JP2000279795A - Supercritical water reaction device - Google Patents

Supercritical water reaction device

Info

Publication number
JP2000279795A
JP2000279795A JP11090631A JP9063199A JP2000279795A JP 2000279795 A JP2000279795 A JP 2000279795A JP 11090631 A JP11090631 A JP 11090631A JP 9063199 A JP9063199 A JP 9063199A JP 2000279795 A JP2000279795 A JP 2000279795A
Authority
JP
Japan
Prior art keywords
reactor
tube
pipe
supercritical water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11090631A
Other languages
Japanese (ja)
Other versions
JP3801807B2 (en
JP2000279795A5 (en
Inventor
Shinichirou Kawasaki
慎一朗 川崎
Hiroshi Suzugaki
裕志 鈴垣
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP09063199A priority Critical patent/JP3801807B2/en
Publication of JP2000279795A publication Critical patent/JP2000279795A/en
Publication of JP2000279795A5 publication Critical patent/JP2000279795A5/ja
Application granted granted Critical
Publication of JP3801807B2 publication Critical patent/JP3801807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical water reaction device capable of continuing supercritical water reaction at a stable reaction temp. even at the time of feeding a liquid to be treated, which contains a water soluble organic material, and a hydrophobia organic material simultaneously to a reactor. SOLUTION: The super critical water reaction device 40 has the same structure of flow out lines of a reactor and after the reactor as the conventional supercritical water reaction device except the use of a three fluid nozzle in place of a two fluid nozzle and the change in accordance with the use of the three fluid nozzle. The device 40 is provided with a 1st feed pipe 42 for feeding a 1st material to be treated, which contains mainly water and the water soluble organic material and containing substantially no hydrophobic organic material, to the reactor 12, a 1st pump 44 for liquid to be treated for feeding the 1st liquid to be treated to the reactor 12 through the 1st feed pipe 42 and a 2nd feed pipe 46 for feeding the assistant fuel composed of the hydrophobic organic material to the reactor 12. Each of the air feed pipe 26, the 1st feed pipe and the 2nd feed pipe is connected respectively to the circular part between the outside pipe and the middle pipe, the circular part between the middle pipe and the inside pipe and the inside pipe of the three fluid nozzle 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶性有機物を含
む被処理液に加えて、疎水性有機物を反応器に送入して
超臨界水反応により有機物を処理する超臨界水反応装置
に関し、更に詳細には、有機物のチャーリングを引き起
こすことなく、被処理液及び疎水性有機物を含む流体を
安定して反応器に送入し、安定した反応温度で超臨界水
反応を持続させるようにした超臨界水反応装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water reactor in which a hydrophobic organic substance is fed into a reactor in addition to a liquid to be treated containing a water-soluble organic substance, and the organic substance is treated by a supercritical water reaction. More specifically, the liquid to be treated and the fluid containing the hydrophobic organic substance are stably fed into the reactor without causing the charring of the organic substance, and the supercritical water reaction is maintained at a stable reaction temperature. It relates to a supercritical water reactor.

【0002】[0002]

【従来の技術】環境問題に対する認識の高まりと共に、
有機物の酸化、分解能力の高い超臨界水反応を利用し
て、環境汚染物質を分解、無害化する試みが注目されて
いる。すなわち、超臨界水の高い反応性を利用した超臨
界水反応により、従来技術では分解することが難しかっ
た有害な難分解性の有機物、例えば、PCB(ポリ塩素
化ビフェニル)、ダイオキシン、有機塩素系溶剤等を分
解して、二酸化炭素、窒素、水、無機塩などの無害な生
成物に転化する試みである。
2. Description of the Related Art With increasing awareness of environmental issues,
Attention has been paid to attempts to decompose and detoxify environmental pollutants by utilizing supercritical water reaction, which has high ability to oxidize and decompose organic substances. That is, harmful and hardly decomposable organic substances, such as PCB (polychlorinated biphenyl), dioxin, and organic chlorinated compounds, which were difficult to decompose in the related art by supercritical water reaction utilizing high reactivity of supercritical water. It is an attempt to decompose a solvent or the like and convert it into harmless products such as carbon dioxide, nitrogen, water, and inorganic salts.

【0003】超臨界水反応装置とは、超臨界水の高い反
応性を利用して有機物を分解する装置であって、例え
ば、難分解性の有害な有機物を分解して無害な二酸化炭
素と水に転化したり、難分解性の高分子化合物を分解し
て有用な低分子化合物に転化したりするために、現在、
その実用化が盛んに研究されている。超臨界水とは、超
臨界状態にある水、即ち、水の臨界点を越えた状態にあ
る水を言い、詳しくは、374.1℃以上の温度で、か
つ22.04MPa以上の圧力下にある状態の水を言
う。超臨界水は、有機物を溶解する溶解能が高く、有機
化合物に多い非極性物質をも完全に溶解することができ
る一方、逆に、金属、塩等の無機物に対する溶解能は著
しく低い。また、超臨界水は、酸素や窒素などの気体と
任意の割合で混合して単一相を構成することができる。
[0003] A supercritical water reactor is a device that decomposes organic substances by using high reactivity of supercritical water. For example, harmful organic substances that are hardly decomposable are decomposed and harmless carbon dioxide and water are decomposed. In order to convert the hard-to-decompose high-molecular compounds into useful low-molecular compounds,
Its practical application is being actively studied. Supercritical water refers to water that is in a supercritical state, that is, water that is in a state beyond the critical point of water, and specifically, at a temperature of 374.1 ° C. or more and a pressure of 22.04 MPa or more. A state of water. Supercritical water has a high ability to dissolve organic substances and can completely dissolve non-polar substances, which are abundant in organic compounds, but has a very low ability to dissolve inorganic substances such as metals and salts. The supercritical water can be mixed with a gas such as oxygen or nitrogen at an arbitrary ratio to form a single phase.

【0004】ここで、図6及び図7を参照して、従来の
超臨界水反応装置の基本的な構成を説明する。図6は従
来の超臨界水反応装置の構成を示すフローシートであ
る。図7(a)は二流体ノズルの部分縦断面図、図7
(b)は図7(a)の線III −III での横断面図であ
る。超臨界水反応装置10は、有機物を含む被処理液を
超臨界水の存在下で超臨界水反応により処理する装置で
あって、図6に示すように、超臨界水反応を行う反応器
として、縦型の耐圧密閉型反応器12を備え、反応器1
2から処理液を流出させる処理液管14に、順次、処理
液を冷却する冷却器16、反応器12内の圧力を制御す
る圧力制御弁18、及び、処理液をガスと液体とに気液
分離する気液分離器20を備えている。尚、縦型反応容
器は、通常、固形物の含有率が低い被処理液を処理する
際に適しており、固形物の含有率が高い被処理液を処理
する際には、パイプ状のチューブラー反応器を使用する
ことが多い。
Here, the basic configuration of a conventional supercritical water reactor will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a flow sheet showing the configuration of a conventional supercritical water reactor. FIG. 7A is a partial longitudinal sectional view of a two-fluid nozzle, and FIG.
FIG. 7B is a cross-sectional view taken along line III-III in FIG. The supercritical water reactor 10 is a device for treating a liquid to be treated containing an organic substance by a supercritical water reaction in the presence of supercritical water, and as shown in FIG. , A vertical pressure-resistant closed type reactor 12,
A cooling liquid 16 for cooling the processing liquid, a pressure control valve 18 for controlling the pressure in the reactor 12, and a processing liquid for converting the processing liquid into a gas and a liquid. A gas-liquid separator 20 for separation is provided. The vertical reaction vessel is usually suitable for treating a liquid to be treated having a low solid content, and a pipe-shaped tube is preferably used for treating a liquid to be treated having a high solid content. Often, a reactor is used.

