JP2000277384A - Electrolytic capacitor - Google Patents
Electrolytic capacitorInfo
- Publication number
- JP2000277384A JP2000277384A JP7752999A JP7752999A JP2000277384A JP 2000277384 A JP2000277384 A JP 2000277384A JP 7752999 A JP7752999 A JP 7752999A JP 7752999 A JP7752999 A JP 7752999A JP 2000277384 A JP2000277384 A JP 2000277384A
- Authority
- JP
- Japan
- Prior art keywords
- foil
- cathode
- internal terminal
- anode
- anode foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はアルミ電解コンデン
サ等の電解コンデンサに関する。The present invention relates to an electrolytic capacitor such as an aluminum electrolytic capacitor.
【0002】[0002]
【従来の技術】アルミ電解コンデンサ等の電解コンデン
サは、図5に示し通り、アルミやチタン等の弁作用金属
のエッチング箔に酸化皮膜を形成した陽極箔11と、ア
ルミやチタン等の弁作用金属のエッチング箔からなる陰
極箔12とを絶縁紙等のセパレータ13を介して積層
し、巻回したコンデンサ素子を有している。そして陽極
箔11及び陰極箔12にはプレーンな細長い箔状の内部
端子14及び15を接続している。なお、陽極箔11や
陰極箔12に接続した内部端子14及び15がセパレー
タ13を破って、対向する陰極箔12や陽極箔11に接
触すると短絡不良となる。このような不良を防止するた
めに、内部端子14及び15とセパレータ13との間に
保護用の別のセパレータを積層した構造とすることがあ
る。また、コンデンサ素子には電解液が含浸されてい
る。2. Description of the Related Art As shown in FIG. 5, an electrolytic capacitor such as an aluminum electrolytic capacitor includes an anode foil 11 having an oxide film formed on an etching foil of a valve metal such as aluminum or titanium, and a valve metal such as aluminum or titanium. And a cathode foil 12 made of an etching foil of the above-described type and laminated with a separator 13 made of insulating paper or the like in between and wound. The anode foil 11 and the cathode foil 12 are connected to internal terminals 14 and 15 in the form of plain elongated foils. When the internal terminals 14 and 15 connected to the anode foil 11 and the cathode foil 12 break the separator 13 and come into contact with the opposed cathode foil 12 and the anode foil 11, a short circuit failure occurs. In order to prevent such a defect, a structure in which another separator for protection is laminated between the internal terminals 14 and 15 and the separator 13 may be adopted. The capacitor element is impregnated with an electrolytic solution.
【0003】このアルミ電解コンデンサ等の電解コンデ
ンサは、フィルター用として使用されていることが多
く、例えばエアコンのフィルター用等に用いられてい
る。そしてエアコン等に用いると、他の用途に比較して
負荷としてかかる“リプル電流/容量”が大きい傾向に
ある。また、特に低周波成分(例えば50Hz)が多い
傾向にある。An electrolytic capacitor such as an aluminum electrolytic capacitor is often used for a filter, for example, for a filter of an air conditioner. When used in an air conditioner or the like, the “ripple current / capacity” applied as a load tends to be large as compared with other uses. In particular, there is a tendency that there are many low frequency components (for example, 50 Hz).
【0004】[0004]
【発明が解決しようとする課題】ところで低周波領域に
おいては、コンデンサのインピーダンスは容量の影響が
大きく、ほとんど陽極箔の酸化皮膜の容量によって決ま
る。そして陽極箔は、エッチングされていてミクロ的に
は容量値が不均一になっているが、数mm程度のマクロ的
な範囲でみると容量値が均一に分布しているとみなせ
る。従って、陽極箔表面でのリプル電流の電流力線もマ
クロ的には均一とみなせる。また、陽極箔と陰極内部端
子とはその各々の表面形態が異なっていて、互いにイン
ピーダンスが異なり、通常、後者の方が高くなってい
る。しかし、陽極箔と陰極箔との距離が短いため、陽極
箔から出たリプル電流の電流力線はほぼそのまま陰極箔
や陰極内部端子に伝わる。しかも陰極内部端子は通常エ
ッチングされていないため、陰極内部端子及びその付近
に流れるリプル電流の密度はその他の陰極箔の部分に比
較して非常に高くなる。また、ファラデーの法則による
と電極間を通過する電気量に応じて電極表面に生成物を
生じる。アルミ電解コンデンサの場合、この生成物は水
素や酸素等のガスである。そして通常のリプル電流が流
れた場合には、陰極箔等と電解液との界面において電子
が移動しているのではなく、界面2重層による変位電流
によって電荷が運ばれているため、水素ガス等の生成物
を生じない。しかし、特に低周波においてリプル電流が
大きい場合には、V=I/ωCの式から明らかな通り、
界面2重層に印加される電圧が大きくなり、その耐圧を
越えると陰極箔等と電解液との界面において電子が移動
