JP2000274851A - Air cycle type cooler - Google Patents

Air cycle type cooler

Info

Publication number
JP2000274851A
JP2000274851A JP11083796A JP8379699A JP2000274851A JP 2000274851 A JP2000274851 A JP 2000274851A JP 11083796 A JP11083796 A JP 11083796A JP 8379699 A JP8379699 A JP 8379699A JP 2000274851 A JP2000274851 A JP 2000274851A
Authority
JP
Japan
Prior art keywords
air
transmission
ratio
expansion
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11083796A
Other languages
Japanese (ja)
Inventor
Toshihiko Mitsunaga
敏彦 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11083796A priority Critical patent/JP2000274851A/en
Publication of JP2000274851A publication Critical patent/JP2000274851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently continue operating even if air conditions are changed by connecting an expansion means to a rotary shaft of a motor through a transmission, and controlling a reduction gear ratio of the transmission in response to a torque of the shaft or an input of a motor driving element. SOLUTION: A scroll fluid machine 3 in the air cycle type cooler 1 has a compressor 8 and an expansion unit 9. The compressor 8 is connected directly to one end of a rotary shaft 54 of a motor 11, and the unit 9 is connected to the other end of the shaft 54 through a continuously variable transmission 126. A sensor 125 for detecting a torque of the shaft 54 is attached to the shaft 54, and an output of the sensor is input to a controller 124 together with data of an input value (power) of the motor 11. The transmission 126 is controlled so that, if a compression ratio of the compressor 8 is larger than that of the unit 9, a reduction gear ratio of the transmission 126 is reduced while, in its reverse case, the ratio is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気を作動媒体と
し、圧縮手段と、膨張手段と、圧縮空気を冷却する冷却
器とを備えた空気サイクル式冷却装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air cycle type cooling apparatus using air as a working medium, and comprising a compression means, an expansion means, and a cooler for cooling compressed air.

【0002】[0002]

【従来の技術】従来よりこの種空気サイクル式冷却装置
は、例えば特開平5−223376号公報に空気サイク
ル式空気調和機として示されるように、圧縮機(圧縮手
段)と膨張機(膨張手段)及び圧縮空気を冷却する冷却
器と回転軸を有する電動要素などから構成され、被冷却
空間から吸引した空気を回転軸により駆動される前記圧
縮機にて圧縮した後、冷却器にて冷却し、低温高圧とな
った空気を次ぎに膨張機にて膨張させて更に低温化し、
被冷却空間に吹き出すことによって冷却作用を発揮させ
ていた。
2. Description of the Related Art Conventionally, an air cycle type cooling apparatus of this type has a compressor (compression means) and an expander (expansion means) as disclosed in Japanese Patent Application Laid-Open No. Hei 5-223376 as an air cycle type air conditioner. And comprises a cooler for cooling the compressed air and an electric element having a rotating shaft, and the like, and the air sucked from the space to be cooled is compressed by the compressor driven by the rotating shaft, and then cooled by the cooler, The low temperature and high pressure air is then expanded by an expander to further lower the temperature,
The cooling effect was exerted by blowing out into the space to be cooled.

【0003】この場合、圧縮機の排除容積をVC、圧縮
機の体積効率をηC、膨張機の排除容積をVE、膨張機
の体積効率をηE、圧縮機の出口空気密度をρ1、膨張
機の入口空気密度をρ2とすると次のような関係式が成
り立つ。
In this case, the excluded volume of the compressor is VC, the volumetric efficiency of the compressor is ηC, the excluded volume of the expander is VE, the volumetric efficiency of the expander is ηE, the outlet air density of the compressor is ρ1, and the volume of the expander is Assuming that the inlet air density is ρ2, the following relational expression holds.

【0004】ηC*VC*ρ1=ηE*VE*ρ2 VC/VE=(ηE*ρ2)/(ηC*ρ1) 即ち、それぞれの排除容積比は圧縮機の出口空気密度と
膨張機の入口空気密度の比で設計される。
ΗC * VC * ρ1 = ηE * VE * ρ2 VC / VE = (ηE * ρ2) / (ηC * ρ1) That is, the respective excluded volume ratios are the outlet air density of the compressor and the inlet air density of the expander. It is designed with the ratio of

【0005】[0005]

【発明が解決しようとする課題】この関係式から明らか
な如く、それぞれの空気条件が変化すると、上記関係式
の右辺は全部変数となる。従って、膨張機に流入する空
気の圧力(流量)が変化して膨張機の膨張比と圧縮機の
圧縮比が設計値より異なって来ると、動力回収率が変化
することになるので、吸い込み空気条件が変化した時や
過渡時などでは膨張機が増速したり減速して空気の膨張
仕事の回収ができなくなり、電動要素の動力(入力)回
収率が悪化してシステム効率が悪くなる問題があった。
As is apparent from this relational expression, when each air condition changes, all the right sides of the above relational expression become variables. Therefore, when the pressure (flow rate) of the air flowing into the expander changes and the expansion ratio of the expander and the compression ratio of the compressor differ from the design value, the power recovery rate changes, and the intake air When the conditions change or transition, the expansion machine speeds up or decelerates, making it impossible to recover the expansion work of the air. As a result, the power (input) recovery rate of the electric elements deteriorates and the system efficiency deteriorates. there were.

【0006】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、空気条件が変化した場合
にも効率の良い運転を行うことができる空気サイクル式
冷却装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional technical problem, and provides an air cycle type cooling device capable of performing efficient operation even when air conditions change. The purpose is to:

【0007】[0007]

【課題を解決するための手段】即ち、本発明の空気サイ
クル式冷却装置は、空気を作動媒体とし、圧縮手段と、
膨張手段と、圧縮空気を冷却する冷却器とを備えたもの
であって、回転軸を有する電動要素を備え、回転軸によ
り圧縮手段を駆動すると共に、膨張手段は変速機を介し
て回転軸に連結し、制御装置により、回転軸のトルク又
は電動要素の入力に応じて、変速機の減速比を制御する
ことを特徴とする。
That is, an air cycle type cooling device according to the present invention uses air as a working medium, compressing means,
An expansion means and a cooler for cooling the compressed air, comprising an electric element having a rotating shaft, the compression means being driven by the rotating shaft, and the expanding means being attached to the rotating shaft via a transmission. The control device controls the reduction ratio of the transmission according to the torque of the rotating shaft or the input of the electric element.

【0008】また、請求項2の発明の空気サイクル式冷
却装置は、上記に加えて、制御装置は、回転軸のトルク
又は電動要素の入力に基づいて、圧縮手段の圧縮比と膨
張手段の膨張比との比較を行い、圧縮比が膨張比より大
きい場合には変速機の減速比を小さくし、膨張比が圧縮
比より大きい場合には変速機の減速比を大きくするもの
である。
According to a second aspect of the present invention, in addition to the above, in addition to the above, the control unit controls the compression ratio of the compression unit and the expansion of the expansion unit based on the torque of the rotating shaft or the input of the electric element. When the compression ratio is greater than the expansion ratio, the reduction ratio of the transmission is reduced, and when the expansion ratio is greater than the compression ratio, the reduction ratio of the transmission is increased.

【0009】また、請求項3の発明の空気サイクル式冷
却装置は、上記各発明に加えて、制御装置は、所定のマ
スク時間を置いて変速機の減速比制御を実行するもので
ある。
Further, in the air cycle type cooling device according to the third aspect of the present invention, in addition to the above inventions, the control device executes the reduction ratio control of the transmission after a predetermined mask time.

【0010】[0010]

【発明の実施の形態】以下、図面に基づき本発明の実施
の形態を詳述する。図1は本発明を適用した空気サイク
ル式冷却装置1の構成図を示している。冷却装置1は、
例えばプレハブ冷凍・冷蔵庫の庫内や低温槽の槽内(以
下、被冷却空間2と称する)を冷却するものであり、本
発明に係る無給油式のスクロール流体機械3と、冷却器
としての空気−水熱交換器4と、空気−空気熱交換器6
及び除湿器7などから構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a configuration diagram of an air cycle type cooling device 1 to which the present invention is applied. The cooling device 1
For example, it cools the inside of a prefabricated refrigerator / refrigerator or the inside of a low-temperature tank (hereinafter, referred to as a cooled space 2). A water heat exchanger 4 and an air-air heat exchanger 6
And a dehumidifier 7.

【0011】前記スクロール流体機械3は圧縮機(圧縮
手段)8と、膨張機(膨張手段)9及びモータ(電動要
素)11とから構成されている。圧縮機8はモータ11
の回転軸54の一端に連結されて駆動されると共に、膨
張機9は後述する無段変速機126を介して回転軸54
の他端に連結されている。
The scroll fluid machine 3 includes a compressor (compression means) 8, an expander (expansion means) 9, and a motor (electric element) 11. The compressor 8 is a motor 11
The expander 9 is connected to one end of the rotating shaft 54 and driven, and the expander 9 is connected to the rotating shaft 54 via a continuously variable transmission 126 described later.
Is connected to the other end.

【0012】前記被冷却空間2内に形成された吸込口1
2にはエア配管13が接続され、このエア配管13は前
記熱交換器6内を通過した後、前記圧縮機8の吸入口8
Sに接続されている。
The suction port 1 formed in the space to be cooled 2
2 is connected to an air pipe 13. After passing through the heat exchanger 6, the air pipe 13 passes through the suction port 8 of the compressor 8.
Connected to S.

【0013】また、圧縮機8の吐出口8Dにはエア配管
14が接続され、このエア配管14は熱交換器4内を通
過した後、更に熱交換器6内を通過し、膨張機9の吸入
口9Sに接続されている。この膨張機9の吐出口9Dに
はエア配管16が接続され、除湿器7を介して被冷却空
間2に設けられた吹出口17に接続されている。
An air pipe 14 is connected to a discharge port 8D of the compressor 8, and the air pipe 14 passes through the heat exchanger 4 and further passes through the heat exchanger 6, and It is connected to the inlet 9S. An air pipe 16 is connected to a discharge port 9 </ b> D of the expander 9, and is connected via a dehumidifier 7 to an air outlet 17 provided in the space 2 to be cooled.

【0014】係る冷却装置1においては、モータ11に
より駆動される圧縮機8によって吸込口12から被冷却
空間2内の空気が吸引され、エア配管13を通過する過
程で熱交換器6を経た後、圧縮機8に吸入口8Sより吸
入されて圧縮される。圧縮された高温高圧の空気は吐出
口8Dからエア配管14に入り、熱交換器4を経た後、
熱交換器6を通過し、膨張機9の吸入口9Sに吸入され
る。
In the cooling device 1, the air in the space to be cooled 2 is sucked from the suction port 12 by the compressor 8 driven by the motor 11, passes through the air pipe 13, and passes through the heat exchanger 6. Is sucked into the compressor 8 from the suction port 8S and compressed. The compressed high-temperature and high-pressure air enters the air pipe 14 from the discharge port 8D, passes through the heat exchanger 4, and
It passes through the heat exchanger 6 and is sucked into the suction port 9S of the expander 9.

【0015】前記熱交換器4には水配管18が設けら
れ、エア配管14内に吐出された高温高圧の空気は熱交
換器4を通過する過程で水配管18内を流れる冷却水と
熱交換して冷却される。また、熱交換器6内を通過する
過程でもエア配管13内を流れる吸入空気と熱交換して
更に冷却される。
The heat exchanger 4 is provided with a water pipe 18, and the high-temperature and high-pressure air discharged into the air pipe 14 exchanges heat with the cooling water flowing through the water pipe 18 while passing through the heat exchanger 4. And cooled. Further, even in the process of passing through the heat exchanger 6, heat is exchanged with the intake air flowing through the air pipe 13 to be further cooled.

【0016】これによって、熱交換器6を出た空気は低
温高圧となった状態で膨張機9に入る。膨張機9内で低
温高圧の空気は膨張して圧力が低下し、この圧力低下で
膨張機9の吐出口9Dからエア配管16に出た空気は更
に低温となる。そして、除湿器7を経て除湿された後、
吹出口17より被冷却空間2に吹き出される。以上のよ
うな直接空気を媒体とした圧縮−冷却−膨張のサイクル
を繰り返すことにより、被冷却空間2内は冷凍温度まで
冷却可能とされている。
As a result, the air that has exited the heat exchanger 6 enters the expander 9 at a low temperature and a high pressure. The low-temperature and high-pressure air expands in the expander 9 to reduce the pressure, and the air that has flowed out from the discharge port 9D of the expander 9 to the air pipe 16 has a lower temperature due to the pressure drop. And after being dehumidified through the dehumidifier 7,
The air is blown out from the air outlet 17 into the space to be cooled 2. By repeating the compression-cooling-expansion cycle using the direct air as a medium as described above, the inside of the cooled space 2 can be cooled to the freezing temperature.

【0017】ここで、モータ11の回転軸54には当該
回転軸54のトルクを検出するセンサ125が接続され
ており、このセンサ125の出力とモータ11の入力値
(電力)のデータは制御装置124に入力される。ま
た、無段変速機126は制御装置124によって制御さ
れて膨張機9の回転数を調整する。
Here, a sensor 125 for detecting the torque of the rotating shaft 54 is connected to the rotating shaft 54 of the motor 11, and the output of the sensor 125 and the data of the input value (power) of the motor 11 are stored in the control device. 124. The continuously variable transmission 126 is controlled by the control device 124 to adjust the rotation speed of the expander 9.

【0018】この制御装置124は、センサ125で検
出した回転軸54のトルク(又は、モータ11の入力
値)に応じて、無段変速機126の減速比を制御する。
即ち、制御装置124は、回転軸54のトルク(又は、
モータ11の入力値)に基づいて後述する如く圧縮機8
の圧縮比と膨張機9の膨張比との比較を行い、圧縮機8
の圧縮比が膨張機9の膨張比より大きい場合、無段変速
機126の減速比を小さくし、膨張機9の膨張比が圧縮
機8の圧縮比より大きい場合は、無段変速機126の減
速比を大きくする。
The control device 124 controls the reduction ratio of the continuously variable transmission 126 according to the torque of the rotating shaft 54 detected by the sensor 125 (or the input value of the motor 11).
That is, the control device 124 controls the torque (or
Based on the input value of the motor 11), the compressor 8
Of the compressor 8 and the expansion ratio of the expander 9 are compared.
Is smaller than the expansion ratio of the expander 9, the reduction ratio of the continuously variable transmission 126 is reduced. If the expansion ratio of the expander 9 is larger than the compression ratio of the compressor 8, Increase the reduction ratio.

【0019】また、制御装置124は無段変速機126
の減速比を変える際、所定のマスク時間を置いて減速比
を制御する。即ち、制御装置124はセンサ125で検
出した回転軸54のトルク(又はモータ11の入力値)
を検知してから一定のマスク時間が経過した後に無段変
速機126の減速比を制御する。
The control device 124 includes a continuously variable transmission 126.
When changing the speed reduction ratio, the speed reduction ratio is controlled after a predetermined mask time. That is, the control device 124 determines the torque of the rotating shaft 54 detected by the sensor 125 (or the input value of the motor 11).
After a certain mask time has passed since the detection of the speed change, the reduction ratio of the continuously variable transmission 126 is controlled.

【0020】以上の構成で次ぎに動作を説明する。モー
タ11を回転させると、その回転力が回転軸54を介し
て圧縮機8に伝えられると共に、無段変速機126を介
して膨張機9にも伝達される。圧縮機8では吸込口8S
から流入した空気を圧縮し、この圧縮された空気は吐出
口8Dから吐出される。
The operation of the above configuration will now be described. When the motor 11 is rotated, its rotational force is transmitted to the compressor 8 via the rotary shaft 54 and also to the expander 9 via the continuously variable transmission 126. In the compressor 8, the suction port 8S
Is compressed, and the compressed air is discharged from the discharge port 8D.

【0021】このようにして圧縮機8から吐出された高
温・高圧の空気は、前述の如く熱交換器4及び6で冷却
された後、低温・高圧となって膨張機9の吸入口9Sに
至る。膨張機9では吸入口9Sから流入した空気を膨張
させる。この膨張により温度低下した空気は吐出口9D
から吐出される。
The high-temperature and high-pressure air discharged from the compressor 8 in this manner is cooled by the heat exchangers 4 and 6 as described above, and then becomes low-temperature and high-pressure, and enters the intake port 9S of the expander 9. Reach. The expander 9 expands the air flowing from the suction port 9S. The air whose temperature has decreased due to this expansion is discharged to the discharge port 9D.
Is discharged from.

【0022】この膨張機9内における圧力流体(空気)
の膨張により発生する力は、無段変速機126を介して
回転軸54に伝達され、モータ11の回転を補填するも
のであるが、このとき、制御装置124は回転軸54の
トルク(又はモータ11の入力)に基づいて、圧縮機8
の圧縮比と膨張機9の膨張比との比較を行っている。
Pressure fluid (air) in the expander 9
The force generated by the expansion of the motor 11 is transmitted to the rotating shaft 54 via the continuously variable transmission 126 to compensate for the rotation of the motor 11. At this time, the control device 124 controls the torque of the rotating shaft 54 (or the motor 11), the compressor 8
Is compared with the expansion ratio of the expander 9.

【0023】即ち、トルクが大きい場合には圧縮比が膨
張比より大きく、膨張機9は減速しようとしていること
が分かる。また、トルクが小さい場合には膨張比が圧縮
比よりも大きく、膨張機9は増速しようとしていること
が分かる。
That is, when the torque is large, the compression ratio is larger than the expansion ratio, and it can be seen that the expander 9 is about to decelerate. When the torque is small, the expansion ratio is larger than the compression ratio, and it can be seen that the expander 9 is about to increase in speed.

【0024】そこで、圧縮機8の圧縮比が膨張機9の膨
張比より大きい場合、即ち、トルクが大きい場合、制御
装置124は無段変速機126の減速比を小さく(ギヤ
を軽く)する。また、膨張機9の膨張比が圧縮機8の圧
縮比より大きい場合、即ち、トルクが小さい場合には、
制御装置124は無段変速機126の減速比を大きく
(ギヤを重く)する。これにより、圧縮機8と膨張機9
の回転数を一致させる。
Therefore, when the compression ratio of the compressor 8 is larger than the expansion ratio of the expander 9, that is, when the torque is large, the control device 124 reduces the reduction ratio of the continuously variable transmission 126 (to reduce the gear). When the expansion ratio of the expander 9 is larger than the compression ratio of the compressor 8, that is, when the torque is small,
The control device 124 increases the reduction ratio of the continuously variable transmission 126 (heavier gear). Thereby, the compressor 8 and the expander 9
To match the rotation speed.

【0025】これにより、吸込空気の密度などの条件が
変化した場合や、過渡時などに膨張機9が増速・減速し
て、膨張機9での動力回収率が低下する不都合を未然に
回避することができるようになる。
Thus, the disadvantage that the expansion machine 9 is accelerated or decelerated during conditions such as a change in the density of the intake air or during a transition and the like, and the power recovery rate in the expansion machine 9 is reduced is prevented beforehand. Will be able to

【0026】また、制御装置124、所定のマスク時間
を置いて無段変速機126の減速比を制御するので、慣
性モーメント・慣性エネルギーを利用し、無駄な制御を
回避できる。
Further, since the control device 124 controls the reduction ratio of the continuously variable transmission 126 after a predetermined mask time, it is possible to avoid useless control by using the inertia moment and the inertia energy.

【0027】[0027]

【発明の効果】以上詳述した如く、本発明によれば空気
を作動媒体とし、圧縮手段と、膨張手段と、圧縮空気を
冷却する冷却器とを備えた空気サイクル式冷却装置にお
いて、回転軸を有する電動要素を設け、この回転軸によ
り圧縮手段を駆動すると共に、膨張手段は変速機を介し
て回転軸に連結し、制御装置によって回転軸のトルク又
は電動要素の入力に応じ、変速機の減速比を制御するよ
うにしたので、例えば請求項2の如く回転軸のトルク又
は電動要素の入力に基づいて、制御装置により圧縮手段
の圧縮比と膨張手段の膨張比との比較を行い、圧縮比が
膨張比より大きい場合には変速機の減速比を小さくし、
膨張比が圧縮比より大きい場合には変速機の減速比を大
きくすることにより、圧縮手段と膨張手段の回転数を一
致させることが可能となる。
As described above in detail, according to the present invention, in a pneumatic cycle type cooling apparatus including air as a working medium, a compression means, an expansion means, and a cooler for cooling compressed air, a rotating shaft is provided. The expansion means drives the compression means by this rotation shaft, and the expansion means is connected to the rotation shaft via a transmission, and the control device controls the torque of the rotation shaft or the input of the electric element to control the transmission. Since the reduction ratio is controlled, for example, based on the torque of the rotating shaft or the input of the electric element, the control device compares the compression ratio of the compression means with the expansion ratio of the expansion means. If the ratio is greater than the expansion ratio, reduce the reduction ratio of the transmission,
When the expansion ratio is larger than the compression ratio, it is possible to make the rotation speeds of the compression unit and the expansion unit coincide by increasing the reduction ratio of the transmission.

【0028】これにより、吸込空気条件が変化した場合
や、過渡時などに膨張手段での動力回収率が低下する不
都合を未然に回避し、装置全体としての運転効率を著し
く改善することができるようになるものである。
Thus, it is possible to avoid the disadvantage that the power recovery rate of the expansion means is reduced when the intake air condition is changed or during a transition or the like, and to remarkably improve the operation efficiency of the entire apparatus. It becomes something.

【0029】また、請求項3の発明によれば、上記に加
えて制御装置は、所定のマスク時間を置いて変速機の減
速比制御を実行するようにしたので、慣性モーメントの
慣性エネルギーを利用して、不必要に細かい制御を行う
こと無く、運転効率の改善を行うことができるようにな
り、システム設計が容易となるものである。
According to the third aspect of the present invention, in addition to the above, the control device executes the reduction ratio control of the transmission after a predetermined mask time, so that the inertia energy of the inertia moment is used. Then, the operation efficiency can be improved without performing unnecessary fine control, and the system design becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したの空気サイクル式冷却装置の
構成図である。
FIG. 1 is a configuration diagram of an air cycle type cooling device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 空気サイクル式冷却装置 2 被冷却空間 3 スクロール流体機械 4 空気−水熱交換器 6 空気−空気熱交換器 8 圧縮機 9 膨張機 11 モータ 54 回転軸 124 制御装置 125 センサ 126 無段変速機 REFERENCE SIGNS LIST 1 air cycle type cooling device 2 space to be cooled 3 scroll fluid machine 4 air-water heat exchanger 6 air-air heat exchanger 8 compressor 9 expander 11 motor 54 rotation axis 124 control device 125 sensor 126 stepless transmission

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気を作動媒体とし、圧縮手段と、膨張
手段と、圧縮空気を冷却する冷却器とを備えた空気サイ
クル式冷却装置において、 回転軸を有する電動要素を備え、前記回転軸により前記
圧縮手段を駆動すると共に、前記膨張手段は変速機を介
して前記回転軸に連結し、制御装置により、前記回転軸
のトルク又は前記電動要素の入力に応じて、前記変速機
の減速比を制御することを特徴とする空気サイクル式冷
却装置。
1. An air cycle type cooling device comprising air as a working medium, compression means, expansion means, and a cooler for cooling compressed air, comprising: an electric element having a rotating shaft; While driving the compression means, the expansion means is connected to the rotating shaft via a transmission, and the control device controls the reduction ratio of the transmission according to the torque of the rotating shaft or the input of the electric element. An air cycle type cooling device characterized by controlling.
【請求項2】 制御装置は、回転軸のトルク又は電動要
素の入力に基づいて、圧縮手段の圧縮比と膨張手段の膨
張比との比較を行い、圧縮比が膨張比より大きい場合に
は変速機の減速比を小さくし、膨張比が圧縮比より大き
い場合には前記変速機の減速比を大きくすることを特徴
とする請求項1の空気サイクル式冷却装置。
2. The control device compares the compression ratio of the compression means with the expansion ratio of the expansion means based on the torque of the rotating shaft or the input of the electric element. 2. The air cycle type cooling apparatus according to claim 1, wherein the reduction ratio of the transmission is reduced, and when the expansion ratio is larger than the compression ratio, the reduction ratio of the transmission is increased.
【請求項3】 制御装置は、所定のマスク時間を置いて
変速機の減速比制御を実行することを特徴とする請求項
1又は請求項2の空気サイクル式冷却装置。
3. The air cycle type cooling device according to claim 1, wherein the control device executes reduction ratio control of the transmission after a predetermined mask time.
JP11083796A 1999-03-26 1999-03-26 Air cycle type cooler Pending JP2000274851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083796A JP2000274851A (en) 1999-03-26 1999-03-26 Air cycle type cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083796A JP2000274851A (en) 1999-03-26 1999-03-26 Air cycle type cooler

Publications (1)

Publication Number Publication Date
JP2000274851A true JP2000274851A (en) 2000-10-06

Family

ID=13812626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083796A Pending JP2000274851A (en) 1999-03-26 1999-03-26 Air cycle type cooler

Country Status (1)

Country Link
JP (1) JP2000274851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156163A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
WO2005057087A1 (en) * 2003-12-09 2005-06-23 Earthship K.K. Air conditioning system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123083A (en) * 1997-07-04 1999-01-26 Tochigi Fuji Ind Co Ltd Cooler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123083A (en) * 1997-07-04 1999-01-26 Tochigi Fuji Ind Co Ltd Cooler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156163A (en) * 2000-11-16 2002-05-31 Mitsubishi Heavy Ind Ltd Air conditioner
WO2005057087A1 (en) * 2003-12-09 2005-06-23 Earthship K.K. Air conditioning system
JPWO2005057087A1 (en) * 2003-12-09 2007-07-05 株式会社アースシップ Air conditioning system

Similar Documents

Publication Publication Date Title
CN100516712C (en) Control method of refrigeration cycle apparatus
JP3863480B2 (en) Refrigeration cycle equipment
CN100460629C (en) Expansion machine
US6945066B2 (en) Refrigeration cycle apparatus
WO2006098165A1 (en) Refrigerating apparatus
WO2005090875A1 (en) Refrigeration system
BRPI0924263A2 (en) improvements in multistage centrifugal compressors
CN105627615A (en) Air conditioner system and control method thereof
WO2009098899A1 (en) Refrigeration system
JP4039024B2 (en) Refrigeration equipment
KR20010094760A (en) Motor vehicle air-conditioning system and a method for operating a motor vehicle air conditioning system
JP2009204201A (en) Refrigeration cycle device
JPH02238185A (en) Composite compressor
US8511112B2 (en) Refrigeration cycle apparatus
JP2000274851A (en) Air cycle type cooler
JPH07228249A (en) Air-conditioning device for vehicle
WO2009098900A1 (en) Refrigeration system
JP3965706B2 (en) Air compressor
JP4463659B2 (en) Refrigeration equipment with waste heat utilization device
JP2000257982A (en) Low-temperature gas generator and cold-blast machining device using the same
CN215832048U (en) Indoor air conditioner
JP2006105518A (en) Waste heat using device
KR100493188B1 (en) Apparatus for air conditioning using ram air
JP2001041144A (en) Wind power generator
JPH05231732A (en) Air cycle type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405