【0005】超臨界水反応装置10は、超臨界水反応に
供する反応物を反応器12に供給する供給系統として、
有機物を含む被処理液を被処理液管22を介して反応器
12に送入する被処理液ポンプ24と、酸化剤として空
気を空気送入管26を介して反応器12に送入する空気
圧縮機28とを備えている。更に、超臨界水反応装置1
0は、必要に応じて、反応器12での超臨界水反応を維
持するのに必要な熱エネルギー源として石油系炭化水素
油等の疎水性有機物からなる補助燃料を反応器12に送
入する補助燃料管30、反応器12で超臨界水反応によ
り処理液中の有機物から発生した塩素等を中和するアル
カリ剤を反応器12に送入するアルカリ剤送入管31を
被処理液管22に合流させさせている。なお、被処理液
中の水分が不足し、超臨界水反応が維持できない場合
は、被処理水管22に補給水を加えるための補給水管
(図示せず)を接続することもある。
[0005] The supercritical water reactor 10 has a supply system for supplying a reactant to be used for the supercritical water reaction to the reactor 12.
A liquid pump 24 for feeding a liquid to be treated containing an organic substance into the reactor 12 via a liquid pipe 22 for treatment, and an air for supplying air as an oxidant to the reactor 12 via an air supply pipe 26. And a compressor 28. Further, the supercritical water reactor 1
0 indicates that an auxiliary fuel composed of a hydrophobic organic substance such as petroleum hydrocarbon oil is supplied to the reactor 12 as a heat energy source necessary for maintaining the supercritical water reaction in the reactor 12 as necessary. The auxiliary fuel pipe 30 and the alkali agent feed pipe 31 for feeding an alkali agent for neutralizing chlorine and the like generated from organic matter in the processing liquid by the supercritical water reaction in the reactor 12 to the reactor 12 are connected to the liquid pipe 22 to be treated. To join. When the water in the liquid to be treated is insufficient and the supercritical water reaction cannot be maintained, a water supply pipe (not shown) for adding makeup water to the water pipe to be treated 22 may be connected.

【0006】被処理液管22と空気送入管26とは、二
流体ノズル34を介して反応器12に接続されている。
二流体ノズル34は、図7に示すように、内管36と外
管38とからなる二重管として構成され、外管38の先
端部38aが縮径して、先端の環状開口面積が上流の環
状面積より急激に小さくなっている。そして、被処理液
22は二流体ノズル34の内管36に接続され、空気送
入管26は内管36と外管38とからなる環状部39に
接続されている。
The liquid pipe 22 to be treated and the air inlet pipe 26 are connected to the reactor 12 via a two-fluid nozzle 34.
As shown in FIG. 7, the two-fluid nozzle 34 is configured as a double pipe composed of an inner pipe 36 and an outer pipe 38, and the distal end portion 38a of the outer pipe 38 has a reduced diameter, so that the annular opening area at the distal end is upstream. It is sharply smaller than the annular area. The liquid to be treated 22 is connected to an inner pipe 36 of a two-fluid nozzle 34, and the air inlet pipe 26 is connected to an annular portion 39 composed of an inner pipe 36 and an outer pipe 38.

【0007】以上の構成により、二流体ノズル34は、
外管38の先端部38aから噴出する空気のアトマイジ
ング効果により、内管36から被処理液を噴霧状で反応
器12内に噴射させることができる。また、二流体ノズ
ル34で被処理液を内管36に流し、環状部39に空気
を流しているのは、二流体ノズル34と反応器12との
接続部で、内管36を流れる被処理液中の有機物が反応
器12の熱によって加熱され、チャーリング(炭化)す
ることがないように、環状部39を流れる空気によって
反応器12から内管36を断熱する効果もある。
With the above configuration, the two-fluid nozzle 34 is
Due to the atomizing effect of the air ejected from the distal end portion 38a of the outer tube 38, the liquid to be treated can be sprayed into the reactor 12 from the inner tube 36 in a spray form. The liquid to be treated flows through the inner pipe 36 by the two-fluid nozzle 34 and the air flows through the annular portion 39 at the connection between the two-fluid nozzle 34 and the reactor 12. The air flowing through the annular portion 39 also has the effect of insulating the inner tube 36 from the reactor 12 so that the organic matter in the liquid is not heated by the heat of the reactor 12 and charred (carbonized).

【0008】なお、被処理液と処理液とを熱交換させて
処理液を冷却するとともに被処理液を昇温して熱回収を
図る熱交換器(図示せず)を冷却器16の上流の処理液
管14に、又は被処理液を予熱する予熱器を反応器12
の上流の被処理液管22に設けることもある。また、超
臨界水の補給水管32を被処理液管22に接続すること
もある。更には、反応器12の下部に亜臨界水領域を設
け、反応器12内で生じた無機塩類を亜臨界水領域に沈
降させ、除去する機構を設けることもある。
A heat exchanger (not shown) for exchanging heat between the liquid to be processed and the processing liquid to cool the processing liquid and to recover the heat by heating the liquid to be processed is provided upstream of the cooler 16. A preheater for preheating the liquid to be treated is provided in the reactor 12
May be provided in the liquid pipe 22 to be processed, which is located upstream of the pipe. In some cases, the supercritical water supply water pipe 32 is connected to the liquid pipe 22 to be treated. Further, a subcritical water region may be provided in the lower portion of the reactor 12, and a mechanism may be provided to settle and remove inorganic salts generated in the reactor 12 in the subcritical water region.

【0009】[0009]

【発明が解決しようとする課題】しかし、ベッセル型の
反応器を反応器として使用している従来の超臨界水反応
装置で、処理対象として水溶性有機物を含む第1の被処
理液と、処理対象として疎水性有機物を含む第2の被処
理液とを同時に同じ被処理液管及び二流体ノズルを介し
て反応器に送入するときには、反応器の反応温度が安定
しないという問題があった。例えば、ある時には反応温
度が上限温度に近くなり、あるときには反応温度が下限
温度に近くなり、超臨界水反応の進行が極めて不安定に
なって、超臨界水反応を安定して持続させることが難し
かった。これは、第1の被処理液と、疎水性有機物を主
成分とする補助燃料とを同時に同じ被処理液管及び二流
体ノズルを介して反応器に送入するときにも、第2の被
処理液と場合と同様に、反応温度が不安定で変動すると
いう問題があった。
However, in a conventional supercritical water reactor using a Vessel type reactor as a reactor, a first liquid to be treated containing a water-soluble organic substance as a treatment target, When simultaneously feeding a second liquid to be treated containing a hydrophobic organic substance to the reactor through the same liquid tube and two-fluid nozzle, there is a problem that the reaction temperature of the reactor is not stable. For example, in some cases, the reaction temperature approaches the upper limit temperature, and in some cases, the reaction temperature approaches the lower limit temperature, the progress of the supercritical water reaction becomes extremely unstable, and the supercritical water reaction can be stably maintained. was difficult. This is because when the first liquid to be treated and the auxiliary fuel mainly composed of a hydrophobic organic substance are simultaneously fed into the reactor via the same liquid to be treated and the two-fluid nozzle, the second liquid As in the case of the treatment liquid, there is a problem that the reaction temperature is unstable and fluctuates.

