JP2000278806A - Power supply system for electric vehicle - Google Patents

Power supply system for electric vehicle

Info

Publication number
JP2000278806A
JP2000278806A JP11075987A JP7598799A JP2000278806A JP 2000278806 A JP2000278806 A JP 2000278806A JP 11075987 A JP11075987 A JP 11075987A JP 7598799 A JP7598799 A JP 7598799A JP 2000278806 A JP2000278806 A JP 2000278806A
Authority
JP
Japan
Prior art keywords
storage device
power storage
supply system
power supply
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11075987A
Other languages
Japanese (ja)
Other versions
JP3558546B2 (en
Inventor
Yasuto Watanabe
慶人 渡邉
Atsushi Yamada
淳 山田
Michio Okamura
廸夫 岡村
Masaaki Yamagishi
政章 山岸
Shigenori Kinoshita
繁則 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMURA KENKYUSHO KK
Fuji Electric Co Ltd
UD Trucks Corp
Okamura Laboratory Inc
Power System Co Ltd
Original Assignee
OKAMURA KENKYUSHO KK
Fuji Electric Co Ltd
UD Trucks Corp
Okamura Laboratory Inc
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMURA KENKYUSHO KK, Fuji Electric Co Ltd, UD Trucks Corp, Okamura Laboratory Inc, Power System Co Ltd filed Critical OKAMURA KENKYUSHO KK
Priority to JP07598799A priority Critical patent/JP3558546B2/en
Publication of JP2000278806A publication Critical patent/JP2000278806A/en
Application granted granted Critical
Publication of JP3558546B2 publication Critical patent/JP3558546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain reduction in size and weight and high efficiency. SOLUTION: This system is provided with a main storage device supplying power to a traveling motor 6, three battery blocks 10, 11, 12 constituted of electric double-layer capacitor cells 100, 110, 120 in the main storage device, and a block connection switching circuit 13 switching the number of the battery blocks 10, 11, 12 connected in series according to a voltage change by the charging or discharging of the electric double-layer capacitor cells 100, 110, 120 so that the voltage Vc of the main storage device 4 may be a prescribed value V1 or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタセルを主蓄電装置に用いた電気自動車の電源システ
ムの改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a power supply system of an electric vehicle using an electric double layer capacitor cell as a main power storage device.

【0002】[0002]

【従来の技術】電気自動車等に搭載される主蓄電装置
は、車両の加速時および定速走行時に放電、制動時に充
電を繰り返し、その作動回数は数万回にも達するが、主
蓄電装置として化学電池は充放電サイクル寿命が短く、
かつ高出力作動時の効率が悪いため、近年、主蓄電装置
として電気二重層キャパシタセルが着目されている。
2. Description of the Related Art A main power storage device mounted on an electric vehicle or the like repeatedly discharges and charges when braking and accelerating the vehicle at a constant speed, and the number of times of operation reaches tens of thousands of times. Chemical batteries have a short charge-discharge cycle life,
In addition, due to poor efficiency at the time of high-power operation, in recent years, an electric double-layer capacitor cell has attracted attention as a main power storage device.

【0003】図12はシリーズ式ハイブリッド車に搭載
される主蓄電装置に電気二重層キャパシタセルを適用し
た電気システムの公知の基本構成例を示す。エンジン1
は発電機2を駆動し、発電機2で発電される電力が整流
器3を介して主蓄電装置4に供給されるとともに、イン
バータ5を介して走行用モータ6に供給される。図示し
ない車輪は走行用モータ6によって駆動される。図にお
いて、8は化学電池で構成される補助蓄電装置、7は補
助蓄電装置8を充電するDC−DCコンバータ、9は補
機である。
FIG. 12 shows a known basic configuration example of an electric system in which an electric double layer capacitor cell is applied to a main power storage device mounted on a series hybrid vehicle. Engine 1
Drives the generator 2, and the electric power generated by the generator 2 is supplied to the main power storage device 4 via the rectifier 3 and to the traveling motor 6 via the inverter 5. Wheels (not shown) are driven by a traveling motor 6. In the figure, 8 is an auxiliary power storage device composed of a chemical battery, 7 is a DC-DC converter for charging the auxiliary power storage device 8, and 9 is an auxiliary machine.

【0004】主蓄電装置4は、多数の電気二重層キャパ
シタセル41,42,43,…が直列に接続され、従来
の化学二次電池を電気二重層キャパシタセルに置き換え
たシステムとなっている。
The main power storage device 4 is a system in which a number of electric double layer capacitor cells 41, 42, 43,... Are connected in series, and a conventional chemical secondary battery is replaced with an electric double layer capacitor cell.

【0005】加速時または定速走行時に、発電機2で発
生した電力の一部または全部が主蓄電装置4に充電さ
れ、発電機2で発生した電力と主蓄電装置4の電力がイ
ンバータ5を介して走行用モータ6に供給される。制動
時に、走行用モータ6に発生した制動電力がインバータ
5を介して主蓄電装置4に回生される。
During acceleration or running at a constant speed, part or all of the electric power generated by generator 2 is charged in main power storage device 4, and the power generated by generator 2 and the power of main power storage device 4 pass through inverter 5. The motor is supplied to the traveling motor 6 through the motor. At the time of braking, the braking power generated in the traveling motor 6 is regenerated to the main power storage device 4 via the inverter 5.

