JP2000277107A - Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith - Google Patents

Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith

Info

Publication number
JP2000277107A
JP2000277107A JP8204499A JP8204499A JP2000277107A JP 2000277107 A JP2000277107 A JP 2000277107A JP 8204499 A JP8204499 A JP 8204499A JP 8204499 A JP8204499 A JP 8204499A JP 2000277107 A JP2000277107 A JP 2000277107A
Authority
JP
Japan
Prior art keywords
ppm
discharge
negative electrode
storage battery
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8204499A
Other languages
Japanese (ja)
Inventor
Toshiya Kitamura
利哉 北村
Kazuya Saito
和也 斎藤
Giichi Maeda
義一 前田
Masayoshi Matsumoto
政義 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP8204499A priority Critical patent/JP2000277107A/en
Publication of JP2000277107A publication Critical patent/JP2000277107A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for an alkaline storage battery of the reduced abnormal discharge generation when intermittent discharge as maintaining the amount of a hydrogen gas generated from a zinc when touched to an electrolyte at a present level or under, and to provide a battery used therewith. SOLUTION: By utilizing a zinc powder alloyed with 10 ppm or under of Al, 10-1000 ppm of Bi and 100-1000 ppm of In as a negative electrode active material for an alkaline storage battery, an amount of a gas generated and a rate of abnormal discharge generated in an intermittent discharge can be reduced in well balance and the provision of an alkaline battery of improved stability is possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ電池に使
用される負極活物質に関し、詳しくは亜鉛を主成分とす
る亜鉛粉の合金組成を10ppm未満のAlと10〜1
000ppmのBiと100〜1000ppmのInと
その他随伴不純物からなる亜鉛合金組成に調整すること
により、間欠放電時の異常放電が少なく、かつガス発生
の少ないアルカリ電池用負極活物質およびそれを用いた
アルカリ電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode active material used in an alkaline battery, and more particularly, to an alloy composition of zinc powder containing zinc as a main component, which contains less than 10 ppm of Al and 10 to 1%.
A negative electrode active material for an alkaline battery, which has less abnormal discharge during intermittent discharge and less gas generation, and an alkali using the same, by adjusting to a zinc alloy composition comprising 000 ppm Bi, 100 to 1000 ppm In, and other accompanying impurities. Battery.

【0002】[0002]

【従来の技術】電池用負極活物質として亜鉛は、水溶液
系で電池用負極として使用した場合に適当な電位を有
し、かつ安価であることから好んで使用されてきたが、
亜鉛の腐食電位が水の分解電位より卑であるために、電
解液と接触したときに水素ガスが発生する。すなわち、
近年の電池用亜鉛粉の開発は、環境上の問題からくる亜
鉛合金の無水銀化とそれに伴うガス発生増をいかにして
低減させるかに主眼が置かれてきた。
2. Description of the Related Art Zinc has been favorably used as a negative electrode active material for batteries because it has an appropriate potential when used as a negative electrode for batteries in an aqueous solution system and is inexpensive.
Since the corrosion potential of zinc is lower than the decomposition potential of water, hydrogen gas is generated when the zinc comes into contact with the electrolytic solution. That is,
In recent years, the development of zinc powder for batteries has focused on how to reduce the mercury-free zinc alloy and the resulting increase in gas generation due to environmental problems.