【0010】そこで、本発明の目的は、水溶性有機物を
含む被処理液及び疎水性有機物を同時に反応器に送入す
る際にも、安定した反応温度で超臨界水反応を持続させ
るようにした超臨界水反応装置を提供することである。
Therefore, an object of the present invention is to maintain the supercritical water reaction at a stable reaction temperature even when the liquid to be treated containing a water-soluble organic substance and a hydrophobic organic substance are simultaneously fed into a reactor. It is to provide a supercritical water reactor.

【0011】[0011]

【課題を解決するための手段】本発明者は、実験を重ね
た過程で、水溶性有機物を含む被処理液と疎水性有機物
とを同時に反応器に送入した際に反応温度が不安定にな
るのは、次の現象に起因することを見い出した。従来の
超臨界水反応装置では、被処理液と疎水性有機物とを同
時に送る被処理液管内で、水不溶性で水から分離し易い
という疎水性有機物の性質に起因して、疎水性有機物が
被処理液の水から分離して被処理液中でブロック化し、
被処理液と、疎水性有機物ブロックとが、プラグ流れに
近い形態で被処理液管から反応器に流入する。即ち、有
機物濃度が高いブロックと、有機物濃度が低いブロック
とに分離して、反応器に流入する。その結果、有機物濃
度が高いブロックが反応器に流入すると、超臨界水反応
が急激に進行して反応温度が上昇する。逆に、有機物濃
度が低いブロックが流入し続けると、発熱量が不足し
て、反応温度が低下するということを見い出した。即
ち、反応温度の不安定性は、有機物が被処理液中に分散
した状態で反応器に流入しないからであることを見い出
した。
Means for Solving the Problems In the course of repeated experiments, the present inventors have found that the reaction temperature becomes unstable when a liquid to be treated containing a water-soluble organic substance and a hydrophobic organic substance are simultaneously fed into a reactor. Has been found to be caused by the following phenomenon. In the conventional supercritical water reactor, the hydrophobic organic substance is coated in the liquid pipe to be processed, which simultaneously sends the liquid to be processed and the hydrophobic organic substance, due to the property of the hydrophobic organic substance, which is insoluble in water and easily separated from water. Separated from the water of the processing liquid and blocked in the liquid to be processed,
The liquid to be treated and the hydrophobic organic substance block flow into the reactor from the liquid to be treated pipe in a form close to the plug flow. That is, a block having a high organic substance concentration and a block having a low organic substance concentration are separated and flow into the reactor. As a result, when a block having a high organic substance concentration flows into the reactor, the supercritical water reaction rapidly proceeds, and the reaction temperature rises. Conversely, it has been found that when a block having a low organic substance concentration continues to flow, the calorific value becomes insufficient and the reaction temperature decreases. That is, it has been found that the instability of the reaction temperature is due to the fact that the organic matter does not flow into the reactor in a state of being dispersed in the liquid to be treated.

【0012】そこで、本発明者は、被処理液と補助燃料
とを別々に反応器に送入することを着想し、第1の発明
を完成するに到った。第1の発明を実現する第1の手段
は、二流体ノズルに代えて三流体ノズルを使用し、反応
器内で超臨界水に分散流入する被処理液中に疎水性有機
物を分散させる、又は疎水性有機物と被処理液とを同時
に超臨界水中に分散させる。第2の手段は、二つの二流
体ノズルを使い、一方の二流体ノズルでは被処理液と空
気とを送入し、他方の二流体ノズルでは、補助燃料と空
気とを送入する。なお、二流体ノズルの環状部に、空気
と、水、又は水溶性有機物とを供給し、内管に疎水性有
機物を流通させたところ、反応温度は多少安定するもの
の、環状部を流れる流体の断熱効果が乏しく、内管を流
れる疎水性有機物が加熱されて、チャーリングを引き起
こし、内管を閉塞させるおそれがあることが判った。
The inventor of the present invention has conceived of separately feeding the liquid to be treated and the auxiliary fuel into the reactor, and has completed the first invention. A first means for realizing the first invention is to use a three-fluid nozzle instead of a two-fluid nozzle, and disperse a hydrophobic organic substance in a liquid to be treated dispersedly flowing into supercritical water in a reactor, or The hydrophobic organic substance and the liquid to be treated are simultaneously dispersed in supercritical water. The second means uses two two-fluid nozzles, and one of the two-fluid nozzles sends the liquid to be treated and air, and the other two-fluid nozzle sends the auxiliary fuel and air. In addition, when air and water or a water-soluble organic substance were supplied to the annular portion of the two-fluid nozzle and the hydrophobic organic material was allowed to flow through the inner tube, the reaction temperature was somewhat stabilized, but the flow of the fluid flowing through the annular portion was reduced. It has been found that the heat insulating effect is poor, and the hydrophobic organic substance flowing through the inner tube is heated, which may cause charring and block the inner tube.

【0013】上記目的を達成するために、上述の知見に
基づいて、本発明に係る超臨界水反応装置(以下、第1
の発明という)は、超臨界水を収容する縦型反応器を備
え、主として水と水溶性有機物を含み、疎水性有機物を
実質的に含まない第1の被処理液に加えて、主として疎
水性有機物を含む第2の被処理液と、主として疎水性有
機物からなる補助燃料の少なくともいずれか一方を反応
器に送入し、かつ、酸化剤として酸素含有ガスを反応器
に供給して、超臨界水の存在下で有機物と酸素との超臨
界水反応を行う超臨界水反応装置であって、第1の被処
理液を反応器に送入する第1の送入手段と、第2の被処
理液及び補助燃料の少なくともいずれか一方を反応器に
送入する第2の送入手段とを備えていることを特徴とし
ている。
In order to achieve the above object, based on the above-mentioned findings, a supercritical water reactor according to the present invention (hereinafter referred to as the first
The invention comprises a vertical reactor containing supercritical water, which mainly contains water and a water-soluble organic substance, and further comprises a first liquid to be treated which is substantially free of a hydrophobic organic substance. A second liquid containing an organic substance and at least one of an auxiliary fuel mainly composed of a hydrophobic organic substance are fed into the reactor, and an oxygen-containing gas is supplied to the reactor as an oxidizing agent to form a supercritical fluid. A supercritical water reactor for performing a supercritical water reaction between an organic substance and oxygen in the presence of water, comprising: a first feeding means for feeding a first liquid to be treated into a reactor; And a second feeding means for feeding at least one of the processing liquid and the auxiliary fuel into the reactor.