し、水素ガス等の生成物を発生する。In the low frequency region, the impedance of the capacitor is largely affected by the capacitance, and is almost determined by the capacitance of the oxide film on the anode foil. The anode foil is etched and has a non-uniform capacitance value microscopically, but it can be considered that the capacitance values are uniformly distributed in a macro range of about several mm. Therefore, the current lines of force of the ripple current on the surface of the anode foil can be regarded as macroscopically uniform. Further, the anode foil and the cathode internal terminal have different surface morphologies, have different impedances, and are usually higher in the latter. However, since the distance between the anode foil and the cathode foil is short, the current lines of the ripple current from the anode foil are transmitted to the cathode foil and the cathode internal terminal almost as they are. Moreover, since the cathode internal terminals are not usually etched, the density of the ripple current flowing in and around the cathode internal terminals is much higher than in other cathode foil portions. According to Faraday's law, a product is generated on the electrode surface in accordance with the amount of electricity passing between the electrodes. In the case of an aluminum electrolytic capacitor, this product is a gas such as hydrogen or oxygen. When a normal ripple current flows, electrons are not moving at the interface between the cathode foil or the like and the electrolytic solution, but the charge is carried by the displacement current due to the interface double layer. Does not produce the product However, especially when the ripple current is large at a low frequency, as is clear from the equation of V = I / ωC,
When the voltage applied to the interface double layer increases and exceeds the withstand voltage, electrons move at the interface between the cathode foil and the like and the electrolyte, and generate products such as hydrogen gas.
【0005】また、陰極箔と陰極内部端子との間にイン
ピーダンスの差があるため、両者の表面の二重層に電位
差が発生する。そしてこの電位差によって局部電池反応
が発生し、一種のファラデー反応となる。従って、この
ファラデー反応のため、電解液から水素が奪われるた
め、陰極内部端子付近では電解液のpHがアルカリ側に
移行する。このため、イ)陰極内部端子に孔食が発生
し、ロ)この陰極内部端子付近の陰極箔に孔食が生じた
り、破れたりし、ハ)陰極箔と陰極内部端子との間の導
通が損なわれ、ニ)陰極内部端子付近で陽極箔と陰極箔
とがショートし、ホ)陽極箔と陰極内部端子とがショー
トし、ヘ)コンデンサとしての寿命が短かくなる等の各
種の欠点を生じる。[0005] Further, since there is a difference in impedance between the cathode foil and the cathode internal terminal, a potential difference is generated between the double layers on the surfaces of both. This potential difference causes a local battery reaction, which is a kind of Faraday reaction. Therefore, hydrogen is deprived from the electrolytic solution due to the Faraday reaction, and the pH of the electrolytic solution shifts to the alkali side near the cathode internal terminal. For this reason, a) pitting occurs on the cathode internal terminal, b) pitting occurs or breaks on the cathode foil near the cathode internal terminal, c) conduction between the cathode foil and the cathode internal terminal occurs. And d) short-circuiting between the anode foil and the cathode foil near the cathode internal terminal, e) short-circuiting between the anode foil and the cathode internal terminal, and f) shortening the life of the capacitor. .
【0006】本発明は、以上の欠点を改良し、陰極内部
端子やその付近の陰極箔に孔食が発生したり、後者に破
れ等が発生するのを各々防止し、陰極箔と陰極内部端子
との導通を損うことなく、陽極箔と陰極箔等との間のシ
ョート不良を防止でき、寿命を改善できる電解コンデン
サを提供することを課題とするものである。The present invention solves the above-mentioned drawbacks, and prevents pitting corrosion on the cathode internal terminal and the cathode foil in the vicinity thereof and breakage of the latter, respectively. It is an object of the present invention to provide an electrolytic capacitor capable of preventing a short circuit between an anode foil and a cathode foil or the like without impairing continuity with the electrolytic capacitor and improving the life.
【0007】[0007]
【課題を解決するための手段】本発明は、以上の課題を
解決するために、陽極内部端子を接続した陽極箔と、陰
極内部端子を接続した陰極箔とをセパレータを介して積
層したコンデンサ素子を有する電解コンデンサにおい
て、前記陰極内部端子の前記陽極箔側の面にエッチング
処理したアルミ箔を被せることを特徴とするものであ
る。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a capacitor element in which an anode foil connected to an anode internal terminal and a cathode foil connected to a cathode internal terminal are laminated via a separator. Wherein the surface of the cathode internal terminal on the anode foil side is covered with an etched aluminum foil.