【0006】[0006]

【発明が解決しようとする課題】ところで、電気二重層
キャパシタセル41,42,43,…の蓄電エネルギは
キャパシタセル41,42,43,…の電圧の2乗に比
例する。言い換えれば、直流電源として使用した場合、
放電エネルギの増大に応じてキャパシタセル41,4
2,43,…の電圧は低下して行く。エネルギの75%
を放電すると、電圧は1/2に低下する。
The electric storage energy of the electric double layer capacitor cells 41, 42, 43,... Is proportional to the square of the voltage of the capacitor cells 41, 42, 43,. In other words, when used as a DC power supply,
Capacitor cells 41 and 4 respond to an increase in discharge energy.
The voltages of 2, 43, ... decrease. 75% of energy
Is discharged, the voltage drops by half.

【0007】主蓄電装置4とインバータ5の間にチョッ
パ回路44を挿入して、インバータ5の入力電圧を一定
にする方法がとられているが、チョッパ回路44は電流
平滑用リアクトルが必須であり、このリアクトル電流は
主蓄電装置4の電圧に反比例するので、主蓄電装置4の
電圧が半減するとリアクトル電流は2倍にもなる。この
ため、主蓄電装置4の電圧の変動が大きいと、チョッパ
回路44が大型化し、効率が低下するという問題点があ
った。
A method is employed in which a chopper circuit 44 is inserted between the main power storage device 4 and the inverter 5 to keep the input voltage of the inverter 5 constant. However, the chopper circuit 44 requires a current smoothing reactor. Since this reactor current is inversely proportional to the voltage of main power storage device 4, when the voltage of main power storage device 4 is reduced by half, the reactor current is doubled. For this reason, when the voltage of main power storage device 4 fluctuates greatly, chopper circuit 44 becomes large and there is a problem that the efficiency is reduced.

【0008】また、特開平8−168182号公報とし
て電気二重層キャパシタセルを用いた電源装置が提案さ
れている。
A power supply device using an electric double layer capacitor cell has been proposed in Japanese Patent Application Laid-Open No. Hei 8-168182.

【0009】本発明は上記の問題点を鑑みてなされたも
のであり、電気自動車の電源システムの小型軽量化と高
効率化をはかることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to reduce the size and weight of a power supply system for an electric vehicle and increase the efficiency thereof.

【0010】[0010]

【課題を解決するための手段】第1の発明は、走行用モ
ータに電力を供給する主蓄電装置を備え、主蓄電装置を
複数の電気二重層キャパシタセルによって構成する電気
自動車の電源システムに適用する。
A first aspect of the present invention is applied to a power supply system of an electric vehicle including a main power storage device for supplying electric power to a traveling motor, wherein the main power storage device includes a plurality of electric double layer capacitor cells. I do.

【0011】そして、主蓄電装置に電気二重層キャパシ
タセルによって構成される複数の電池ブロックと、主蓄
電装置の電圧が規定値以上となるように電気二重層キャ
パシタセルの充放電による電圧変化に対応して直列に接
続される電池ブロックの数を切換えるブロック接続切換
回路とを備えるものとした。
A plurality of battery blocks, each of which includes an electric double layer capacitor cell in the main power storage device, and a voltage change caused by charging / discharging of the electric double layer capacitor cell so that the voltage of the main power storage device becomes a specified value or more. And a block connection switching circuit for switching the number of battery blocks connected in series.

【0012】第2の発明は、第1の発明において、主蓄
電装置の電圧が規定値以下となるように各電池ブロック
に蓄えられる電力を漸次変えるものとした。
In a second aspect based on the first aspect, the power stored in each battery block is gradually changed such that the voltage of the main power storage device becomes equal to or lower than a specified value.

【0013】第3の発明は、第1または第2の発明にお
いて、ブロック接続切換回路を双方向通流型半導体スイ
ッチで構成するものとした。
[0013] In a third aspect based on the first or second aspect, the block connection switching circuit is constituted by a bidirectional flow semiconductor switch.

【0014】第4の発明は、第3の発明において、双方
向通流型半導体スイッチを互いに逆並列接続される対の
サイリスタで構成するものとした。
According to a fourth aspect of the present invention, in the third aspect, the two-way conduction type semiconductor switch is constituted by a pair of thyristors connected in antiparallel to each other.

【0015】第5の発明は、第3の発明において、双方
向通流型半導体スイッチを互いに逆並列接続される対の
逆阻止型GTOサイリスタで構成するものとした。
According to a fifth aspect of the present invention, in the third aspect, the two-way conduction type semiconductor switch is constituted by a pair of reverse blocking GTO thyristors connected in anti-parallel to each other.

【0016】第6の発明は、第3の発明において、双方
向通流型半導体スイッチを互いに逆極性に直列接続され
る対のトランジスタと、各トランジスタに対して逆並列
に接続されるダイオードで構成するものとした。
In a sixth aspect based on the third aspect, the two-way conduction type semiconductor switch comprises a pair of transistors connected in series with opposite polarities and a diode connected in antiparallel to each transistor. To do.