【0014】第1の発明の好適な実施態様は、第1の送
入手段、第2の送入手段、及び酸素含有ガスの送入手段
として、反応器の反応物入口に三流体ノズルを設け、三
流体ノズルが、内管と、内管を挿入させた中管と、内管
及び中管を挿入させた外管とによって、流路として外管
と中管とからなる第1環状部と、中管と内管とからなる
第2環状部と、内管とを備えた三重管として構成され、
三重管の先端部で外管が縮径し、第1環状部の先端環状
開口部の面積が、上流の第1の環状部の面積より小さ
く、酸素含有ガスの送入手段として設けられたガス送入
管が第1環状部に、第1の送入手段として設けられた第
1の送入管が第2環状部に、第2の送入手段として設け
られた第2の送入管が内管に、それぞれ、接続されてい
る。
In a preferred embodiment of the first invention, a three-fluid nozzle is provided at the reactant inlet of the reactor as the first feeding means, the second feeding means, and the oxygen-containing gas feeding means. A three-fluid nozzle, an inner tube, a middle tube into which the inner tube is inserted, and an inner tube and an outer tube into which the middle tube is inserted; , A second annular portion comprising a middle tube and an inner tube, and a triple tube having an inner tube,
The outer tube is reduced in diameter at the distal end of the triple tube, the area of the distal annular opening of the first annular portion is smaller than the area of the upstream first annular portion, and the gas provided as the oxygen-containing gas supply means is provided. The inlet pipe is provided in the first annular section, the first inlet pipe provided as the first inlet means is provided in the second annular section, and the second inlet pipe provided as the second inlet means is provided in the first annular section. Each is connected to the inner pipe.

【0015】酸素含有ガス、第1の処理液、及び、第2
の処理液と補助燃料との少なくともいずれかを三流体ノ
ズルに別々に供給し、酸素含有ガスにってアトマイジン
クさせることにより、第2の処理液及び補助燃料を超臨
界水中に又は超臨界水中に分散する第1の被処理液中に
均一に分散させることできる。また、酸素含有ガスを送
入するガス送入管が外管と中管とからなる第1環状部
に、第1の被処理液を送入する第1の送入管が中管と内
管とからなる第2環状部に、第2の被処理液及び補助燃
料の少なくともいずれ一方を送入する第2の送入管が内
管に、それぞれ、接続されていることにより、第1環状
部を流れる酸素含有ガスの断熱効果により、内管を流れ
る第2の被処理液又は補助燃料のチャーリングを防止す
ることができる。
An oxygen-containing gas, a first processing solution, and a second
By separately supplying at least one of the processing liquid and the auxiliary fuel to the three-fluid nozzle and atomizing with an oxygen-containing gas, the second processing liquid and the auxiliary fuel are supercritical water or supercritical water. It can be uniformly dispersed in the first liquid to be dispersed. Further, a gas feed pipe for feeding an oxygen-containing gas is provided in a first annular portion formed of an outer pipe and a middle pipe, and a first feed pipe for feeding a first liquid to be treated is provided with a middle pipe and an inner pipe. By connecting a second feed pipe for feeding at least one of the second liquid to be processed and the auxiliary fuel to the inner pipe to the second annular section consisting of: Due to the heat-insulating effect of the oxygen-containing gas flowing through the inner pipe, it is possible to prevent the second liquid to be processed or the auxiliary fuel from flowing through the inner tube.

【0016】また、本発明の好適な実施態様では、内管
の外周面又は内周面に沿って断熱層が設けてある。断熱
層の断熱効果により、内管を流れる疎水性有機物への熱
伝導を防止して、一層効果的に疎水性有機物のチャーリ
ングを防止することができる。なお、断熱層は、熱伝導
性の低い物質層であれば良く、例えば空気層や、多数の
独立気泡を有するセラミックやパーミキュライトなどの
層を使用することができる。
In a preferred embodiment of the present invention, a heat insulating layer is provided along the outer peripheral surface or the inner peripheral surface of the inner tube. Due to the heat insulating effect of the heat insulating layer, it is possible to prevent heat conduction to the hydrophobic organic substance flowing through the inner tube and to more effectively prevent the charring of the hydrophobic organic substance. The heat-insulating layer may be a material layer having low thermal conductivity, and for example, an air layer or a layer of ceramics or permiculite having many closed cells can be used.

【0017】また、本発明の好適な別の実施態様では、
反応器の反応物入口に2個の二流体ノズルを設け、2個
の二流体ノズルは、それぞれ、内管と、内管を挿入させ
た外管とによって、流路として外管と内管とからなる環
状部と、内管とを備えた二重管として構成され、二重管
の先端部で外管が縮径し、環状部の先端環状開口部の面
積が、上流の環状部の面積より小さく、第1の送入手段
として設けられた第1の送入管が一方の二流体ノズルの
内管に、第2の送入手段として設けられた第2の送入管
が他方の二流体ノズルの内管に、それぞれ、接続され、
かつ、酸素含有ガスの送入手段として設けられたガス送
入管から分岐した2本の分岐管が、それぞれ、一方の二
流体ノズルの環状部及び他方の二流体ノズルの環状部に
接続されている。
In another preferred embodiment of the present invention,
Two two-fluid nozzles are provided at the reactant inlet of the reactor, and the two two-fluid nozzles each have an inner tube and an outer tube into which the inner tube is inserted, and an outer tube and an inner tube as flow paths. The outer pipe is reduced in diameter at the distal end of the double pipe, and the area of the annular opening at the distal end of the annular section is equal to the area of the upstream annular section. The first inlet pipe provided as the first inlet means is smaller than the inner pipe of one of the two fluid nozzles, and the second inlet pipe provided as the second inlet means is provided with the other inlet pipe. Respectively connected to the inner pipe of the fluid nozzle,
Further, two branch pipes branched from a gas feed pipe provided as a means for feeding an oxygen-containing gas are connected to an annular portion of one two-fluid nozzle and an annular portion of the other two-fluid nozzle, respectively. I have.

【0018】[0018]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面を参照して、本発明の実施の形態を具体的かつ詳細
に説明する。実施形態例1 本実施形態例は、第1の発明に係る超臨界水反応装置の
実施形態の一例であって、図1は本実施形態例の超臨界
水反応装置の構成を示すフローシート、図2(a)は本
実施形態例で使用する三流体ノズルの構造を示す縦部分
断面図、図2(b)は図2(a)の線I−Iでの横断面
図である。図1に示す部品のうち、図6と同じものには
同じ符号を付し、その説明を省略する。本実施形態例の
超臨界水反応装置40は、二流体ノズルに代えて三流体
ノズルを使用すること、三流体ノズルの使用に伴う変更
を除いて、反応器及び反応器以降の流出系統の構成は、
前述の従来の超臨界水反応装置と同じ構成を備えてい
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 This embodiment is an example of an embodiment of the supercritical water reactor according to the first invention, and FIG. 1 is a flow sheet showing the configuration of the supercritical water reactor of this embodiment. FIG. 2A is a vertical partial sectional view showing the structure of a three-fluid nozzle used in the present embodiment, and FIG. 2B is a transverse sectional view taken along line II of FIG. 2A. Among the components shown in FIG. 1, the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted. The supercritical water reactor 40 of the present embodiment uses a three-fluid nozzle instead of a two-fluid nozzle, except for a change accompanying the use of a three-fluid nozzle, the configuration of a reactor and an outflow system after the reactor. Is
It has the same configuration as the above-described conventional supercritical water reactor.