【0008】また、本発明は、陽極内部端子を接続した
陽極箔と、陰極内部端子を接続した陰極箔とをセパレー
タを介して積層したコンデンサ素子を有する電解コンデ
ンサにおいて、前記陰極内部端子の前記陽極箔側の面に
エッチング処理されていることを特徴とするものであ
る。The present invention also relates to an electrolytic capacitor having a capacitor element in which an anode foil connected to an anode internal terminal and a cathode foil connected to a cathode internal terminal are laminated with a separator interposed therebetween. The foil-side surface is etched.
【0009】さらに、本発明は、陽極内部端子を接続し
た陽極箔と、陰極内部端子を接続した陰極箔とをセパレ
ータを介して積層したコンデンサ素子を有する電解コン
デンサにおいて、前記陰極内部端子の前記陽極箔側の面
にSn又はTiが付着していることを特徴とするもので
ある。Further, the present invention relates to an electrolytic capacitor having a capacitor element in which an anode foil to which an anode internal terminal is connected and a cathode foil to which a cathode internal terminal is connected with a separator interposed therebetween. Sn or Ti is attached to the surface on the foil side.
【0010】すなわち、陰極内部端子の陽極箔側の面に
エッチング処理したアルミ箔を被せると、この陰極内部
端子付近のインピーダンスの不均一性が緩和されあるい
は均一になり、表面積当りの電流密度の差を低下でき、
あるいはその差をなくすことができ、界面電圧が陰極内
部端子の箇所で高くなるのを防止できる。従って、アル
ミ箔表面でファラデー反応を生じることなく、孔食等を
防止できる。そしてアルミ箔と陰極内部端子とは界面2
重層によらずに電気的に導通しているため、陰極内部端
子や陰極箔に孔食を生じたり、陰極箔が破れたりするの
をほとんど防止でき、陰極箔と陰極内部端子との間の導
通を損うことなく、陰極箔と陰極内部端子とが不導通に
なったり、陰極内部端子付近で陽極箔と陰極箔とがショ
ート不良を生じたりすることなく、寿命を改善できる。In other words, when an etched aluminum foil is placed on the surface of the cathode internal terminal on the anode foil side, the non-uniformity of impedance near the cathode internal terminal is reduced or made uniform, and the difference in current density per surface area is reduced. Can be reduced,
Alternatively, the difference can be eliminated, and the interface voltage can be prevented from increasing at the location of the cathode internal terminal. Therefore, pitting corrosion and the like can be prevented without causing a Faraday reaction on the surface of the aluminum foil. The interface 2 between the aluminum foil and the cathode internal terminal
Since it is electrically conductive regardless of the multilayer, pitting corrosion and breakage of the cathode foil can be almost prevented in the cathode internal terminal and cathode foil, and conduction between the cathode foil and the cathode internal terminal can be prevented. The service life can be improved without breaking the cathode foil and the cathode internal terminal being disconnected, and without causing a short circuit between the anode foil and the cathode foil near the cathode internal terminal.
【0011】また、陰極内部端子の陽極箔側の面をエッ
チング処理することにより、リップル電流が流れる表面
積を増大でき、リップル電流密度を低下できる。従っ
て、同様に、陰極内部端子等に孔食を生じたり、陰極内
部端子付近の陰極箔が破れたりする等の不良を防止で
き、寿命を改善できる。Further, by etching the surface of the cathode internal terminal on the anode foil side, the surface area through which the ripple current flows can be increased, and the ripple current density can be reduced. Therefore, similarly, it is possible to prevent defects such as pitting of the cathode internal terminal and the like and breakage of the cathode foil in the vicinity of the cathode internal terminal, thereby improving the life.
【0012】さらに、陰極内部端子の陽極箔側の面にT
iを付着すると、Tiの誘電率が高く、Tiの表面に容
量の比較的に大きい自然酸化皮膜が形成される。そして
陰極内部端子の陽極箔側の面の容量は、この容量の大き
な自然酸化皮膜と、電解液との間の界面2重層との合成
量となり、大きな値となる。このため、陰極内部端子表
面のインピーダンスを低下でき、陰極内部端子付近のイ
ンピーダンスが不均一になるのを軽減できる。また、陰
極内部端子の陽極箔側の面にSnを付着すると、Snの
表面に形成される自然酸化皮膜が誘電体層でないため、
陰極内部端子の陽極箔側の面の容量は界面2重層の容量
によって決まる。従って、同様に、陰極内部端子表面の
インピーダンスを低下でき、陰極内部端子付近のインピ
ーダンスが不均一になるのを軽減できる。そして陰極内
部端子の表面にTiやSnを凹凸が形成されるように付
着すれば、リップル電流が流れ込む面積を増加でき、リ
ップル電流の電流密度を低下できる。これにより、陰極
内部端子等に孔食を生じたり、陰極内部端子付近の陰極
箔が破れたりする等の不良を防止でき、寿命を改善でき
る。Further, the surface of the cathode internal terminal on the anode foil side is
When i is attached, a natural oxide film having a relatively large capacity is formed on the surface of Ti with a high dielectric constant of Ti. The capacity of the surface of the cathode internal terminal on the anode foil side is a large value, which is the combined amount of the natural oxide film having a large capacity and the interface double layer between the electrolyte and the electrolyte. Therefore, the impedance on the surface of the cathode internal terminal can be reduced, and the impedance near the cathode internal terminal can be reduced from becoming non-uniform. When Sn is attached to the anode foil side surface of the cathode internal terminal, the natural oxide film formed on the Sn surface is not a dielectric layer,
The capacity of the surface of the cathode internal terminal on the anode foil side is determined by the capacity of the interface double layer. Accordingly, similarly, the impedance on the surface of the cathode internal terminal can be reduced, and the non-uniform impedance near the cathode internal terminal can be reduced. If Ti or Sn is adhered to the surface of the cathode internal terminal so as to form irregularities, the area into which the ripple current flows can be increased, and the current density of the ripple current can be reduced. This can prevent defects such as pitting corrosion on the cathode internal terminal and the like and breakage of the cathode foil near the cathode internal terminal, and can improve the life.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1において1は、陽極箔であ
り、例えば、純度99.9%以上のエッチング処理した
厚さ40〜110μmのアルミ箔等の弁作用金属に酸化
皮膜を形成したものである。そしてこの陽極箔1にエッ
チング処理をしないかつ酸化皮膜を形成したタブ端子や
リード端子等からなる陽極箔内部端子2がコールドウェ
ルド法やかしめつけ法等により接続されている。また、
陽極箔1には厚さ30〜70μmのマニラ紙やクラフト
紙等の電解紙からなるセパレータ3が積層されている。
そしてセパレータ3には、エッチング処理した厚さ15
〜60μm程度のアルミ箔等の弁作用金属等からなる陰
極箔4が積層されている。この陰極箔4にはエッチング
処理をしないかつ酸化皮膜を形成しないあるいは低電圧
で化成処理したアルミ等のタブ端子やリード端子等から
なる陰極内部端子5がコールドウェルド法やかしめつけ
法等によって接続されている。Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes an anode foil, which is formed by forming an oxide film on a valve action metal such as an aluminum foil having a thickness of 40 to 110 μm which has been subjected to an etching treatment with a purity of 99.9% or more. The anode foil 1 is not subjected to an etching treatment and is connected to an anode foil internal terminal 2 formed of a tab terminal, a lead terminal, or the like having an oxide film formed thereon by a cold welding method, a caulking method, or the like. Also,
A separator 3 made of electrolytic paper such as manila paper or kraft paper having a thickness of 30 to 70 μm is laminated on the anode foil 1.
The separator 3 has an etched thickness of 15
A cathode foil 4 made of a valve metal such as an aluminum foil of about 60 μm or the like is laminated. A cathode internal terminal 5 made of a tab terminal or a lead terminal made of aluminum or the like which has not been subjected to an etching process and has not formed an oxide film or has been subjected to a chemical conversion treatment at a low voltage is connected to the cathode foil 4 by a cold welding method, a swaging method, or the like. ing.
【0014】そしてこの陰極内部端子5にはセパレータ
3との間にその陽極箔1側の面にエッチングした厚さ1
5〜60μmのアルミ箔6を積層し、陰極内部端子5の
陽極箔1側の面を被っている。なお、このアルミ箔6
は、コールドウェルド法やかしめつけ法等により陰極内
部端子5に接続してもよく、アルミ箔6と陰極内部端子
5との電流的接続が改良されるとともに、陰極内部端子
5に対するアルミ箔6の位置を一定にでき、アルミ箔6
により陰極内部端子5を確実に被覆できる。また、アル
ミ箔6のエッチング倍率や厚さ等の条件は陰極箔4と同
一である方が良く、これにより、陰極箔4,陰極内部端
子5,アルミ箔6からなる陰極側のインピーダンスの不
均一性をより緩和できる。The cathode internal terminal 5 has an etched thickness 1 between the separator 3 and the anode foil 1 side.
An aluminum foil 6 of 5 to 60 μm is laminated and covers the surface of the cathode internal terminal 5 on the anode foil 1 side. In addition, this aluminum foil 6
May be connected to the cathode internal terminal 5 by a cold weld method, a caulking method, or the like, and the current connection between the aluminum foil 6 and the cathode internal terminal 5 is improved. The position can be fixed, aluminum foil 6
Thereby, the cathode internal terminal 5 can be reliably covered. It is preferable that the conditions such as the etching magnification and the thickness of the aluminum foil 6 are the same as those of the cathode foil 4, whereby the impedance on the cathode side composed of the cathode foil 4, the cathode internal terminal 5, and the aluminum foil 6 is not uniform. Can be more relaxed.
【0015】なお、陰極内部端子5にアルミ箔6を被せ
る代りに、図2に示す通りに、陽極箔1側の面をエッチ
ング処理した陰極内部端子7を陰極箔4にコールドウェ
ルド法等により接続する構造にしてもよい。As shown in FIG. 2, instead of placing aluminum foil 6 on cathode internal terminal 5, cathode internal terminal 7 having its anode foil 1 side etched is connected to cathode foil 4 by cold welding or the like. The structure may be such that:
【0016】また、図3に示す通り、陽極箔1側の面に
TiやSnを付着し金属層8を形成した陰極内部端子9
を陰極箔4にコールドウェルド法等により接続する構造
にしてもよい。なお、TiやSnは蒸着法や吹き付け法
等の手段により陰極内部端子9に付着させる。そしてこ
の場合、形成される金属層8の表面が凹凸状になるよう
に付着させる方が良い。As shown in FIG. 3, a cathode internal terminal 9 having a metal layer 8 formed by adhering Ti or Sn to the surface on the side of the anode foil 1 is formed.
May be connected to the cathode foil 4 by a cold weld method or the like. Note that Ti and Sn are attached to the cathode internal terminal 9 by a method such as an evaporation method or a spraying method. In this case, it is better to attach the metal layer 8 so that the surface of the metal layer 8 to be formed has an uneven shape.
【0017】そしてこの陽極箔1,セパレータ3,アル
ミ箔6及び陰極箔4を積層したものが、図4に示す通
り、巻回されコンデンサ素子10とされる。このコンデ
ンサ素子10は、電解液を含浸した状態で、アルミ等の
円筒状のケースに収納され、固定剤によりケースに固定
されている。そしてケースには蓋が取付けられていると
ともに、蓋に貫通して固定されている外部端子に陽極内
部端子2及び陰極内部端子5が接続されている。A laminate of the anode foil 1, the separator 3, the aluminum foil 6 and the cathode foil 4 is wound into a capacitor element 10 as shown in FIG. The capacitor element 10 is housed in a cylindrical case made of aluminum or the like while being impregnated with an electrolytic solution, and fixed to the case with a fixing agent. A lid is attached to the case, and an anode internal terminal 2 and a cathode internal terminal 5 are connected to external terminals fixed through the lid.
【0018】上記の電解コンデンサは、陰極内部端子に
被せるアルミ箔や陰極内部端子以外は従来と同じ方法で
製造する。そしてアルミ箔は片面にマスクを設けて片面
だけをエッチング処理するか、あるいはそのまま両面を
エッチング処理する。そして陰極箔に陰極内部端子を接
続する際に、このアルミ箔を陰極内部端子に重ねて同時
に接続してもよい。この場合、片面だけをエッチング処
理したアルミ箔はエッチングをしない面を陰極内部端子
に接触し、そして両面をエッチング処理したアルミ箔は
どちらか一方の面を陰極内部端子に接触し、コールドウ
ェルド法等により、陰極箔とともに互い接続する。The above-mentioned electrolytic capacitor is manufactured by the same method as the conventional one, except for the aluminum foil and the cathode internal terminal to be covered on the cathode internal terminal. Then, a mask is provided on one side of the aluminum foil, and only one side is etched, or both sides are etched. Then, when connecting the cathode internal terminal to the cathode foil, the aluminum foil may be overlapped with the cathode internal terminal and connected simultaneously. In this case, the aluminum foil that has been etched on one side only has the non-etched surface in contact with the cathode internal terminal, and the aluminum foil that has been etched on both sides has one of the surfaces contacted with the cathode internal terminal. With this, they are connected together with the cathode foil.
【0019】また、陰極内部端子をエッチング処理する
には、片面にマスクを設けて一方の面だけに行う方が良
い。両面をエッチング処理すると、強度が低下し、破断
し易くなり、陰極箔等に接続し難くなる。そしてエッチ
ング処理された面が陽極箔側に向くように、コールドウ
ェルド法等により陰極内部端子を陰極箔に接続する。In addition, it is better to provide a mask on one side and perform etching only on one side in order to etch the cathode internal terminal. When both surfaces are etched, the strength is reduced, the film is easily broken, and it is difficult to connect to a cathode foil or the like. Then, the cathode internal terminal is connected to the cathode foil by a cold weld method or the like so that the etched surface faces the anode foil.
【0020】さらに、陰極内部端子にTiやSnを付着
して金属層を形成するには、Ti等を陰極内部端子の片
面に真空蒸着したり、吹き付けたり、印刷したりして行
う。この付着の際に、金属層の表面が凹凸状になるよう
にする。Further, in order to form a metal layer by attaching Ti or Sn to the cathode internal terminal, Ti or the like is vacuum-deposited, sprayed, or printed on one surface of the cathode internal terminal. At the time of this attachment, the surface of the metal layer is made uneven.
【0021】[0021]
【実施例】次に、本発明の実施例について、従来例とと
もに高温負荷試験を行いその寿命等を測定する。なお、
実施例の条件は次の通りとする。 実施例:定格180V,900μFで、外径が30mm,
高さが45mmのアルミ電解コンデンサとする。そして陽
極箔は化成電圧300Vで陽極酸化処理して酸化皮膜を
形成した、厚さ100μmで、単位容量が1.2μF/
cm3のアルミ箔を用いる。また、この陽極箔に、化成電
圧700Vで陽極酸化処理した、厚さが150μmで、
純度99.99%のプレーンなアルミ箔からなる陰極内
部端子をコールドウェルド法により接続する。そして陰
極箔は化成電圧1Vで酸化処理した、厚さ20μmで、
単位容量が80μF/cm2のアルミ箔を用いる。この陰
極箔に未化成で、厚さ150μm,純度99.99%の
プレーンなアルミ箔からなる陰極内部端子をコールドウ
ェルド法により接続する。また、この陰極内部端子に寸
法以外は陰極箔と同一条件のアルミ箔をコールドウェル
ド法により接続し、陰極内部端子を被覆する。セパレー
タは、2枚の電解紙を重ね合せたもので、厚さ40μm
で、合成比重が0.75g/cm3とする。そしてコンデ
ンサ素子には有機酸系の電解液を含浸する。また、従来
例の条件は次の通りとする。Next, a high-temperature load test is performed on the embodiment of the present invention together with the conventional example, and the life thereof is measured. In addition,
The conditions of the embodiment are as follows. Example: Rated 180 V, 900 μF, outer diameter 30 mm,
An aluminum electrolytic capacitor with a height of 45 mm is used. The anode foil was subjected to anodizing treatment at a formation voltage of 300 V to form an oxide film. The thickness was 100 μm, and the unit capacity was 1.2 μF /
Use cm 3 aluminum foil. The anode foil was anodized at a formation voltage of 700 V, had a thickness of 150 μm,
A cathode internal terminal made of a plain aluminum foil having a purity of 99.99% is connected by a cold weld method. The cathode foil was oxidized at a formation voltage of 1 V and had a thickness of 20 μm.
An aluminum foil having a unit capacity of 80 μF / cm 2 is used. A cathode internal terminal made of a plain aluminum foil having a thickness of 150 μm and a purity of 99.99%, which has not been formed, is connected to the cathode foil by a cold weld method. An aluminum foil having the same conditions as the cathode foil except for the dimensions is connected to the cathode internal terminal by a cold welding method to cover the cathode internal terminal. The separator is made by laminating two electrolytic papers and has a thickness of 40 μm.
And the specific gravity is 0.75 g / cm 3 . Then, the capacitor element is impregnated with an organic acid-based electrolytic solution. The conditions of the conventional example are as follows.
【0022】従来例1:実施例において、陰極内部端子
を被覆するアルミ箔がない以外は同一の条件とする。Conventional Example 1: The same conditions as in the example were adopted except that there was no aluminum foil covering the internal terminal of the cathode.
【0023】従来例2:実施例において、陰極内部端子
をアルミ箔の代りに厚さ20μm,密度0.75g/cm
3の電解紙で被覆する以外は同一の条件とする。Conventional Example 2: In the embodiment, the cathode internal terminal was replaced with aluminum foil with a thickness of 20 μm and a density of 0.75 g / cm.
The same conditions are applied except that the coating is made with the electrolytic paper of No. 3 .
【0024】そして、高温負荷試験は、温度85℃の雰
囲気中に、印加尖頭電圧180Vの負荷をかけ、リプル
電流3.5A(50Hz正弦波)を流して試料を放置し
て行う。なお、試料数は各々6個とする。測定結果は、
表1に示す。The high-temperature load test is performed by applying a load of an applied peak voltage of 180 V in an atmosphere at a temperature of 85 ° C., flowing a ripple current of 3.5 A (50 Hz sine wave), and allowing the sample to stand. The number of samples is six each. The measurement result is
It is shown in Table 1.
【0025】[0025]
【表1】 [Table 1]
【0026】この表1から明らかな通り、実施例は、放
置時間3000〜3500hの間に全数の防爆弁が作動
したが、ショート不良を生じたものがなく、陰極内部端
子にも孔食が発生していなかった。これに対して、従来
例1は、放置時間1000〜1500hの間に4個の防
爆弁が作動したが、ショート不良が2個発生し、全数の
陰極内部端子に孔食が発生した。また、従来例2は、放
置時間1200〜2500hの間に5個の防爆弁が作動
したが、ショート不良が1個発生し、全数の陰極内部端
子に孔食が発生した。As is clear from Table 1, in the embodiment, all of the explosion-proof valves were operated during the standing time of 3000 to 3500 h, but there was no short-circuit failure, and pitting corrosion also occurred in the internal terminal of the cathode. I didn't. On the other hand, in the conventional example 1, four explosion-proof valves were operated during the standing time of 1000 to 1500 hours, but two short-circuit failures occurred, and pitting occurred in all the cathode internal terminals. In the conventional example 2, five explosion-proof valves were operated during the standing time of 1200 to 2500 hours, but one short-circuit failure occurred, and pitting occurred in all the cathode internal terminals.
【0027】[0027]
【発明の効果】以上の通り、本発明によれば、陰極内部
端子の陽極箔側の面にエッチング処理したアルミ箔を被
せるか、陽極箔側の面をエッチング処理して陰極内部端
子を用いるか、または陽極箔側の面にTiやSnを付着
した陰極内部端子を用いているために、陰極内部端子等
に孔食等が発生するのを防止できるとともに、ショート
不良を防止でき、寿命を改善できる電解コンデンサが得
られる。As described above, according to the present invention, whether the anode foil side surface of the cathode internal terminal is covered with an etched aluminum foil or the anode foil side surface is etched and the cathode internal terminal is used. Or, since the cathode internal terminal with Ti or Sn attached to the anode foil side surface is used, it is possible to prevent pitting corrosion and the like from occurring in the cathode internal terminal and the like, and to prevent short-circuit failure and improve the service life. A possible electrolytic capacitor is obtained.
【図1】本発明の実施の形態の陽極箔と陰極箔とを積層
した状態の側面断面図を示す。FIG. 1 is a side sectional view showing a state in which an anode foil and a cathode foil according to an embodiment of the present invention are stacked.
【図2】本発明の実施の形態に用いる陰極内部端子を接
続した陰極箔の断面図を示す。FIG. 2 is a sectional view of a cathode foil to which cathode internal terminals used in the embodiment of the present invention are connected.
【図3】本発明の実施の形態に用いる陰極内部端子を接
続した陰極箔の断面図を示す。FIG. 3 is a sectional view of a cathode foil to which cathode internal terminals used in the embodiment of the present invention are connected.
【図4】本発明の実施の形態のコンデンサ素子の一部を
展開した状態の斜視図を示す。FIG. 4 is a perspective view showing a state where a part of the capacitor element according to the embodiment of the present invention is developed.
【図5】従来例の陽極箔と陰極箔とを積層した状態の側
面断面図を示す。FIG. 5 is a side sectional view showing a state in which a conventional anode foil and cathode foil are laminated.
1…陽極箔 、 2…陽極内部端子、 3…セパレータ、
4…陰極箔、5,7,9…陰極内部端子、 6…アルミ
箔、 8…金属層、10…コンデンサ素子。 整理番号 P25011 ... Anode foil 2 ... Anode internal terminal 3 ... Separator
4 ... cathode foil, 5, 7, 9 ... cathode internal terminal, 6 ... aluminum foil, 8 ... metal layer, 10 ... capacitor element. Reference number P2501
Claims (3)
内部端子を接続した陰極箔とをセパレータを介して積層
したコンデンサ素子を有する電解コンデンサにおいて、
前記陰極内部端子の前記陽極箔側の面にエッチング処理
したアルミ箔を被せることを特徴とする電解コンデン
サ。An electrolytic capacitor having a capacitor element in which an anode foil connected to an anode internal terminal and a cathode foil connected to a cathode internal terminal are laminated with a separator interposed therebetween.
An electrolytic capacitor, wherein an etched aluminum foil is placed on a surface of the cathode internal terminal on the anode foil side.
内部端子を接続した陰極箔とをセパレータを介して積層
したコンデンサ素子を有する電解コンデンサにおいて、
前記陰極内部端子の前記陽極箔側の面がエッチング処理
されていることを特徴とする電解コンデンサ。2. An electrolytic capacitor having a capacitor element in which an anode foil connected to an anode internal terminal and a cathode foil connected to a cathode internal terminal are laminated with a separator interposed therebetween.
An electrolytic capacitor, wherein a surface of the cathode internal terminal on the side of the anode foil is etched.
内部端子を接続した陰極箔とをセパレータを介して積層
したコンデンサ素子を有する電解コンデンサにおいて、
前記陰極内部端子の前記陽極箔側の面にSn又はTiが
付着していることを特徴とする電解コンデンサ。3. An electrolytic capacitor having a capacitor element in which an anode foil connected to an anode internal terminal and a cathode foil connected to a cathode internal terminal are laminated with a separator interposed therebetween.
An electrolytic capacitor, wherein Sn or Ti is attached to a surface of the cathode internal terminal on the anode foil side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7752999A JP2000277384A (en) | 1999-03-23 | 1999-03-23 | Electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7752999A JP2000277384A (en) | 1999-03-23 | 1999-03-23 | Electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000277384A true JP2000277384A (en) | 2000-10-06 |
Family
ID=13636520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7752999A Pending JP2000277384A (en) | 1999-03-23 | 1999-03-23 | Electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000277384A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003173930A (en) * | 2001-12-05 | 2003-06-20 | Rubycon Corp | Electrolytic capacitor |
WO2007058204A1 (en) * | 2005-11-15 | 2007-05-24 | Nippon Chemi-Con Corporation | Electrolytic capacitor |
JP2007273912A (en) * | 2006-03-31 | 2007-10-18 | Nippon Chemicon Corp | Electrolytic capacitor |
CN102226978A (en) * | 2011-03-31 | 2011-10-26 | 肇庆绿宝石电子有限公司 | Anti-lightning guide pin type safe aluminum electrolytic capacitor and production method thereof |
CN103021673A (en) * | 2012-12-30 | 2013-04-03 | 无锡富洪科技有限公司 | Electrode plate of super-capacitor and method for manufacturing electrode plate |
-
1999
- 1999-03-23 JP JP7752999A patent/JP2000277384A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003173930A (en) * | 2001-12-05 | 2003-06-20 | Rubycon Corp | Electrolytic capacitor |
WO2007058204A1 (en) * | 2005-11-15 | 2007-05-24 | Nippon Chemi-Con Corporation | Electrolytic capacitor |
EP1962306A1 (en) * | 2005-11-15 | 2008-08-27 | Nippon Chemi-Con Corporation | Electrolytic capacitor |
JPWO2007058204A1 (en) * | 2005-11-15 | 2009-04-30 | 日本ケミコン株式会社 | Electrolytic capacitor |
JP5152643B2 (en) * | 2005-11-15 | 2013-02-27 | 日本ケミコン株式会社 | Electrolytic capacitor |
JP2013055326A (en) * | 2005-11-15 | 2013-03-21 | Nippon Chemicon Corp | Electrolytic capacitor |
EP1962306A4 (en) * | 2005-11-15 | 2014-04-02 | Nippon Chemicon | Electrolytic capacitor |
US9627145B2 (en) | 2005-11-15 | 2017-04-18 | Nippon Chemi-Con Corporation | Electrolytic capacitor for use in a charge/discharge circuit with shorter period and greater voltage difference |
JP2007273912A (en) * | 2006-03-31 | 2007-10-18 | Nippon Chemicon Corp | Electrolytic capacitor |
CN102226978A (en) * | 2011-03-31 | 2011-10-26 | 肇庆绿宝石电子有限公司 | Anti-lightning guide pin type safe aluminum electrolytic capacitor and production method thereof |
CN102226978B (en) * | 2011-03-31 | 2012-12-19 | 肇庆绿宝石电子有限公司 | Anti-lightning guide pin type safe aluminum electrolytic capacitor and production method thereof |
CN103021673A (en) * | 2012-12-30 | 2013-04-03 | 无锡富洪科技有限公司 | Electrode plate of super-capacitor and method for manufacturing electrode plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6392869B2 (en) | Solid electrolytic capacitor | |
US20060028787A1 (en) | Wet electrolytic capacitor | |
JP3730991B2 (en) | Solid electrolytic capacitor | |
JP4762029B2 (en) | Electric double layer capacitor | |
US8208242B2 (en) | Electrode foil and capacitor using the same | |
US5369546A (en) | Electric double layer capacitor and method of manufacturing the same | |
CN1905103B (en) | Solid electrolytic capacitor element, manufacturing method therefor, and solid electrolytic capacitor | |
JP2000277384A (en) | Electrolytic capacitor | |
WO2007069670A1 (en) | Capacitor chip and method for manufacturing same | |
US6791821B1 (en) | Tantalum-carbon hybrid capacitor with activated carbon | |
JP2008198681A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP2007194310A (en) | Solid electrolytic capacitor, and method of manufacturing same | |
US8659875B2 (en) | Capacitor and manufacturing method therefor | |
JP3416099B2 (en) | Capacitor and manufacturing method thereof | |
JP2006286959A (en) | Electrolytic capacitor | |
JP2001203127A (en) | Aluminum electrolytic capacitor | |
JP6476410B2 (en) | Electrolytic capacitor | |
US4922375A (en) | Electrical capacitor | |
JP3457222B2 (en) | Aluminum electrolytic capacitors | |
JP2007235101A (en) | Solid electrolytic capacitor | |
JPS6146942B2 (en) | ||
EP4293693A1 (en) | Capacitor | |
JP2006279078A (en) | Electric double layer capacitor | |
JPS58153322A (en) | Condenser | |
JP2003217979A (en) | Electrolytic capacitor |