【0017】[0017]

【発明の作用および効果】第1の発明において、各キャ
パシタ電池ブロックの蓄電エネルギはキャパシタセルの
電圧の2乗に比例するため、充放電による蓄積エネルギ
の変化でキャパシタブロックの電圧が大きく変動する
が、ブロック接続切換回路が各キャパシタ電池ブロック
の充放電に応じてこれらを必要数だけ直列に接続するこ
とにより、主蓄電装置の電圧の変動が抑えられる。この
ため、主蓄電装置の電圧を略一定にするチョッパ回路の
小形軽量化、高効率化がはかれ、長寿命な電気自動車の
電源システムを実現できる。
According to the first aspect of the present invention, since the stored energy of each capacitor battery block is proportional to the square of the voltage of the capacitor cell, the voltage of the capacitor block greatly fluctuates due to the change of the stored energy due to charging and discharging. The block connection switching circuit connects a required number of these in series according to the charging and discharging of each capacitor battery block, so that the fluctuation of the voltage of the main power storage device can be suppressed. For this reason, the chopper circuit for making the voltage of the main power storage device substantially constant can be reduced in size and weight and improved in efficiency, and a power supply system for a long-life electric vehicle can be realized.

【0018】第2の発明において、各電池ブロックに蓄
えられる電力を漸次変えて、主蓄電装置の電圧が規定値
以下となるように設定することにより、電池ブロック接
続時に主蓄電装置の電圧が過大になることが抑えられ
る。このため、主蓄電装置の電圧を略一定にするチョッ
パ回路の小形軽量化、高効率化がはかれ、長寿命な電気
自動車の電源システムを実現できる。
In the second invention, the power stored in each battery block is gradually changed so that the voltage of the main power storage device is set to a specified value or less, so that the voltage of the main power storage device becomes excessive when the battery block is connected. Is suppressed. For this reason, the chopper circuit for making the voltage of the main power storage device substantially constant can be reduced in size and weight and improved in efficiency, and a power supply system for a long-life electric vehicle can be realized.

【0019】第3の発明において、双方向通流型半導体
スイッチは主蓄電装置の放電又は充電の電流の向きに対
応して自動的に通流する。
In the third invention, the bidirectional current-carrying type semiconductor switch automatically flows according to the direction of the discharging or charging current of the main power storage device.

【0020】第4の発明において、電流の向きと無関係
に逆並列に接続されたサイリスタの両方にオンオフ信号
を与えることにより、主蓄電装置の放電又は充電の電流
の向きに対応して自動的に通流する。
According to the fourth aspect of the present invention, the on / off signal is supplied to both of the thyristors connected in anti-parallel irrespective of the direction of the current, so that the thyristors are automatically connected to the direction of the current for discharging or charging the main power storage device. Flow through.

【0021】第5の発明において、電流の向きと無関係
に逆並列に接続された逆阻止型GTOサイリスタの両方
にオンオフ信号を与えることにより、主蓄電装置の放電
又は充電の電流の向きに対応して自動的に通流する。
According to the fifth aspect of the present invention, by providing on / off signals to both of the reverse blocking GTO thyristors connected in anti-parallel irrespective of the direction of the current, it is possible to respond to the direction of the current of discharging or charging of the main power storage device. Flow automatically.

【0022】第6の発明において、電流の向きと無関係
に逆極性に直列接続されたトランジスタの両方にオンオ
フ信号を与えることにより、主蓄電装置の放電又は充電
の電流の向きに対応して自動的に通流する。
According to the sixth aspect of the present invention, the on / off signal is given to both of the transistors connected in series with opposite polarities irrespective of the direction of the current, so that the on / off signal is automatically adjusted according to the direction of the current of discharging or charging of the main power storage device. Flow through.

【0023】[0023]

【発明の実施の形態】以下、本発明をシリーズ式ハイブ
リッド車に搭載される主蓄電装置に適用した電気システ
ムの実施の形態を添付図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electric system in which the present invention is applied to a main power storage device mounted on a series hybrid vehicle will be described below with reference to the accompanying drawings.

【0024】図1に示すように、エンジン1は発電機2
を駆動し、発電機2で発電される電力が整流器3を介し
て主蓄電装置4に供給されるとともに、インバータ5を
介して走行用モータ6に供給される。主蓄電装置4とイ
ンバータ5の間に昇降圧チョッパ回路44が介装され、
インバータ5の入力電圧を一定にするようになってい
る。図示しない車輪は走行用モータ6によって駆動され
る。図において、8は化学電池で構成される補助蓄電装
置、7は補助蓄電装置8を充電するDC−DCコンバー
タ、9は補機である。
As shown in FIG. 1, an engine 1 includes a generator 2
And the power generated by the generator 2 is supplied to the main power storage device 4 via the rectifier 3 and to the traveling motor 6 via the inverter 5. A step-up / step-down chopper circuit 44 is interposed between the main power storage device 4 and the inverter 5,
The input voltage of the inverter 5 is made constant. Wheels (not shown) are driven by a traveling motor 6. In the figure, reference numeral 8 denotes an auxiliary power storage device constituted by a chemical battery, 7 denotes a DC-DC converter for charging the auxiliary power storage device 8, and 9 denotes an auxiliary machine.

【0025】主蓄電装置4は、3つのキャパシタ電池ブ
ロック10,11,12と、ブロック接続切換回路13
とで構成される。なお、キャパシタ電池ブロック数は2
つ以上あればよい。
The main power storage device 4 includes three capacitor battery blocks 10, 11, 12 and a block connection switching circuit 13.
It is composed of The number of capacitor battery blocks is 2
More than one.

【0026】各キャパシタ電池ブロック10,11,1
2は、それぞれ複数の電気二重層キャパシタセル10
0,110,120を直並列接続している。キャパシタ
電池ブロック10,11,12の電圧極性は同一極性と
する。
Each of the capacitor battery blocks 10, 11, 1
2 is a plurality of electric double layer capacitor cells 10
0, 110, and 120 are connected in series and parallel. The voltage polarity of the capacitor battery blocks 10, 11, and 12 is the same.