【0019】超臨界水反応装置40は、図1に示すよう
に、主として水と水溶性有機物を含み、疎水性有機物を
実質的に含まない第1の被処理液を反応器12送入する
第1の送入管42、第1の送入管42を介して第1の被
処理液を反応器12に送入する第1の被処理液ポンプ4
4と、疎水性有機物からなる補助燃料を反応器12に送
入する第2の送入管46とを備えている。アルカリ剤送
入管31は、第1の送入管42に接続されている。第1
の送入管42、第2の送入管46及び空気送入管26
は、三流体ノズル50を介して反応器12に接続されて
いる。
As shown in FIG. 1, the supercritical water reactor 40 feeds a first liquid to be treated which mainly contains water and a water-soluble organic substance and contains substantially no hydrophobic organic substance to the reactor 12. A first to-be-processed liquid pump 4 which feeds the first to-be-processed liquid into the reactor 12 via the first feed pipe 42 and the first feed pipe 42
4 and a second inlet pipe 46 for feeding an auxiliary fuel made of a hydrophobic organic substance into the reactor 12. The alkali agent feed pipe 31 is connected to a first feed pipe 42. First
Inlet pipe 42, second inlet pipe 46 and air inlet pipe 26
Is connected to the reactor 12 via a three-fluid nozzle 50.

【0020】本実施形態例の反応器で使用する三流体ノ
ズル50は、図1に示すように、内管52と、内管52
を挿入させた中管54と、内管52及び中管54を挿入
させた外管56とからなる三重管として構成されてい
て、流路として、中管54と外管56とによって区画さ
れた第1環状部58、内管52と中管54とによって区
画された第2環状部60、及び、内管52の3流路を有
する。三重管の先端部62で外管56が縮径し、第1環
状部58は、先端の環状開口部の面積が上流の環状流路
の面積より小さくなっている。第1環状部58は空気送
入管26に、第2環状部60は第1の送入管42に、及
び、内管52は第2の送入管46に、それぞれ、接続さ
れている。
As shown in FIG. 1, the three-fluid nozzle 50 used in the reactor of this embodiment has an inner pipe 52 and an inner pipe 52.
Is formed as a triple tube composed of a middle tube 54 into which the inner tube 52 is inserted, and an inner tube 52 and an outer tube 56 into which the middle tube 54 is inserted, and is divided by the middle tube 54 and the outer tube 56 as a flow path. It has a first annular portion 58, a second annular portion 60 defined by the inner pipe 52 and the middle pipe 54, and three flow paths of the inner pipe 52. The outer tube 56 is reduced in diameter at the distal end portion 62 of the triple tube, and the area of the annular opening at the distal end of the first annular portion 58 is smaller than the area of the upstream annular flow path. The first annular portion 58 is connected to the air inlet tube 26, the second annular portion 60 is connected to the first inlet tube 42, and the inner tube 52 is connected to the second inlet tube 46, respectively.

【0021】以上の構成により、本実施形態例では、内
管52から流れ出た補助燃料が、反応器12内で第1環
状部58から流れ出た空気によりアトマイジングされ
て、超臨界水中に分散し、又は第2環状部60から流出
し、同じく空気によりアトマイジングされて超臨界水中
に分散した第1の被処理液中に分散する。よって、補助
燃料が十分に分散して反応器12内に導入されるので、
従来の超臨界水反応装置のように反応温度が変動するよ
うなことは生じない。即ち、一定の有機物濃度で有機物
を導入できるので、反応温度の変動が生じない。
With the above configuration, in this embodiment, the auxiliary fuel flowing out of the inner pipe 52 is atomized by the air flowing out of the first annular portion 58 in the reactor 12 and dispersed in the supercritical water. Alternatively, it flows out of the second annular portion 60 and is dispersed in the first liquid to be treated which is also atomized by air and dispersed in supercritical water. Therefore, since the auxiliary fuel is sufficiently dispersed and introduced into the reactor 12,
The fluctuation of the reaction temperature unlike the conventional supercritical water reactor does not occur. That is, since an organic substance can be introduced at a constant organic substance concentration, the reaction temperature does not fluctuate.

【0022】本実施形態例の超臨界水反応装置40と同
じ構成の実験装置を作製し、補助燃料としてA重油を使
って、有機物濃度の低い被処理液に超臨界水反応処理を
施し、反応器の反応温度を測定したところ、反応温度の
変動幅は、図3のグラフ(1)で示すように、5℃であ
った。一方、前述の従来の超臨界水反応装置10と同じ
構成の実験装置を作製し、同じように、補助燃料として
A重油を使って、有機物濃度の低い被処理液に超臨界水
反応処理を施し、反応器の反応温度を測定したところ、
反応温度の変動幅は、図3のグラフ(2)で示すよう
に、30℃にも達した。この実験からも、本実施形態例
の超臨界水反応装置40が反応温度の変動を抑制する上
で有効であると評価できる。
An experimental apparatus having the same configuration as the supercritical water reactor 40 of the present embodiment is manufactured, and a liquid to be treated having a low organic substance concentration is subjected to supercritical water reaction using heavy fuel oil A as an auxiliary fuel. When the reaction temperature of the vessel was measured, the fluctuation range of the reaction temperature was 5 ° C. as shown in the graph (1) of FIG. On the other hand, an experimental device having the same configuration as the above-described conventional supercritical water reactor 10 was prepared, and similarly, the liquid to be treated having a low organic substance concentration was subjected to the supercritical water reaction using fuel oil A as an auxiliary fuel. When the reaction temperature of the reactor was measured,
The fluctuation range of the reaction temperature reached 30 ° C. as shown in the graph (2) of FIG. From this experiment, it can be evaluated that the supercritical water reactor 40 of the present embodiment is effective in suppressing the fluctuation of the reaction temperature.

【0023】本実施形態例では、疎水性有機物として補
助燃料を反応器12に送入しているが、補助燃料に加え
て疎水性有機物を主として含む第2の被処理液を第2の
送入管46で三流体ノズル50の送入しても良く、又は
補助燃料に代えて疎水性有機物を主として含む第2の被
処理液を送入しても良い。
In the present embodiment, the auxiliary fuel is supplied to the reactor 12 as the hydrophobic organic substance. However, the second liquid to be processed mainly containing the hydrophobic organic substance in addition to the auxiliary fuel is supplied to the reactor 12. The three-fluid nozzle 50 may be supplied through the pipe 46, or a second liquid to be treated mainly containing a hydrophobic organic substance may be supplied instead of the auxiliary fuel.

