusion apparatus. did. (Comparative Example 1) On the other hand,
10 tons inside a cubic mold with a volume of 1000 mm3
The same carbon nanofibers as those synthesized in Example 1 were filled at a press pressure of. The porosity of the carbon nanofiber pressed body was measured and found to be 45%.

【0033】前記カーボンナノファイバーのプレス体
(水素吸蔵体4)を水素吸蔵評価装置に導入し、実施例
1と同一条件で水素吸蔵評価を行なったところ、0.0
6gの水素を吸蔵した。
The pressed body of carbon nanofibers (hydrogen storage body 4) was introduced into a hydrogen storage evaluation apparatus, and hydrogen storage evaluation was performed under the same conditions as in Example 1.
6 g of hydrogen were stored.

【0034】[0034]

【発明の効果】以上の様に、本発明により、水素吸蔵炭
素系材料の充填率が高く、水素吸蔵量の大きなエネルギ
ー貯蔵体を作製することができる
As described above, according to the present invention, it is possible to manufacture an energy storage unit having a high filling rate of the hydrogen storage carbon material and a large hydrogen storage amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明する図FIG. 1 is a diagram illustrating an embodiment of the present invention.

【図2】本発明の実施例を説明する図FIG. 2 is a diagram illustrating an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 粒成長抑制材 2 金属触媒 3 炭素繊維 4 水素吸蔵体 1 Grain Growth Inhibitor 2 Metal Catalyst 3 Carbon Fiber 4 Hydrogen Storage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五戸 康広 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 Fターム(参考) 4G040 AA32 AA34 AA42 4G046 CB01 CB08  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuhiro Gonohe 1-term, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa F-term in the Toshiba R & D Center (reference) 4G040 AA32 AA34 AA42 4G046 CB01 CB08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体の孔の内部に炭素繊維が充填さ
れていることを特徴とする水素吸蔵体において、多孔質
体が金属と非金属無機材料の混合体で構成されているこ
とを特徴とする、水素吸蔵体。
1. A hydrogen storage body characterized in that carbon fibers are filled in pores of a porous body, wherein the porous body is made of a mixture of a metal and a nonmetallic inorganic material. Characterized by hydrogen storage.
【請求項2】 請求項1記載の多孔質体が、水素吸蔵合
金を構成相として含有することを特徴とする水素吸蔵
体。
2. The hydrogen storage body according to claim 1, wherein the porous body contains a hydrogen storage alloy as a constituent phase.
【請求項3】 請求項1及び2記載の多孔質体と混合し
ている非金属無機材料の粒径が多孔質体を構成する金属
粒子の粒径より小さいことを特徴とする水素吸蔵体。
3. A hydrogen storage material, wherein the nonmetallic inorganic material mixed with the porous material according to claim 1 or 2 has a smaller particle size than the metal particles constituting the porous material.
JP11093910A 1999-03-31 1999-03-31 Hydrogen occlusion body Pending JP2000281303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11093910A JP2000281303A (en) 1999-03-31 1999-03-31 Hydrogen occlusion body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11093910A JP2000281303A (en) 1999-03-31 1999-03-31 Hydrogen occlusion body

Publications (1)

Publication Number Publication Date
JP2000281303A true JP2000281303A (en) 2000-10-10

Family

ID=14095642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11093910A Pending JP2000281303A (en) 1999-03-31 1999-03-31 Hydrogen occlusion body

Country Status (1)

Country Link
JP (1) JP2000281303A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849573B2 (en) 1999-12-15 2005-02-01 Nissan Motor Co., Ltd. Methanol reforming catalyst
US7189472B2 (en) 2001-03-28 2007-03-13 Kabushiki Kaisha Toshiba Fuel cell, electrode for fuel cell and a method of manufacturing the same
JP2010502840A (en) * 2006-09-11 2010-01-28 シー・アンド・テク・カンパニー・リミテッド Composite sintered material using carbon nanotube and method for producing the same
US7838165B2 (en) 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof
JP2011255314A (en) * 2010-06-09 2011-12-22 Hiroshima Univ Hydrogen storage material and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849573B2 (en) 1999-12-15 2005-02-01 Nissan Motor Co., Ltd. Methanol reforming catalyst
US7189472B2 (en) 2001-03-28 2007-03-13 Kabushiki Kaisha Toshiba Fuel cell, electrode for fuel cell and a method of manufacturing the same
US7838165B2 (en) 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof
US8580462B2 (en) 2004-07-02 2013-11-12 Kabushiki Kaisha Toshiba Electrode catalyst material comprising carbon nano-fibers having catalyst particles on the surface and in the insides of the interior area and a fuel cell having the electrode catalyst material
JP2010502840A (en) * 2006-09-11 2010-01-28 シー・アンド・テク・カンパニー・リミテッド Composite sintered material using carbon nanotube and method for producing the same
US8506922B2 (en) 2006-09-11 2013-08-13 C & Tech Co., Ltd. Composite sintering materials using carbon nanotube and manufacturing method thereof
US8562938B2 (en) 2006-09-11 2013-10-22 Sang-Chul Ahn Composite sintering materials using carbon nanotube and manufacturing method thereof
JP2011255314A (en) * 2010-06-09 2011-12-22 Hiroshima Univ Hydrogen storage material and method for producing the same

Similar Documents

Publication Publication Date Title
Zhang et al. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis
US20060165988A1 (en) Carbon nanoparticles and composite particles and process of manufacture
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
JP5164935B2 (en) Magnesium-based hydrogen storage materials
TWI408240B (en) Reticulated foam-like structure formed of nano-scale particulate
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
CN100368074C (en) Nano composite hydrogen-storing material and preparing method
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
WO2007018291A1 (en) Hydrogen-storage alloy, process for producing the same, hydrogen-storage alloy electrode, and secondary cell
JP2001527017A (en) Method for producing nanocrystalline metal hydride
JPH0135761B2 (en)
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
Jurczyk Handbook of nanomaterials for hydrogen storage
JP2000281303A (en) Hydrogen occlusion body
JP2004196634A (en) Hydride powder used for hydrogen storing/discharging system
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JP2006051473A (en) Hydrogen storing/releasing catalyst and hydrogen storing compound material using the same
JP2000281324A (en) Hydrogen occlusion body
JP2005186058A (en) Magnesium-based hydrogen occluding material and lithium-based hydrogen occluding material
JP2006290660A (en) Hydrogen generating medium and manufacturing method for the same
JP2008095151A (en) Method for producing hydrogen storage material and hybrid powder
JP2007046119A (en) METHOD FOR PRODUCING Mg2Ni ALLOY, AND ITS UTILIZATION
JP2004360037A (en) Hydrogen storage alloy, and hydrogen storage material
JP7417026B1 (en) Hydrogen production catalyst and its production method, and hydrogen production method
JP2004292838A (en) Hydrogen storage alloy and manufacturing method