【0027】図2に示すように、ブロック接続切換回路
13はスイッチ130,131,132を備え、これら
がオンオフされることで各キャパシタ電池ブロック1
0,11,12を必要数だけ直列に接続する。各スイッ
チ130,131,132は双方向通流型の半導体スイ
ッチで構成される。図2において各電池ブロック10,
11,12のキャパシタセルの表示は省略してある。
As shown in FIG. 2, the block connection switching circuit 13 includes switches 130, 131, and 132, and when these switches are turned on and off, each of the capacitor battery blocks 1 is switched.
0, 11, and 12 are connected in series by a required number. Each of the switches 130, 131 and 132 is constituted by a bidirectional flow type semiconductor switch. In FIG. 2, each battery block 10,
The display of the capacitor cells 11 and 12 is omitted.

【0028】図3に示すように、ブロック接続切換回路
13のスイッチ130はサイリスタ130a,130b
を逆並列に接続して構成される。動作モードによってス
イッチ130がオンオフされるとき、電流の向きと無関
係に逆並列に接続されたサイリスタ130a,130b
の両方にオンまたはオフ信号を与えることにより、主蓄
電装置4の放電又は充電の電流の向きに対応して自動的
に通流する。スイッチ131,132も同様な構成であ
るので説明は省略する。
As shown in FIG. 3, the switches 130 of the block connection switching circuit 13 are thyristors 130a and 130b.
Are connected in antiparallel. When the switch 130 is turned on and off according to the operation mode, the thyristors 130a and 130b connected in anti-parallel regardless of the direction of the current
By supplying an ON or OFF signal to both of them, the current automatically flows according to the direction of the current of discharging or charging of main power storage device 4. Since the switches 131 and 132 have the same configuration, the description is omitted.

【0029】ブロック接続切換回路13は、主蓄電装置
4の電圧が規定値V1以上となるように電気二重層キャ
パシタセル100,110,120の充放電による電圧
変化に対応して電池ブロック10,11,12の接続を
切換えるようになっている。図4は図2の回路構成につ
いて、主蓄電装置4の電圧Vcの挙動を放電動作の場合
について示したものである。図5は図3の動作モードに
対応した図2の等価回路を示す。
The block connection switching circuit 13 responds to a voltage change due to charging and discharging of the electric double layer capacitor cells 100, 110, and 120 so that the voltage of the main power storage device 4 becomes equal to or higher than the specified value V1. , 12 are switched. FIG. 4 shows the behavior of voltage Vc of main power storage device 4 in the case of a discharging operation in the circuit configuration of FIG. FIG. 5 shows an equivalent circuit of FIG. 2 corresponding to the operation mode of FIG.

【0030】モードIではスイッチ130をオン、スイ
ッチ131,132をオフする。主蓄電装置4の電圧は
電池ブロック10の電圧となり、図5に示す(a)の回
路となる、キャパシタセルの電流は電池ブロック10か
らのみの放電となり、電池ブロック10の電圧V0が図
4のモードIに示すように低下して行く。主蓄電装置4
の電圧Vcが規定値V1になったら、スイッチ131を
オンして、スイッチ130をオフする。これにより、主
蓄電装置4はキャパシタ電池ブロック10,11の直列
接続となり、図5の(b)の回路となる。主蓄電装置4の
電圧Vcはキャパシタ電池ブロック10,11の和の電
圧V2となる。この回路での動作が図4のモードIIであ
る。V2はV0と略等しい値になる様、キャパシタ電池
ブロック11の電圧は選定される。
In the mode I, the switch 130 is turned on and the switches 131 and 132 are turned off. The voltage of the main power storage device 4 becomes the voltage of the battery block 10, and the current of the capacitor cell becomes the circuit shown in FIG. 5A. It decreases as shown in mode I. Main power storage device 4
When the voltage Vc reaches the specified value V1, the switch 131 is turned on and the switch 130 is turned off. As a result, the main power storage device 4 is connected in series with the capacitor battery blocks 10 and 11, and forms the circuit of FIG. Voltage Vc of main power storage device 4 is the sum voltage V2 of capacitor battery blocks 10 and 11. The operation in this circuit is mode II in FIG. The voltage of the capacitor battery block 11 is selected so that V2 becomes substantially equal to V0.

【0031】モードIIで放電が更に進むと、キャパシタ
電池ブロック10,11が放電して電圧VcがV1まで
低下すると、スイッチ132をオンして、スイッチ13
0,131をオフする。これにより、主蓄電装置4はキ
ャパシタ電池ブロック10,11,12の直列接続とな
り、図5の(c)の回路となる。キャパシタ電池ブロック
10,11,12の和の電圧が出力電圧V3になる。キ
ャパシタ電池ブロック12の電圧V3がV0と略等しく
なるように選定される。この回路での動作が図4の動作
モードIIIである。
When the discharge proceeds further in mode II, when the capacitor battery blocks 10 and 11 discharge and the voltage Vc decreases to V1, the switch 132 is turned on and the switch 13 is turned on.
Turn off 0,131. As a result, the main power storage device 4 is connected in series with the capacitor battery blocks 10, 11, and 12, and the circuit shown in FIG. The sum voltage of the capacitor battery blocks 10, 11, 12 becomes the output voltage V3. The voltage V3 of the capacitor battery block 12 is selected so as to be substantially equal to V0. The operation in this circuit is the operation mode III in FIG.