【0024】実施形態例2 本実施形態例は、実施形態例1の改変例であって、図4
(a)は本実施形態例で使用する三流体ノズルの構造を
示す縦部分断面図、図4(b)は図4(a)の線II−II
での横断面図である。図4に示す部品のうち、図2と同
じものには同じ符号を付し、その説明を省略する。本実
施形態例の超臨界水反応装置は、三流体ノズルの構成が
異なることを除いて実施形態例1の構成と同じであっ
て、本実施形態例の三流体ノズル70は、図4に示すよ
うに、内管52の外周面にパーミキュライトからなる断
熱層72を備えていることを除いて、実施形態例1の三
流体ノズル50と同じ構成を備えている。
Embodiment 2 This embodiment is a modification of Embodiment 1 and is similar to FIG.
4A is a vertical partial cross-sectional view showing the structure of a three-fluid nozzle used in the embodiment, and FIG. 4B is a line II-II in FIG.
FIG. 4, parts that are the same as those shown in FIG. 2 are given the same reference numerals, and descriptions thereof will be omitted. The supercritical water reactor of this embodiment is the same as the configuration of Embodiment 1 except that the configuration of the three-fluid nozzle is different, and the three-fluid nozzle 70 of this embodiment is shown in FIG. As described above, the same configuration as the three-fluid nozzle 50 of the first embodiment is provided, except that the heat insulating layer 72 made of permiculite is provided on the outer peripheral surface of the inner pipe 52.

【0025】断熱層72を設けて、その断熱効果によ
り、内管52を流れる疎水性有機物への熱伝導を防止し
て、一層効果的に疎水性有機物のチャーリングを防止す
ることができる。尚、断熱層72は、内管52の内周面
に設けても良い。
By providing the heat insulating layer 72, heat conduction to the hydrophobic organic substance flowing through the inner tube 52 can be prevented by the heat insulating effect, and the charring of the hydrophobic organic substance can be more effectively prevented. The heat insulating layer 72 may be provided on the inner peripheral surface of the inner pipe 52.

【0026】実施形態例3 本実施形態例は、本発明に係る超臨界水反応装置の実施
形態の別の例である。図5は本実施形態例の超臨界水反
応装置の構成を示すフローシートである。本実施形態例
の超臨界水反応装置80は、図5に示すように、三流体
ノズルに代えて2個の二流体ノズル82、84を使用す
ることを除いて、実施形態例1の超臨界水反応装置40
と同じ構成を備えている。本実施形態例の超臨界水反応
装置80は、前述した図7で示した二流体ノズル34と
同じ構成の2個の二流体ノズル82、84を反応器12
の反応物入口に備えている。第1の送入管42が一方の
二流体ノズル82の内管に、第2の送入管46が他方の
二流体ノズル84の内管に、それぞれ、接続され、か
つ、空気送入管26から分岐した2本の分岐管86、8
8が、それぞれ、一方の二流体ノズル82の環状部及び
他方の二流体ノズル84の環状部に接続されている。こ
れにより、第1の被処理液及び補助燃料をそれぞれ別個
に分散させて、反応器12に導入することができるの
で、実施形態例1と同様に、一定の有機物濃度で有機物
を導入し、反応温度が安定する。
Embodiment 3 This embodiment is another embodiment of the supercritical water reactor according to the present invention. FIG. 5 is a flow sheet showing the configuration of the supercritical water reactor of the present embodiment. As shown in FIG. 5, the supercritical water reactor 80 of the present embodiment is different from the supercritical water reactor of the first embodiment except that two two-fluid nozzles 82 and 84 are used instead of the three-fluid nozzle. Water reactor 40
It has the same configuration as. The supercritical water reactor 80 of the present embodiment includes two two-fluid nozzles 82 and 84 having the same configuration as the two-fluid nozzle 34 shown in FIG.
At the reactant inlet. The first inlet pipe 42 is connected to the inner pipe of one two-fluid nozzle 82, and the second inlet pipe 46 is connected to the inner pipe of the other two-fluid nozzle 84, respectively, and the air inlet pipe 26 Branch pipes 86 and 8 branched from
8 are connected to the annular portion of one two-fluid nozzle 82 and the annular portion of the other two-fluid nozzle 84, respectively. As a result, the first liquid to be treated and the auxiliary fuel can be separately dispersed and introduced into the reactor 12, so that the organic substance is introduced at a constant organic substance concentration and the reaction is carried out in the same manner as in Embodiment 1. Temperature stabilizes.

【0027】[0027]

【発明の効果】本発明によれば、第1の被処理液を反応
器に送入する第1の送入手段と、第2の被処理液及び補
助燃料の少なくともいずれか一方を反応器に送入する第
2の送入手段とを設けて、それぞれ、反応器に流入させ
ることにより、一定の有機物濃度で有機物を導入し、反
応温度を安定させることができる。例えば、反応器への
流入口に三流体ノズルを設け、酸素含有ガスを送入する
ガス送入管を外管と中管とからなる第1環状部に、水溶
性有機物を主成分とする第1の被処理液を送入する第1
の送入管を中管と内管とからなる第2環状部に、疎水性
有機物を送入する第2の送入管を内管に、それぞれ、接
続し、疎水性有機物を超臨界水中又は第1の被処理液中
に分散させて反応器に送入することにより、安定した反
応温度で超臨界水反応を持続させることできる。また、
三流体ノズルに代えて2個の二流体ノズルにより同じ効
果を奏することができる。
According to the present invention, the first feed means for feeding the first liquid to be treated into the reactor, and at least one of the second liquid to be treated and the auxiliary fuel are fed into the reactor. A second feeding means for feeding is provided, and each of them is allowed to flow into the reactor, whereby an organic substance can be introduced at a certain organic substance concentration, and the reaction temperature can be stabilized. For example, a three-fluid nozzle is provided at the inlet to the reactor, and a gas feed pipe for feeding an oxygen-containing gas is provided in a first annular portion including an outer pipe and a middle pipe, and a water-soluble organic substance as a main component. No. 1 for feeding the liquid to be treated
To the second annular portion consisting of the middle tube and the inner tube, and the second inlet tube for feeding the hydrophobic organic material to the inner tube, respectively, and connect the hydrophobic organic material to the supercritical water or The supercritical water reaction can be sustained at a stable reaction temperature by dispersing in the first liquid to be treated and feeding it to the reactor. Also,
The same effect can be obtained by using two two-fluid nozzles instead of the three-fluid nozzle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1の超臨界水反応装置の構成を示す
フローシートである。
FIG. 1 is a flow sheet showing a configuration of a supercritical water reactor of a first embodiment.

【図2】図2(a)は実施形態例1で使用する三流体ノ
ズルの構造を示す縦部分断面図、図2(b)は図2
(a)の線I−Iでの横断面図である。
FIG. 2A is a vertical partial cross-sectional view showing the structure of a three-fluid nozzle used in Embodiment 1; FIG. 2B is FIG.
FIG. 2A is a cross-sectional view taken along line II of FIG.