【0003】このガス発生の問題を解決するために、亜
鉛の合金組成、亜鉛粒子の表面処理、電解液の組成、電
解液への腐食抑制剤(インヒビター)の添加等様々な試
みが行われ、特に水素過電圧の高いBi、In、Ga、
Sn、Pb等を数成分含む亜鉛合金とこれら合金化元素
の組成比をガス発生量に対し最適化(特開平8-315816、
特公平7-54705、特開平5-299082)する事によって無水
銀アルカリ電池の上市といった成果につながっている。
In order to solve this gas generation problem, various attempts have been made such as zinc alloy composition, zinc particle surface treatment, electrolytic solution composition, and addition of a corrosion inhibitor (inhibitor) to the electrolytic solution. In particular, Bi, In, Ga,
A zinc alloy containing several components of Sn, Pb, etc. and the composition ratio of these alloying elements are optimized with respect to the gas generation amount (JP-A-8-315816,
Japanese Patent Publication No. 7-54705, Japanese Patent Application Laid-Open No. 5-99082) has led to the launch of mercury-free alkaline batteries.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、亜鉛負
極から見た放電レートや使用条件による放電容量の低下
といった電池特性の改良はほとんど報告されていないの
が現状である。この中でも間欠放電繰り返し時の亜鉛負
極析出物による短絡と放電容量の急激な低下に関して
は、本質的原因が亜鉛粉に起因すると考えられている
が、一般的に満足な特性を得ているとは言い難い。した
がって、本発明の目的はガス発生量を現行レベル以下に
維持しながら、間欠放電時の異常放電(短絡、放電容量
低下)発生を低減させた、アルカリ電池用負極活物質お
よびそれを用いた電池を提供することにある。
However, at present, almost no improvement in battery characteristics such as a decrease in discharge capacity due to a discharge rate or a use condition viewed from a zinc negative electrode has been reported. Among these, regarding the short circuit due to zinc negative electrode deposits and the rapid decrease in discharge capacity during intermittent discharge repetition, it is believed that the essential cause is zinc powder, but generally satisfactory characteristics are not obtained. Hard to say. Accordingly, an object of the present invention is to provide a negative electrode active material for an alkaline battery and a battery using the same, in which the occurrence of abnormal discharge (short circuit, decrease in discharge capacity) during intermittent discharge is reduced while maintaining the gas generation amount at or below the current level. Is to provide.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
に鋭意研究を行った結果、アルカリ電池用負極活物質を
10ppm未満のAlと10〜1000ppmのBiと
100〜1000ppmのInとその他随伴不純物から
なる亜鉛粉とすることで、ガス発生量を従来品と比較し
て増加させることなく間欠放電時の異常放電を著しく低
減させられることを見出し、本発明に到達した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, it has been found that the negative electrode active material for an alkaline battery contains less than 10 ppm of Al, 10 to 1000 ppm of Bi, 100 to 1000 ppm of In, and other accompanying impurities. The present inventors have found that the use of zinc powder made of can significantly reduce abnormal discharge during intermittent discharge without increasing the amount of gas generation as compared with conventional products.

【0006】すなわち本発明は第1に、亜鉛を主成分と
し、10ppm未満のAlと10〜1000ppmのB
iと100〜1000ppmのInとその他随伴不純物
を含む亜鉛合金粉末からなることを特徴とするアルカリ
電池用亜鉛合金粉末;第2に、前記第1記載の負極活物
質を用いたことを特徴とするアルカリ電池を提供するも
のである。
That is, the present invention firstly comprises zinc as a main component and less than 10 ppm of Al and 10 to 1000 ppm of B
a zinc alloy powder for an alkaline battery, comprising i, a zinc alloy powder containing 100 to 1000 ppm of In and other accompanying impurities; secondly, using the negative electrode active material according to the first aspect. An alkaline battery is provided.

【0007】[0007]

【発明の実施の形態】本発明の亜鉛粉は、Al:10p
pm未満、Bi:10〜1000ppm、In:100
〜1000ppmの範囲内で溶融亜鉛に添加し攪拌混合
することで合金化した後、圧縮空気でアトマイズするこ
とによって作製される。このようにして作製された亜鉛
粉は、従来からアルカリ電池用無水銀化亜鉛粉に求めら
れてきた特性である、水素ガス発生を著しく低減させる
ことができるだけではなく、アルカリ電池用負極活物質
として用いた場合の間欠放電時の異常放電発生率を著し
く低減させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The zinc powder of the present invention has an Al: 10p
pm, Bi: 10-1000 ppm, In: 100
It is produced by adding to molten zinc in the range of ~ 1000 ppm, alloying by stirring and mixing, and then atomizing with compressed air. The zinc powder thus produced can not only significantly reduce the generation of hydrogen gas, which is a characteristic conventionally required for mercury-free zinc powder for alkaline batteries, but also as a negative electrode active material for alkaline batteries. When used, the abnormal discharge occurrence rate at the time of intermittent discharge can be significantly reduced.