【0032】モードIIIで、放電が進むと電圧V3が低
下して規定電圧値V1に達したら、各キャパシタ電池ブ
ロック10,11,12の放電動作は終了となる。
In mode III, when the voltage V3 decreases as the discharge proceeds and reaches the specified voltage value V1, the discharging operation of each of the capacitor battery blocks 10, 11, and 12 ends.

【0033】上記電圧V1,V2,V3の最大値が略等
しくなるように、各電池ブロック10,11,12に蓄
えられる電力を漸次小さく設定している。これにより、
電池ブロック10に対して電池ブロック11,12が接
続されるときの電圧を規定値以下に抑えられる。
The electric power stored in each of the battery blocks 10, 11, and 12 is set to gradually decrease so that the maximum values of the voltages V1, V2, and V3 become substantially equal. This allows
The voltage when the battery blocks 11 and 12 are connected to the battery block 10 can be suppressed to a specified value or less.

【0034】主蓄電装置4が充電される場合は、前述し
た主蓄電装置4が放電される場合の動作の逆となるの
で、詳述は省略する。
When the main power storage device 4 is charged, the operation is the reverse of the above-described operation when the main power storage device 4 is discharged.

【0035】図6はチョッパ回路44の回路構成を示
し、図において、441,442は半導体スイッチで、
同図ではトランジスタの場合で示してある。443,4
44はダイオードで図示のように半導体スイッチ44
1,442に逆並列に接続される。445は電流平滑リ
アクトル、446,447はフィルタコンデンサであ
る。
FIG. 6 shows a circuit configuration of the chopper circuit 44. In the figure, reference numerals 441 and 442 denote semiconductor switches.
The figure shows the case of a transistor. 443, 4
44 is a diode and a semiconductor switch 44 as shown in the figure.
1, 442 are connected in anti-parallel. 445 is a current smoothing reactor, and 446 and 447 are filter capacitors.

【0036】加速および定速走行時に、主蓄電装置4の
電圧Vcはインバータ5の入力電圧より下がるのと、チ
ョッパ回路44は、図7に示すように、昇圧チョッパと
して作動させる。この場合、半導体スイッチ441をス
イッチングし、半導体スイッチ442はオフする。
During acceleration and constant speed traveling, the voltage Vc of the main power storage device 4 becomes lower than the input voltage of the inverter 5, and the chopper circuit 44 is operated as a step-up chopper as shown in FIG. In this case, the semiconductor switch 441 is switched, and the semiconductor switch 442 is turned off.

【0037】回生制動時に、チョッパ回路44は図8に
示すように降圧チョッパとして作動させる。この場合、
半導体スイッチ442をスイッチングし、半導体スイッ
チ441をオフする。
During regenerative braking, the chopper circuit 44 operates as a step-down chopper as shown in FIG. in this case,
The semiconductor switch 442 is switched, and the semiconductor switch 441 is turned off.

【0038】図9は図6のチョッパ回路44の動作を説
明する図である。モードIは加速、定遠走行時、モード
IIは蛇行時、モードIIIは制動時の動作を示す。加速、
定速走行時は主蓄電装置4は放電して、電池電圧Vcは
減少するが、チョッパ回路44の昇圧動作により、イン
バータ5の入力電圧Viは一定に保たれる。チョッパ回
路44の電流Ic(図6のリアクトルの電流)は主蓄電
装置4の電圧低下に応じて増大する。モードIIIの回生
制動では、チョッパ回路44の降圧チョッパ動作によ
り、チョッパ回路44の入力電圧を一定に保ちながら、
回生電力を主蓄電装置4に充電する。チョッパ回路44
の電流Icは主蓄電装置4の電圧Vcの上昇に応じて減
少する。
FIG. 9 is a diagram for explaining the operation of the chopper circuit 44 of FIG. Mode I is the mode for acceleration
II indicates a meandering operation, and Mode III indicates a braking operation. acceleration,
During traveling at a constant speed, the main power storage device 4 discharges and the battery voltage Vc decreases, but the input voltage Vi of the inverter 5 is kept constant by the boosting operation of the chopper circuit 44. The current Ic of the chopper circuit 44 (the current of the reactor in FIG. 6) increases as the voltage of the main power storage device 4 decreases. In the regenerative braking in mode III, the step-down chopper operation of the chopper circuit 44 keeps the input voltage of the chopper circuit 44 constant,
The regenerative power is charged in the main power storage device 4. Chopper circuit 44
Current Ic decreases as voltage Vc of main power storage device 4 increases.

【0039】各キャパシタ電池ブロック10,11,1
2の蓄電エネルギはそれぞれの電圧の2乗に比例するた
め、充放電による蓄積エネルギの変化でそれぞれの電圧
が大きく変動するが、ブロック接続切換回路13が各キ
ャパシタ電池ブロック10,11,12の充放電に応じ
てこれらを必要数だけ直列に接続することにより、主蓄
電装置4の電圧Vcの変動が抑えられる。チョッパ回路
44は電流平滑用リアクトル445を備え、このリアク
トル電流は主蓄電装置4の電圧Vcに反比例するので、
主蓄電装置4の電圧Vcの変動が抑えられることによ
り、チョッパ回路44の小形軽量化、高効率化がはか
れ、長寿命な電気自動車の電源システムを実現できる。
Each of the capacitor battery blocks 10, 11, 1
2 is proportional to the square of each voltage, the respective voltages greatly fluctuate due to the change in the stored energy due to charging and discharging. However, the block connection switching circuit 13 causes the charging of each of the capacitor battery blocks 10, 11, 12 to be performed. By connecting a required number of them in series according to the discharge, the fluctuation of voltage Vc of main power storage device 4 can be suppressed. The chopper circuit 44 includes a current smoothing reactor 445, and the reactor current is inversely proportional to the voltage Vc of the main power storage device 4.
Since the fluctuation of the voltage Vc of the main power storage device 4 is suppressed, the chopper circuit 44 can be reduced in size, weight, and efficiency, and a power supply system for a long-life electric vehicle can be realized.