【図3】反応温度の変動を示すグラフである。FIG. 3 is a graph showing a change in reaction temperature.

【図4】図4(a)は実施形態例2で使用する三流体ノ
ズルの構造を示す縦部分断面図、図4(b)は図4
(a)の線II−IIでの横断面図である。
FIG. 4A is a vertical partial cross-sectional view showing a structure of a three-fluid nozzle used in a second embodiment, and FIG.
FIG. 2A is a cross-sectional view taken along line II-II.

【図5】実施形態例3の超臨界水反応装置の構成を示す
フローシートである。
FIG. 5 is a flow sheet showing a configuration of a supercritical water reactor of a third embodiment.

【図6】従来の超臨界水反応装置の構成を示すフローシ
ートである。
FIG. 6 is a flow sheet showing a configuration of a conventional supercritical water reactor.

【図7】図7(a)は従来の超臨界水反応装置で使用す
る二流体ノズルの構造を示す縦部分断面図、図7(b)
は図7(a)の線III−IIIでの横断面図である。
7 (a) is a vertical partial sectional view showing a structure of a two-fluid nozzle used in a conventional supercritical water reactor, and FIG. 7 (b).
FIG. 7 is a cross-sectional view taken along line III-III in FIG.

【符号の説明】[Explanation of symbols]

10 従来の超臨界水反応装置 12 縦型の耐圧密閉型反応器 14 処理液管 16 冷却器 18 圧力制御弁 20 気液分離器 22 被処理液管 24 被処理液ポンプ 26 空気送入管 28 空気圧縮機 30 補助燃料管 31 アルカリ剤送入管 32 超臨界水管 34 二流体ノズル 36 内管 38 外管 38a 外管の先端部 39 環状部 40 実施形態例1の超臨界水反応装置 42 第1の送入管 44 第1の被処理液ポンプ 46 第2の送入管 50 三流体ノズル 52 内管 54 中管 56 外管 58 第1環状部 60 第2環状部 70 実施形態例2の超臨界水反応装置で使用する三流
体ノズル 72 断熱層 80 実施形態例3の超臨界水反応装置 82、84 二流体ノズル 86、88 分岐管
DESCRIPTION OF SYMBOLS 10 Conventional supercritical water reactor 12 Vertical pressure-resistant closed reactor 14 Processing liquid pipe 16 Cooler 18 Pressure control valve 20 Gas-liquid separator 22 Liquid pipe to be processed 24 Liquid pump to be processed 26 Air inlet pipe 28 Air Compressor 30 Auxiliary fuel pipe 31 Alkaline agent feed pipe 32 Supercritical water pipe 34 Two-fluid nozzle 36 Inner pipe 38 Outer pipe 38a Tip of outer pipe 39 Annular part 40 Supercritical water reactor 42 of the first embodiment 42 First Inlet pipe 44 First liquid pump 46 to be treated 46 Second infeed pipe 50 Three-fluid nozzle 52 Inner pipe 54 Middle pipe 56 Outer pipe 58 First annular portion 60 Second annular portion 70 Supercritical water of Embodiment 2 Three-fluid nozzle 72 used in the reactor 72 Thermal insulation layer 80 Supercritical water reactor 82, 84 Two-fluid nozzle 86, 88 Branch pipe of Embodiment 3

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 C07B 61/00 B (72)発明者 鈴木 明 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D050 AA13 AB12 AB19 AB22 BB01 BB20 BC01 BC02 BD03 BD06 BD08 CA13 CA20 4F033 QA10 QB02Y QB03X QB12Y QB17 QD21 QD23 QE23 QF02Y QF08X QF08Y QF15Y 4G068 AA01 AB01 AB11 AB15 AC01 AC03 AD21 4H006 AA05 BE30 BE60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C07B 61/00 C07B 61/00 B (72) Inventor Akira Suzuki 1-2-2 Shinsuna, Koto-ku, Tokyo No. 8 Organo Co., Ltd. F-term (reference) 4D050 AA13 AB12 AB19 AB22 BB01 BB20 BC01 BC02 BD03 BD06 BD08 CA13 CA20 4F033 QA10 QB02Y QB03X QB12Y QB17 QD21 QD23 QE23 QF02Y QF08X QF08A AB01 AC4 BE60

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水を収容する縦型反応器を備え、
主として水と水溶性有機物を含み、疎水性有機物を実質
的に含まない第1の被処理液に加えて、主として疎水性
有機物を含む第2の被処理液と、主として疎水性有機物
からなる補助燃料の少なくともいずれか一方を反応器に
送入し、かつ、酸化剤として酸素含有ガスを反応器に供
給して、超臨界水の存在下で有機物と酸素との超臨界水
反応を行う超臨界水反応装置であって、 第1の被処理液を反応器に送入する第1の送入手段と、 第2の被処理液及び補助燃料の少なくともいずれか一方
を反応器に送入する第2の送入手段とを備えていること
を特徴とする超臨界水反応装置。
1. A vertical reactor containing supercritical water is provided.
An auxiliary fuel mainly comprising water and a water-soluble organic substance and substantially not containing a hydrophobic organic substance, in addition to a first liquid to be treated mainly containing a hydrophobic organic substance, and an auxiliary fuel mainly comprising a hydrophobic organic substance Supercritical water that feeds at least one of the above into the reactor, and supplies an oxygen-containing gas to the reactor as an oxidizing agent to perform a supercritical water reaction between an organic substance and oxygen in the presence of supercritical water A reaction apparatus, comprising: a first feeding means for feeding a first liquid to be treated into a reactor; and a second means for feeding at least one of a second liquid to be treated and an auxiliary fuel to the reactor. A supercritical water reactor, comprising:
【請求項2】 第1の送入手段、第2の送入手段、及び
酸素含有ガスの送入手段として、反応器の反応物入口に
三流体ノズルを設け、 三流体ノズルが、内管と、内管を挿入させた中管と、内
管及び中管を挿入させた外管とによって、流路として外
管と中管とからなる第1環状部と、中管と内管とからな
る第2環状部と、内管とを備えた三重管として構成さ
れ、三重管の先端部で外管が縮径し、第1環状部の先端
環状開口部の面積が、上流の第1の環状部の面積より小
さく、 酸素含有ガスの送入手段として設けられたガス送入管が
第1環状部に、第1の送入手段として設けられた第1の
送入管が第2環状部に、第2の送入手段として設けられ
た第2の送入管が内管に、それぞれ、接続されているこ
とを特徴とする請求項1に記載の超臨界水反応装置。
2. A three-fluid nozzle is provided at a reactant inlet of a reactor as a first feeding means, a second feeding means, and an oxygen-containing gas feeding means, and the three-fluid nozzle is connected to an inner tube. A first annular portion composed of an outer tube and a middle tube as a flow path, and a middle tube and an inner tube as a flow path by the middle tube into which the inner tube is inserted, the inner tube and the outer tube into which the middle tube is inserted. It is configured as a triple tube having a second annular portion and an inner tube, and the outer tube is reduced in diameter at the distal end of the triple tube, and the area of the distal annular opening of the first annular portion is equal to the upstream first annular portion. A gas inlet pipe provided as an oxygen-containing gas inlet means is provided in the first annular portion, and a first inlet pipe provided as the first inlet means is provided in the second annular portion. 2. The supercritical water reaction according to claim 1, wherein a second inlet pipe provided as a second inlet means is connected to the inner pipe. Location.
【請求項3】 内管の外周面又は内周面に沿って断熱層
が設けてあることを特徴とする請求項2に記載の超臨界
水反応装置。
3. The supercritical water reactor according to claim 2, wherein a heat insulating layer is provided along an outer peripheral surface or an inner peripheral surface of the inner pipe.
【請求項4】 反応器の反応物入口に2個の二流体ノズ
ルを設け、 2個の二流体ノズルは、それぞれ、内管と、内管を挿入
させた外管とによって、流路として外管と内管とからな
る環状部と、内管とを備えた二重管として構成され、二
重管の先端部で外管が縮径し、環状部の先端環状開口部
の面積が、上流の環状部の面積より小さく、 第1の送入手段として設けられた第1の送入管が一方の
二流体ノズルの内管に、第2の送入手段として設けられ
た第2の送入管が他方の二流体ノズルの内管に、それぞ
れ、接続され、かつ、酸素含有ガスの送入手段として設
けられたガス送入管から分岐した2本の分岐管が、それ
ぞれ、一方の二流体ノズルの環状部及び他方の二流体ノ
ズルの環状部に接続されていることを特徴とする請求項
1に記載の超臨界水反応装置。
4. A two-fluid nozzle is provided at a reactant inlet of a reactor, and each of the two two-fluid nozzles is formed as an outer flow path by an inner tube and an outer tube into which the inner tube is inserted. It is configured as a double tube having an annular portion consisting of a tube and an inner tube, and an inner tube.The outer tube is reduced in diameter at the tip of the double tube, and the area of the annular opening at the tip of the annular portion is upstream. The first feeding pipe provided as the first feeding means is smaller than the area of the annular portion, and the second feeding means provided as the second feeding means in the inner pipe of one of the two fluid nozzles. The pipes are connected to the inner pipe of the other two-fluid nozzle, respectively, and the two branch pipes branched from the gas feed pipe provided as the feed means for the oxygen-containing gas are respectively connected to one of the two fluid pipes. The supercritical fluid according to claim 1, wherein the supercritical fluid is connected to the annular portion of the nozzle and the annular portion of the other two-fluid nozzle. Reactor.
JP09063199A 1999-03-31 1999-03-31 Supercritical water reactor Expired - Fee Related JP3801807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09063199A JP3801807B2 (en) 1999-03-31 1999-03-31 Supercritical water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09063199A JP3801807B2 (en) 1999-03-31 1999-03-31 Supercritical water reactor