【0008】上記亜鉛粉組成の水素ガス発生抑制および
間欠放電時の異常放電抑制のメカニズムは現在のところ
明らかではないが、以下のように推測される。亜鉛は水
の分解電位より卑の金属であるために、強アルカリの電
解液と接触すると以下のような反応を起こし水素ガスが
発生する。 Zn+2HO+2OH=Zn(OH) 2−+H↑ ・・・
The mechanism of suppressing the generation of hydrogen gas and the suppression of abnormal discharge during intermittent discharge of the zinc powder composition are not clear at present, but are presumed as follows. Since zinc is a metal lower in potential than the decomposition potential of water, when it comes into contact with a strongly alkaline electrolyte, the following reaction occurs to generate hydrogen gas. Zn + 2H 2 O + 2OH - = Zn (OH) 4 2- + H 2 ↑ ···

【0009】この式の反応は平衡論的には避けられな
いが、亜鉛の溶解速度(=水素ガス発生)は合金化、イ
ンヒビター添加等の耐食処理により実用に耐えうる程度
まで低減できる。合金化の金属として本発明では、水素
過電圧の高いBiおよびInをそれぞれ10〜1000
ppm、100〜1000ppmを添加することでガス
発生を抑制する。それぞれ10ppm、100ppm未
満では効果が表われず、1000ppmを越えると電池
容量が低下するばかりでなく、添加量増加の効果が飽和
する。また水素過電圧が低く一見無関係に思える30p
pm以下のAlの添加は、上記高水素過電圧の金属のガ
ス発生抑制効果を助ける作用があることが後述の実施例
に示されているように今回の試験から確認された。
Although the reaction of this formula cannot be avoided in terms of equilibrium theory, the dissolution rate of zinc (= hydrogen gas generation) can be reduced to a level that can be practically used by corrosion treatment such as alloying and addition of an inhibitor. In the present invention, Bi and In having a high hydrogen overvoltage are used as alloying metals in amounts of 10 to 1000, respectively.
Gas generation is suppressed by adding 100 ppm to 100 ppm. If the content is less than 10 ppm and 100 ppm, respectively, no effect is exhibited. If the content exceeds 1000 ppm, not only the battery capacity is reduced but also the effect of increasing the addition amount is saturated. In addition, hydrogen overvoltage is low and seemingly unrelated 30p
This test confirmed that the addition of Al at pm or less has an effect of assisting the gas generation suppressing effect of the high hydrogen overvoltage metal, as shown in Examples described later.

【0010】間欠放電時の異常放電については 放電反応 Zn+4OH=Zn(OH) 2−+2e ・・ 式の放電反応で生成したZn(OH) 2−イオンは
その濃縮と共に下記の、式の反応が進み、Zn(O
H) 2−→Zn(OH)→ZnO と変化する。 Zn(OH) 2−→Zn(OH)+2OH ・・ Zn(OH)→ZnO+HO ・・・・
[0010] intermittent discharge time of anomalies discharge discharge reaction Zn + 4OH - = Zn (OH ) 4 2- + 2e - ·· type discharge reaction generated by Zn (OH) 4 2- ion with its concentration below formula Reaction proceeds, and Zn (O
H) 4 2- → Zn (OH) 2 → ZnO. Zn (OH) 4 2- → Zn (OH) 2 + 2OH ·· Zn (OH) 2 → ZnO + H 2 O ...

【0011】放電時には式による亜鉛近傍のpHが低
下、亜鉛イオン濃度の上昇が起こり式のZnOまで反
応が進むが、未放電時には各イオンの電解液内への拡散
が進み、亜鉛近傍のpHの上昇、亜鉛イオン濃度の低下
が起こるためZnOの溶解が進む。
At the time of discharge, the pH near zinc decreases according to the formula and the concentration of zinc ions increases, and the reaction proceeds to ZnO according to the formula. At the time of non-discharge, the diffusion of each ion proceeds into the electrolyte and the pH near zinc increases. Since the increase and the decrease of the zinc ion concentration occur, the dissolution of ZnO proceeds.

【0012】すなわち、間欠放電を行った場合 Zn(OH) 2−=ZnO+HO+2OH ・・Namely, when subjected to intermittent discharge Zn (OH) 4 2- = ZnO + H 2 O + 2OH - ··

【0013】上記式の平衡反応のため放電時と未放電
時でZnOの溶解析出が繰り返されるため、ZnO結晶
の再結晶化を繰り返しながら特定方位に成長する中空の
針状結晶が生成する。この針状ZnOは間欠放電サイク
ル進行と共に正極方向に成長し、やがてセパレーターを
貫通し正極と短絡を起こす結果、電圧の急激な低下等の
異常放電を示す。間欠放電時の異常放電防止には、この
針状ZnOの成長を抑制することが不可欠であるが、本
発明者等は亜鉛合金組成の最適化によって、針状ZnO
の抑制できること、さらには間欠放電時の異常放電を低
減できることを見出した。
[0013] Because of the equilibrium reaction of the above formula, the dissolution and precipitation of ZnO are repeated during discharge and during non-discharge, so that hollow needle-like crystals that grow in a specific orientation while repeating recrystallization of ZnO crystals are generated. The acicular ZnO grows in the direction of the positive electrode as the intermittent discharge cycle proceeds, and eventually penetrates through the separator to cause a short circuit with the positive electrode, resulting in abnormal discharge such as a sharp drop in voltage. In order to prevent abnormal discharge at the time of intermittent discharge, it is essential to suppress the growth of acicular ZnO. However, the present inventors have optimized acicular ZnO by optimizing the zinc alloy composition.
It has been found that it is possible to reduce the abnormal discharge at the time of intermittent discharge.

【0014】詳しくは、先のガス発生で高水素過電圧の
金属Bi、Inのガス発生抑制効果を助ける作用がある
としたAlの合金化率を後記する実施例2に示されてい
るように、望ましくは10ppm未満にすることによっ
て間欠放電時の異常放電を低減できることを見出した。
More specifically, as shown in Example 2 to be described later, the alloying ratio of Al is considered to have an effect of assisting the gas generation suppression effect of high hydrogen overvoltage metals Bi and In by the gas generation. It has been found that abnormal discharge at the time of intermittent discharge can be reduced by desirably setting it to less than 10 ppm.

【0015】また、上記組成範囲内であれば実用上問題
とされない程度のガス発生量の亜鉛粉が得られる。すな
わち本発明の亜鉛粉によれば、亜鉛粉に起因すると考え
られる水素ガス発生量と間欠放電時の異常放電発生の両
者をバランス良く低減させることが可能である。以下実
施例と比較例によって本発明を具体的に示すが、本発明
に用いた合金化亜鉛粉組成および混合金属粉は以下の例
で使用されるものに限定されるものではない。
[0015] If the composition is within the above range, a zinc powder having a gas generation amount that does not cause a practical problem can be obtained. That is, according to the zinc powder of the present invention, it is possible to reduce both the amount of hydrogen gas generated due to the zinc powder and the occurrence of abnormal discharge during intermittent discharge in a well-balanced manner. Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the composition of the alloyed zinc powder and the mixed metal powder used in the present invention are not limited to those used in the following examples.

【0016】[0016]

【実施例1】表1に示す試料のように、合金化亜鉛組成
Bi:0〜500(ppm)、Al:0〜30(pp
m)、In:500(ppm)、粒度:78〜850
(μm)の各試料No.1〜35をアトマイズ法により
作製した。この合金化亜鉛粉末に酸化亜鉛を飽和した4
0%−KOH電解液を加え、60℃で保温し、3日目の
ガス発生量をもってガス発生量を計算した(単位はμl
/g・day)。
Example 1 As shown in the samples shown in Table 1, alloyed zinc composition Bi: 0 to 500 (ppm), Al: 0 to 30 (pp
m), In: 500 (ppm), particle size: 78 to 850
(Μm) of each sample No. Nos. 1-35 were produced by the atomizing method. This alloyed zinc powder was saturated with zinc oxide 4
A 0% -KOH electrolytic solution was added, the temperature was kept at 60 ° C., and the gas generation amount was calculated based on the gas generation amount on the third day (unit: μl).
/ G · day).

【0017】図1に合金化Bi、Al量とガス発生量の
関係を示す。図1よりいずれのAl組成によらずBi添
加量が多くなるほどガス発生量が少ないことがわかる。
しかし、Al添加量0ppmでは、Bi添加量200p
pm以上添加しないとガス発生量が20μl/g・da
y程度にならないのに対し、Al添加量5ppmおよび
30ppmでは、Bi添加量80ppmでガス発生が2
0μl/g・day程度になる。
FIG. 1 shows the relationship between the amounts of alloyed Bi and Al and the amount of gas generated. It can be seen from FIG. 1 that the larger the amount of Bi added, the smaller the amount of gas generated regardless of the Al composition.
However, when the Al addition amount is 0 ppm, the Bi addition amount is 200 p.
If not more than pm, the gas generation amount is 20 μl / g · da
When the amount of Al added was 5 ppm and 30 ppm, the amount of gas generation was 2 at the amount of Bi added 80 ppm.
It is about 0 μl / g · day.

【0018】すなわち30ppm以下という少量のAl
添加がガス発生抑制に効果があること、またAl添加は
5ppm程度でも十分効果があることが判明した。
That is, a small amount of Al of 30 ppm or less
It was found that the addition was effective in suppressing gas generation, and that the addition of Al was effective even at about 5 ppm.

【0019】[0019]

【実施例2】実施例1と同様の試料を、40wt%−K
OH電解液、ゲル化剤と混合した後LR6型アルカリ電
池に充電し、密閉型の電池を作製した。このようにして
作製した電池を以下の放電条件(間欠放電)にて放電さ
せ、異常放電発生率を測定した。 (放電条件) 抵抗:3.9Ω 放電時間:5分 放電休止時間:放電後11時間55分 放電終始電圧:0.6V
Example 2 The same sample as in Example 1 was obtained by adding 40 wt% -K
After mixing with an OH electrolyte and a gelling agent, the LR6 type alkaline battery was charged to produce a sealed battery. The battery thus produced was discharged under the following discharge conditions (intermittent discharge), and the abnormal discharge occurrence rate was measured. (Discharge conditions) Resistance: 3.9Ω Discharge time: 5 minutes Discharge pause time: 11 hours and 55 minutes after discharge Discharge end voltage: 0.6 V

【0020】また、上記放電サイクルにおいて45サイ
クル以内で放電電圧が0.9Vを下回った場合に異常放
電とした。図2にAl添加量と異常放電発生率の図を示
す。Al30ppm以上では異常放電発生率が53%と
多いのに対し、Al5ppm以下では異常放電発生率が
3.1%と著しく改善された。
When the discharge voltage was lower than 0.9 V within 45 cycles of the above discharge cycle, abnormal discharge was determined. FIG. 2 shows a diagram of the amount of added Al and the occurrence rate of abnormal discharge. Above 30 ppm Al, the abnormal discharge occurrence rate was as high as 53%, whereas below 5 ppm Al, the abnormal discharge occurrence rate was remarkably improved to 3.1%.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【比較例】実施例1および実施例2の説明から明らかな
ように、亜鉛粉組成を示した表1において、Alが10
ppm未満、Biが10〜1000ppm、Inが10
0〜1000ppmの組成に該当しない試料は全て比較
例試料と理解される。
Comparative Example As is clear from the description of Example 1 and Example 2, in Table 1 showing the zinc powder composition, Al was 10%.
ppm, Bi is 10 to 1000 ppm, In is 10
All samples which do not correspond to the composition of 0 to 1000 ppm are understood as comparative samples.

【0023】[0023]

【発明の効果】以上述べたように本発明のアルカリ電池
用負極活物質は亜鉛粉を10ppm未満のAlと10〜
1000ppmのBiと100〜1000ppmのIn
で合金化したものであり、ガス発生量と間欠放電時の異
常放電発生率の両者をバランス良く低減させることがで
き、さらに電池としての貯蔵性、安全性、安定性を著し
く向上させたアルカリ電池を提供することが可能とな
る。
As described above, the negative electrode active material for an alkaline battery according to the present invention comprises zinc powder containing less than 10 ppm of Al and 10 to 10 ppm.
1000 ppm Bi and 100-1000 ppm In
Alkaline battery that can be reduced in both the amount of generated gas and the rate of abnormal discharge during intermittent discharge in a well-balanced manner, and has remarkably improved storage, safety and stability as a battery. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例において合金化亜鉛粉に添加され
たBi、Al量とガス発生量との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the amount of Bi and Al added to an alloyed zinc powder and the amount of generated gas in Examples of the present invention.

【図2】本発明実施例において合金化亜鉛粉に添加され
たAl添加量と異常放電発生率の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the amount of Al added to an alloyed zinc powder and the abnormal discharge occurrence rate in Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 義一 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 松本 政義 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 5H003 AA03 AA10 BB02 BC01 BD04 5H015 AA02 DD01 EE05 HH01 5H024 AA14 FF38 HH01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshikazu Maeda 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Masayoshi Matsumoto 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Same as above F Mining in WA Mining Co., Ltd. (Reference) 5H003 AA03 AA10 BB02 BC01 BD04 5H015 AA02 DD01 EE05 HH01 5H024 AA14 FF38 HH01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛を主成分とし、10ppm未満のA
lと10〜1000ppmのBiと100〜1000p
pmのInとその他随伴不純物を含む亜鉛合金粉末から
なることを特徴とするアルカリ電池用負極活物質。
1. A composition containing zinc as a main component and less than 10 ppm of A
l and Bi of 10 to 1000 ppm and 100 to 1000 p
A negative electrode active material for an alkaline battery, comprising a zinc alloy powder containing pm of In and other accompanying impurities.
【請求項2】 請求項1記載の負極活物質を用いたこと
を特徴とするアルカリ電池。
2. An alkaline battery using the negative electrode active material according to claim 1.
JP8204499A 1999-03-25 1999-03-25 Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith Pending JP2000277107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8204499A JP2000277107A (en) 1999-03-25 1999-03-25 Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8204499A JP2000277107A (en) 1999-03-25 1999-03-25 Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith

Publications (1)

Publication Number Publication Date
JP2000277107A true JP2000277107A (en) 2000-10-06

Family

ID=13763529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8204499A Pending JP2000277107A (en) 1999-03-25 1999-03-25 Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith

Country Status (1)

Country Link
JP (1) JP2000277107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105257A1 (en) * 2002-06-07 2003-12-18 三井金属鉱業株式会社 Electrolyte for alkaline battery and alkaline battery employing electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105257A1 (en) * 2002-06-07 2003-12-18 三井金属鉱業株式会社 Electrolyte for alkaline battery and alkaline battery employing electrolyte

Similar Documents

Publication Publication Date Title
WO2012144301A1 (en) Magnesium fuel cell
US20040033418A1 (en) Alkaline cell with performance enhancing additives
JP3317526B2 (en) Alkaline battery
US4377625A (en) Corrosion and hydrogen evolution inhibitors for current-producing cells having zinc anodes
JP4222488B2 (en) Alkaline battery
JPH04284359A (en) Zinc alkaline battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
JPH04284357A (en) Zinc alkaline battery
JPH04284358A (en) Zinc alkaline battery
JP2000277107A (en) Negative electrode active material for alkaline storage battery and alkaline storage battery used therewith
JP3183859B2 (en) Hydrogen storage alloy for batteries
JP3647980B2 (en) Anode material for alkaline manganese batteries
JPS6164076A (en) Electrochemical battery
JPH10116612A (en) Negative electrode material for alkaline manganese battery and manufacture of negative electrode material
JP2004014306A (en) Electrolytic solution for alkaline battery and alkaline battery using this electrolytic solution
JPH0562683A (en) Alkaline battery
KR101506787B1 (en) Aluminum alloy anode for aluminum-air battery and aluminum-air battery comprising the same
JPH0513070A (en) Alkaline battery
JP2754865B2 (en) Manufacturing method of zinc alkaline battery
JP3512182B2 (en) Alkaline battery
JPH0562682A (en) Alkaline battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
JP2805489B2 (en) Alkaline battery and its negative electrode active material
JP2805485B2 (en) Alkaline battery and its negative electrode active material
JP2007328997A (en) Alkaline primary cell

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20040206

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Effective date: 20050902

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A131 Notification of reasons for refusal

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070813

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507