【0040】ブロック接続切換回路13の半導体スイッ
チ130は、回路切換え時のみのスイッチング動作で、
定常時にスイッチングを行わず、かつ通流する半導体ス
イッチは1素子で済むので、高効率な電源システムが実
現できる。
The semiconductor switch 130 of the block connection switching circuit 13 performs a switching operation only at the time of circuit switching.
Since there is only one semiconductor switch that does not perform switching in a steady state and flows, a highly efficient power supply system can be realized.

【0041】図10はキャパシタ電池切換回路13のス
イッチ130の第二の実施形態を示すもので、スイッチ
130は逆阻止型GTOサイリスタ130c,130d
を逆並列に接続して構成される。動作モードによってス
イッチ130がオンオフされるとき、電流の向きと無関
係に逆並列に接続された逆阻止型GTOサイリスタ13
0c,130dの両方にオンまたはオフ信号を与えるこ
とにより、主蓄電装置4の放電又は充電の電流の向きに
対応して自動的に通流する。スイッチ131,132も
同様な構成であるので説明は省略する。
FIG. 10 shows a second embodiment of the switch 130 of the capacitor battery switching circuit 13. The switch 130 is a reverse blocking GTO thyristor 130c, 130d.
Are connected in antiparallel. When the switch 130 is turned on and off by the operation mode, the reverse blocking GTO thyristor 13 connected in anti-parallel regardless of the direction of the current
By giving an ON or OFF signal to both 0c and 130d, the current automatically flows according to the direction of the current of discharging or charging of main power storage device 4. Since the switches 131 and 132 have the same configuration, the description is omitted.

【0042】図11はキャパシタ電池切換回路13のス
イッチ130の第三の実施の形態を示すもので、スイッ
チ130はトランジスタ130e,130fを逆極性に
直列接続し、同様にダイオード130g,130hをト
ランジスタ130e,130fに対して逆並列に接続し
て構成される。動作モードによってスイッチ130がオ
ンオフされるとき、電流の向きと無関係に逆極性に直列
接続されたトランジスタ130e,130fの両方にオ
ンまたはオフ信号を与えることにより、主蓄電装置4の
放電又は充電の電流の向きに対応して自動的に通流す
る。スイッチ131,132も同様な構成であるので説
明は省略する。
FIG. 11 shows a third embodiment of the switch 130 of the capacitor battery switching circuit 13. The switch 130 connects the transistors 130e and 130f in series with opposite polarities, and similarly connects the diodes 130g and 130h to the transistor 130e. , 130f connected in anti-parallel. When the switch 130 is turned on and off according to the operation mode, the on or off signal is applied to both the transistors 130 e and 130 f connected in series with opposite polarities irrespective of the direction of the current, thereby discharging or charging the main power storage device 4. It flows automatically according to the direction of. Since the switches 131 and 132 have the same configuration, the description is omitted.

【0043】以上、シリーズ式ハイブリッド電気自動車
の場合で説明したが、本発明はパラレル式ハイブリッド
電気自動車や発電機を搭載しない電気自動車、燃料電池
を電源とする電気自動車をはじめとする他の電気自動車
の電源システムに適用可能である。
Although the above description has been made in connection with the series hybrid electric vehicle, the present invention relates to other electric vehicles such as a parallel hybrid electric vehicle, an electric vehicle without a generator, and an electric vehicle powered by a fuel cell. Of the power supply system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す電気自動車の電源シ
ステムの構成図。
FIG. 1 is a configuration diagram of a power supply system of an electric vehicle according to an embodiment of the present invention.

【図2】同じくブロック接続切換回路の回路図。FIG. 2 is a circuit diagram of the same block connection switching circuit.

【図3】同じくスイッチの回路図。FIG. 3 is a circuit diagram of the same switch.

【図4】同じく動作説明図。FIG. 4 is an explanatory diagram of the operation.

【図5】同じく動作説明図。FIG. 5 is an operation explanatory view of the same.

【図6】同じくチョッパ回路の回路図。FIG. 6 is a circuit diagram of the chopper circuit.

【図7】同じくチョッパ回路の動作説明図。FIG. 7 is an explanatory diagram of the operation of the chopper circuit.

【図8】同じくチョッパ回路の動作説明図。FIG. 8 is an operation explanatory diagram of the chopper circuit.

【図9】同じく動作説明図。FIG. 9 is an explanatory diagram of the operation.

【図10】他の実施の形態を示すスイッチの回路図。FIG. 10 is a circuit diagram of a switch according to another embodiment.

【図11】さらに他の実施の形態を示すスイッチの回路
図。
FIG. 11 is a circuit diagram of a switch showing still another embodiment.

【図12】従来例を示す電気自動車の電源システムの構
成図。
FIG. 12 is a configuration diagram of a power supply system of an electric vehicle showing a conventional example.

【符号の説明】[Explanation of symbols]

1 エンジン 2 発電機 3 整流器 4 主蓄電装置 5 インバータ 6 走行用モータ 10 電池ブロック 11 電池ブロック 12 電池ブロック 13 ブロック接続切換回路 100 電気二重層キャパシタセル 110 電気二重層キャパシタセル 120 電気二重層キャパシタセル 130 双方向通流型スイッチ 130a サイリスタ 130b サイリスタ 130c 逆阻止型GTOサイリスタ 130d 逆阻止型GTOサイリスタ 130e トランジスタ 130f トランジスタ 130g ダイオード 130h ダイオード 131 双方向通流型スイッチ 132 双方向通流型スイッチ REFERENCE SIGNS LIST 1 engine 2 generator 3 rectifier 4 main power storage device 5 inverter 6 running motor 10 battery block 11 battery block 12 battery block 13 block connection switching circuit 100 electric double layer capacitor cell 110 electric double layer capacitor cell 120 electric double layer capacitor cell 130 Bidirectional conduction switch 130a Thyristor 130b Thyristor 130c Reverse blocking GTO thyristor 130d Reverse blocking GTO thyristor 130e Transistor 130f Transistor 130g Diode 130h Diode 131 Bidirectional conduction switch 132 Bidirectional conduction switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/14 H02J 7/14 H // B60K 6/02 B60K 9/00 C (71)出願人 000005234 富士電機株式会社 神奈川県川崎市川崎区田辺新田1番1号 (72)発明者 渡邉 慶人 埼玉県上尾市大字壱丁目一番地 日産ディ ーゼル工業株式会社内 (72)発明者 山田 淳 埼玉県上尾市大字壱丁目一番地 日産ディ ーゼル工業株式会社内 (72)発明者 岡村 廸夫 神奈川県横浜市南区南太田2丁目19番6号 株式会社岡村研究所内 (72)発明者 山岸 政章 神奈川県横浜市金沢区福浦1−1−1横浜 金沢ハイテクセンター・テクノコア3F 株式会社パワーシステム内 (72)発明者 木下 繁則 東京都日野市富士町一番地 富士電機株式 会社内 Fターム(参考) 5G003 AA07 BA05 CA11 CC02 CC04 DA04 DA16 EA06 FA06 GA01 GA02 GB03 GB06 5G060 AA04 BA08 CA02 DA01 DA02 DB08 DB09 5H115 PC06 PG04 PI16 PI24 PO01 PO06 PO10 PU01 PU21 PV08 PV27 RB19 SE06 TI05 TI06 TO13 TR19 TU06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/14 H02J 7/14 H // B60K 6/02 B60K 9/00 C (71) Applicant 000005234 Fuji Electric Co., Ltd. 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-ku, Kanagawa-ken (72) Inventor Yoshito Watanabe Ichi-cho, Ichi-cho, Ageo-shi, Saitama Pref. Niisan Diesel Industry Co., Ltd. (72) Inventor Dio Okamura 2-19-6 Minamiota, Minami-ku, Yokohama, Kanagawa Prefecture Okamura Research Institute Co., Ltd. (72) Inventor Masaaki Yamagishi Yokohama, Kanagawa Prefecture 1-1-1 Fukuura, Kanazawa-ku, Yokohama Yokohama Kanazawa High-tech Center Techno Core 3F Inside Power System Co., Ltd. (72) Inventor Shigenori Kinoshita Tokyo First place in Fuji-cho, Hino-shi F-term in Fuji Electric Co., Ltd. (reference) RB19 SE06 TI05 TI06 TO13 TR19 TU06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】走行用モータに電力を供給する主蓄電装置
を備え、 前記主蓄電装置を複数の電気二重層キャパシタセルによ
って構成する電気自動車の電源システムにおいて、 前記主蓄電装置に前記電気二重層キャパシタセルによっ
て構成される複数の電池ブロックと、 前記主蓄電装置の電圧が規定値以上となるように前記電
気二重層キャパシタセルの充放電による電圧変化に対応
して直列に接続される前記電池ブロックの数を切換える
ブロック接続切換回路とを備えたことを特徴とする電気
自動車の電源システム。
1. A power supply system for an electric vehicle, comprising: a main power storage device for supplying electric power to a traveling motor; wherein the main power storage device includes a plurality of electric double layer capacitor cells; A plurality of battery blocks configured by capacitor cells; and the battery blocks connected in series corresponding to a voltage change due to charging and discharging of the electric double layer capacitor cell such that a voltage of the main power storage device is equal to or higher than a specified value. A power supply system for an electric vehicle, comprising:
【請求項2】前記主蓄電装置の電圧が規定値以下となる
ように前記各電池ブロックに蓄えられる電力を漸次変え
ることを特徴とする請求項1に記載の電気自動車の電源
システム。
2. A power supply system for an electric vehicle according to claim 1, wherein electric power stored in each of said battery blocks is gradually changed such that a voltage of said main power storage device becomes a specified value or less.
【請求項3】前記ブロック接続切換回路を双方向通流型
半導体スイッチで構成したことを特徴とする請求項1ま
たは2に記載の電気自動車の電源システム。
3. A power supply system for an electric vehicle according to claim 1, wherein said block connection switching circuit is constituted by a bidirectional flow semiconductor switch.
【請求項4】前記双方向通流型半導体スイッチを互いに
逆並列接続される対のサイリスタで構成したことを特徴
とする請求項3に記載の電気自動車の電源システム。
4. A power supply system for an electric vehicle according to claim 3, wherein said two-way semiconductor switches are constituted by a pair of thyristors connected in antiparallel to each other.
【請求項5】前記双方向通流型半導体スイッチを互いに
逆並列接続される対の逆阻止型GTOサイリスタで構成
したことを特徴とする請求項3に記載の電気自動車の電
源システム。
5. The power supply system for an electric vehicle according to claim 3, wherein said two-way conduction type semiconductor switches are constituted by a pair of reverse blocking GTO thyristors connected in anti-parallel to each other.
【請求項6】前記双方向通流型半導体スイッチを互いに
逆極性に直列接続される対のトランジスタと、 前記各トランジスタに対して逆並列に接続されるダイオ
ードで構成したことを特徴とする請求項3に記載の電気
自動車の電源システム。
6. The semiconductor switch according to claim 1, wherein said semiconductor switch comprises a pair of transistors connected in series with opposite polarities to each other and a diode connected in antiparallel to each of said transistors. 4. The power supply system for an electric vehicle according to 3.
JP07598799A 1999-03-19 1999-03-19 Electric vehicle power system Expired - Lifetime JP3558546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07598799A JP3558546B2 (en) 1999-03-19 1999-03-19 Electric vehicle power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07598799A JP3558546B2 (en) 1999-03-19 1999-03-19 Electric vehicle power system

Publications (2)

Publication Number Publication Date
JP2000278806A true JP2000278806A (en) 2000-10-06
JP3558546B2 JP3558546B2 (en) 2004-08-25

Family

ID=13592139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07598799A Expired - Lifetime JP3558546B2 (en) 1999-03-19 1999-03-19 Electric vehicle power system

Country Status (1)

Country Link
JP (1) JP3558546B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214299A (en) * 2004-01-29 2005-08-11 Kawaden:Kk Electric valve
US7279855B2 (en) 2003-04-04 2007-10-09 Hitachi, Ltd. Electric drive device for vehicle and hybrid engine/motor-type four wheel drive device
WO2012002082A1 (en) * 2010-06-29 2012-01-05 本田技研工業株式会社 Electric automobile
WO2012137315A1 (en) * 2011-04-06 2012-10-11 三菱電機株式会社 Power supply system for vehicle
JP2012525812A (en) * 2009-04-30 2012-10-22 ダイムラー・アクチェンゲゼルシャフト Electric driveable car
JP2015096017A (en) * 2013-11-14 2015-05-18 トヨタ自動車株式会社 Vehicle, and charge/discharge system using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353222B2 (en) * 2006-09-05 2009-10-28 日産自動車株式会社 Power supply apparatus and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279855B2 (en) 2003-04-04 2007-10-09 Hitachi, Ltd. Electric drive device for vehicle and hybrid engine/motor-type four wheel drive device
JP2005214299A (en) * 2004-01-29 2005-08-11 Kawaden:Kk Electric valve
JP4593936B2 (en) * 2004-01-29 2010-12-08 株式会社カワデン Electric valve
JP2012525812A (en) * 2009-04-30 2012-10-22 ダイムラー・アクチェンゲゼルシャフト Electric driveable car
US8952651B2 (en) 2009-04-30 2015-02-10 Daimler Ag Electrically drivable motor vehicle with two anti-parallel power branches
WO2012002082A1 (en) * 2010-06-29 2012-01-05 本田技研工業株式会社 Electric automobile
JPWO2012002082A1 (en) * 2010-06-29 2013-08-22 本田技研工業株式会社 Electric car
US9493092B2 (en) 2010-06-29 2016-11-15 Honda Motor Co., Ltd. Electric automobile
WO2012137315A1 (en) * 2011-04-06 2012-10-11 三菱電機株式会社 Power supply system for vehicle
JP2015096017A (en) * 2013-11-14 2015-05-18 トヨタ自動車株式会社 Vehicle, and charge/discharge system using the same

Also Published As

Publication number Publication date
JP3558546B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US10994623B2 (en) Apparatus for energy transfer using converter and method of manufacturing same
JP3219039B2 (en) Electric vehicle electric system
US7568537B2 (en) Vehicle propulsion system
JP3655277B2 (en) Electric motor power management system
JP4023171B2 (en) LOAD DRIVE DEVICE, CHARGE CONTROL METHOD FOR POWER STORAGE DEVICE IN LOAD DRIVE DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE CHARGE CONTROL
JP3552087B2 (en) Electric vehicle power system
US20030222502A1 (en) Hybrid power supply system
US20040062059A1 (en) Apparatus and method employing bi-directional converter for charging and/or supplying power
US10044312B2 (en) Modular stacked DC architecture traction system and method of making same
US20020024307A1 (en) Electric vehicle drive
CN103171452A (en) Dual-power supply management system and dual-power supply management method for electric vehicle
JP2007174867A (en) Power supply unit for vehicle
US6777912B1 (en) Power source system for driving vehicle
JP2004056995A (en) Hybrid power supply system
JP2000278806A (en) Power supply system for electric vehicle
JP5931366B2 (en) Power converter
JP2598465Y2 (en) Power supply for vehicles
JP3558159B2 (en) Electric vehicle power system
JP2012023803A (en) Dc-dc converter for driving motor
Xia et al. An integrated modular converter for switched reluctance motor drives in range-extended electric vehicles
JPH11275766A (en) Insulated dc-dc power converter and electric system for electric vehicle
JP2019110655A (en) Power supply system
JP2019110656A (en) Power supply system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160528

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term