Publications (3)

Publication Number Publication Date
JP2000279795A true JP2000279795A (en) 2000-10-10
JP2000279795A5 JP2000279795A5 (en) 2005-03-17
JP3801807B2 JP3801807B2 (en) 2006-07-26

Family

ID=14003848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09063199A Expired - Fee Related JP3801807B2 (en) 1999-03-31 1999-03-31 Supercritical water reactor

Country Status (1)

Country Link
JP (1) JP3801807B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943099B2 (en) * 2004-11-19 2011-05-17 Solvay (Societe Anonyme) Reactor and method for reacting at least two gases in the presence of a liquid phase
CN102557229A (en) * 2012-02-22 2012-07-11 长春工业大学 Constant volume internal combustion type supercritical fluid oxidation device and oxidation method thereof
JP2013169541A (en) * 2012-02-23 2013-09-02 Ricoh Co Ltd Fluid purification device
CN104226203A (en) * 2014-09-20 2014-12-24 中北大学 Three-nozzle impinging stream structure and three-nozzle impinging stream-rotating packed bed device
CN104226204A (en) * 2014-09-20 2014-12-24 中北大学 Simple reflection-ring type jet nozzle impinging stream structure and rotary packed bed device
CN116444022A (en) * 2023-05-10 2023-07-18 广东红海湾发电有限公司 Supercritical water oxidation treatment system for high-salt-content and high-chlorine-content organic wastewater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943099B2 (en) * 2004-11-19 2011-05-17 Solvay (Societe Anonyme) Reactor and method for reacting at least two gases in the presence of a liquid phase
CN102557229A (en) * 2012-02-22 2012-07-11 长春工业大学 Constant volume internal combustion type supercritical fluid oxidation device and oxidation method thereof
CN102557229B (en) * 2012-02-22 2013-10-23 长春工业大学 Constant volume internal combustion type supercritical fluid oxidation device and oxidation method thereof
JP2013169541A (en) * 2012-02-23 2013-09-02 Ricoh Co Ltd Fluid purification device
CN104226203A (en) * 2014-09-20 2014-12-24 中北大学 Three-nozzle impinging stream structure and three-nozzle impinging stream-rotating packed bed device
CN104226204A (en) * 2014-09-20 2014-12-24 中北大学 Simple reflection-ring type jet nozzle impinging stream structure and rotary packed bed device
CN116444022A (en) * 2023-05-10 2023-07-18 广东红海湾发电有限公司 Supercritical water oxidation treatment system for high-salt-content and high-chlorine-content organic wastewater
CN116444022B (en) * 2023-05-10 2023-12-08 广东红海湾发电有限公司 Supercritical water oxidation treatment system for high-salt-content and high-chlorine-content organic wastewater

Also Published As

Publication number Publication date
JP3801807B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US4509434A (en) Procedure and equipment for destroying waste by plasma technique
US5492634A (en) Method for treating halogenated hydrocarbons prior to hydrothermal oxidation
KR100397650B1 (en) Method and device of catalytically decomposing nitrous oxide
JP2000279795A (en) Supercritical water reaction device
US11466216B2 (en) Atmospheric pressure water ion generating device
JP2997912B2 (en) Compound processing equipment
JP3347610B2 (en) Supercritical water oxidation method and apparatus
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JP3494797B2 (en) Decomposition device for organic halogen compounds by steam plasma
JP2001121166A (en) Supercritical water treatment method for organic chlorine compound and supercritical water reaction apparatus
JP4267791B2 (en) Supercritical water treatment equipment
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP2000279795A5 (en)
JP4857459B2 (en) Hydrothermal reaction method and apparatus
JP2001170664A (en) Supercritical water treating device
KR100522575B1 (en) Wastewater and wasteliquid disposal apparatus using supercritical water oxidation process
JPH10314768A (en) Method for oxidation of supercritical water
JP4107637B2 (en) Hydrothermal reactor
JP2001170664A5 (en)
JPH10137774A (en) Method of supplying liquid to supercritical water oxidizing reactor, device therefor and super critical water oxidizing device
JP2000279794A (en) Supercritical water reaction device
JP2005118694A (en) Method and apparatus for decomposing halogenated organic compound by plasma
JP2002018236A (en) Method for neutralization of acid gas and its apparatus
JPH09253478A (en) Method for decomposing pcb
JP2002273459A (en) Method and equipment for hydrothermal oxidation reaction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees