JPH05231732A - Air cycle type air conditioner - Google Patents

Air cycle type air conditioner

Info

Publication number
JPH05231732A
JPH05231732A JP3785792A JP3785792A JPH05231732A JP H05231732 A JPH05231732 A JP H05231732A JP 3785792 A JP3785792 A JP 3785792A JP 3785792 A JP3785792 A JP 3785792A JP H05231732 A JPH05231732 A JP H05231732A
Authority
JP
Japan
Prior art keywords
expander
temperature
air
inlet
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3785792A
Other languages
Japanese (ja)
Inventor
Takashi Makino
隆 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3785792A priority Critical patent/JPH05231732A/en
Publication of JPH05231732A publication Critical patent/JPH05231732A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent operating medium temperature from being abnormally lowered after expansion thereof in an air conditioner which employs air as the operating medium. CONSTITUTION:Medium temperatures at an inlet and an outlet of an expander 102 are detected, and based thereupon the medium temperature at the inlet of the expander 102 is controlled. For expander inlet temperature control means, there may be provided drawing means 161 parallely to a condenser 103 or there may be altered the flow rate of a cooling medium acting on the condenser 103.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を作動媒体として
用いる解放型の空気サイクル式空気調和機に関し、特に
膨張後の空気温度の異常低下防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an open type air cycle type air conditioner using air as a working medium, and more particularly to prevention of abnormal decrease in air temperature after expansion.

【0002】[0002]

【従来の技術】図5は、空気を作動媒体として用いる従
来の解放型空気サイクル式空気調和機の一例を示す概略
図、図6および図7はその改善例の具体的構造を例示す
る図である。これらの図において、6,39はエンジ
ン、7,41は排気タービン、8は遠心圧縮機、9,2
0は被冷房空間、10,22は遠心圧縮機、11,30
は熱交換機、12,25は膨張タービン、13は外気導
入ファン、21は遠心圧縮機の吸入ダクト、23は同じ
く吸入口、28は同じく吐出口、26は膨張タービンの
流出口、29は同じく流入口、27は同じく排出ダク
ト、24は主軸、31は駆動軸、32は電動機、33は
出力軸、34は増速機、35,43は冷却ファン、36
はベルト伝導装置、40は排気管、42は排気バイパス
機構をそれぞれ示す。
2. Description of the Related Art FIG. 5 is a schematic view showing an example of a conventional open air cycle type air conditioner using air as a working medium, and FIGS. 6 and 7 are views showing a concrete structure of an improved example thereof. is there. In these figures, 6 and 39 are engines, 7 and 41 are exhaust turbines, 8 is a centrifugal compressor, and 9 and 2
0 is the space to be cooled, 10 and 22 are centrifugal compressors, and 11 and 30
Is a heat exchanger, 12 and 25 are expansion turbines, 13 is an outside air introduction fan, 21 is an inlet duct of a centrifugal compressor, 23 is also an inlet, 28 is also an outlet, 26 is an outlet of an expansion turbine, and 29 is an outlet. Inlet, 27 is also an exhaust duct, 24 is a main shaft, 31 is a drive shaft, 32 is an electric motor, 33 is an output shaft, 34 is a speed increaser, 35 and 43 are cooling fans, 36
Is a belt transmission device, 40 is an exhaust pipe, and 42 is an exhaust bypass mechanism.

【0003】まず図5に示す作動ガスの循環系は、いわ
ゆるブートストラップ式と呼ばれ、機関6の排気ガスの
有する速度エネルギーを用いて排気タービン7を駆動
し、これと同軸上にある遠心式圧縮機8により、被冷房
空間9の空気を圧縮する。遠心式圧縮機8により圧縮さ
れた空気は、更に別の遠心式圧縮機10により圧縮され
更に高圧となって、熱交換機11に導かれ冷却される。
そして膨張タービン11で膨張し温度降下した後、被冷
房空間9に導かれる。被冷房空間9には、温度調整用に
外気が外気導入ファン13により導入される。
First, the working gas circulation system shown in FIG. 5 is a so-called bootstrap type, which drives the exhaust turbine 7 using the velocity energy of the exhaust gas of the engine 6, and is of the centrifugal type coaxial with this. The air in the space 9 to be cooled is compressed by the compressor 8. The air compressed by the centrifugal compressor 8 is further compressed by another centrifugal compressor 10 to have a higher pressure, is guided to the heat exchanger 11, and is cooled.
Then, after being expanded by the expansion turbine 11 and having its temperature lowered, it is guided to the space 9 to be cooled. Outside air is introduced into the space to be cooled 9 by the outside air introduction fan 13 for temperature adjustment.

【0004】このような空気式冷却装置にあっては、自
動車用の過給装置として開発されている排気ターボ過給
装置が二組必要なので高価になる。そこで、これを安価
に実現するため、図6および図7に示されるように、一
組の排気ターボ過給装置の主軸24を、電動機32によ
り増速機34を用いて増速駆動したり、または排気ター
ビン41と直結して高速駆動したりして、所期の目的を
果たそうとするものがあった。
Such an air-cooling system is expensive because it requires two sets of exhaust turbo supercharging systems which have been developed as supercharging systems for automobiles. Therefore, in order to realize this at low cost, as shown in FIG. 6 and FIG. 7, the main shaft 24 of the set of exhaust turbocharger is accelerated by the electric motor 32 using the speed increaser 34, or Alternatively, there is a device that is directly connected to the exhaust turbine 41 and is driven at high speed to achieve the intended purpose.

【0005】[0005]

【発明が解決しようとする課題】熱交換機11,30の
冷却能力が一定の時、被冷房空間9の温度が下がると、
膨張タービン12,25の入口温度が下がる。膨張ター
ビンで温度降下量ΔTはタービン効率で決まるから、膨
張タービン出口の空気の温度降下が過大になる。これを
防止するには、膨張タービン入口の温度を一定に保つ必
要がある。
When the cooling capacity of the heat exchangers 11 and 30 is constant and the temperature of the space 9 to be cooled decreases,
The inlet temperature of the expansion turbines 12 and 25 decreases. Since the temperature drop amount ΔT in the expansion turbine is determined by the turbine efficiency, the temperature drop of the air at the expansion turbine outlet becomes excessive. To prevent this, it is necessary to keep the temperature at the inlet of the expansion turbine constant.

【0006】また遠心圧縮機8が被冷房空間9外の大気
を常時吸入する場合にも、熱交換機11,30の冷却能
力が一定の時大気温度が変わると、膨張タービン12,
22の入口温度が下がり、上記と同様のことが起こる。
Even when the centrifugal compressor 8 constantly sucks the atmosphere outside the space to be cooled 9, if the atmospheric temperature changes when the cooling capacity of the heat exchangers 11 and 30 is constant, the expansion turbine 12 and
The inlet temperature of 22 drops and the same as above occurs.

【0007】[0007]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、空気を作動媒体とし、圧縮機と膨
張機と圧縮空気を冷却する冷却器とを備えた空気サイク
ル式空気調和機において、上記膨張機の入口または出口
の媒体温度を検出する手段と、上記膨張機の入口の媒体
温度を調整する手段と、上記媒体温度検出手段の出力に
基づいて上記媒体温度調整手段の操作量を演算出力し、
上記膨張機の出口の媒体温度を所定値に保つ制御手段と
を備えたことを特徴とする空気サイクル式空気調和機;
上記媒体温度調整手段が、上記冷却器に並列に上記圧縮
機の出口と上記膨張機の入口との間に接続された絞り手
段よりなることを特徴とする空気サイクル式空気調和
機;ならびに上記媒体温度調整手段が、上記冷却器に作
用する冷却媒体を強制循環させる循環量可変型ポンプ手
段よりなることを特徴とする空気サイクル式空気調和機
を提案するものである。
In order to solve the above-mentioned conventional problems, the present invention provides an air cycle type air which uses air as a working medium and is provided with a compressor, an expander and a cooler for cooling the compressed air. In the harmony machine, means for detecting the medium temperature at the inlet or outlet of the expander, means for adjusting the medium temperature at the inlet of the expander, and the medium temperature adjusting means based on the output of the medium temperature detecting means. The operation amount is calculated and output,
An air cycle type air conditioner comprising: a control means for keeping the medium temperature at the outlet of the expander at a predetermined value;
An air cycle type air conditioner characterized in that the medium temperature adjusting means comprises a throttle means connected in parallel with the cooler between an outlet of the compressor and an inlet of the expander; and the medium. The present invention proposes an air cycle type air conditioner characterized in that the temperature adjusting means is a circulation amount variable pump means for forcibly circulating the cooling medium acting on the cooler.

【0008】[0008]

【作用】本発明においては、膨張機の入口または出口の
温度に基づいて、膨張機入口の媒体温度を調整するの
で、圧縮機の吸込み空気温度が変化しても、膨張機の入
口温度、出口温度を一定に保つことができ、気液分離器
内の凝結水分が凍結したり、冷房に供される空気温度が
異常に低下したりするのを防止できる。本発明はまた、
媒体温度調整手段として、冷却器と並列に絞り手段を設
けたり、冷却器に作用する冷却媒体の流量を変えたりす
るので、簡単な手段で作動媒体の温度を調整できる。
In the present invention, the medium temperature at the inlet of the expander is adjusted based on the temperature at the inlet or outlet of the expander. Therefore, even if the intake air temperature of the compressor changes, the inlet temperature and outlet of the expander The temperature can be kept constant, and the condensed water in the gas-liquid separator can be prevented from freezing, and the temperature of the air used for cooling can be prevented from abnormally decreasing. The present invention also provides
As the medium temperature adjusting means, a throttle means is provided in parallel with the cooler or the flow rate of the cooling medium acting on the cooler is changed, so that the temperature of the working medium can be adjusted by a simple means.

【0009】[0009]

【実施例】図1は本発明の第1実施例を示す概略図であ
る。この図において、101は圧縮機、102は膨張
機、103は冷却器、104は膨張機102の出口また
は入口の媒体温度を検出する手段、105は演算制御手
段、106は媒体温度調整手段、107は駆動手段、1
08は吸入通路、109は送気通路、110はフィル
タ、111は気液分離器である。圧縮機101は、駆動
手段107により駆動され、フィルタ110で濾過され
た作動媒体としての空気を、吸入通路108から吸入し
て圧縮する。冷却器103は、圧縮機101で圧縮され
高温になった空気を冷却する。冷却された空気は膨張機
102でほぼ断熱膨張に近い膨張をする。この時空気
は、圧縮機101の入口・出口圧力比、すなわち膨張機
102の出口・入口圧力比で決まる一定の温度降下ΔT
を示し、この温度降下した空気は、送気通路109の途
中にある気液分離器111で凝縮水分を分離した後、冷
房に供される。
1 is a schematic diagram showing a first embodiment of the present invention. In this figure, 101 is a compressor, 102 is an expander, 103 is a cooler, 104 is means for detecting the medium temperature at the outlet or inlet of the expander 102, 105 is arithmetic control means, 106 is medium temperature adjusting means, 107 Is drive means, 1
Reference numeral 08 is an intake passage, 109 is an air supply passage, 110 is a filter, and 111 is a gas-liquid separator. The compressor 101 is driven by the driving unit 107, and sucks air as a working medium filtered by the filter 110 from the suction passage 108 and compresses it. The cooler 103 cools the air compressed by the compressor 101 and having a high temperature. The cooled air expands in the expander 102 almost adiabatically. At this time, the air has a constant temperature drop ΔT determined by the inlet / outlet pressure ratio of the compressor 101, that is, the outlet / inlet pressure ratio of the expander 102.
This temperature-decreased air is used for cooling after the condensed water is separated by the gas-liquid separator 111 in the air supply passage 109.

【0010】この時、圧縮機101の吸い込み空気温度
が変化すると、冷却器103の冷却能力一定の場合は、
膨張機102の入口温度が変わり、膨張機102出口の
空気の温度が氷点温度を下回る。そうすると、気液分離
器111内の凝縮水分が凍結したり、冷房に供される空
気温度が異常に低下する等の不具合が生じる。そこで本
実施例では、媒体温度検出手段104で膨張機102の
出口または入口の媒体温度を検出し、それを演算制御手
段105で温度の設定値と比較して、操作量を演算す
る。そして媒体温度調整手段106を制御し、膨張機1
02の入口温度を一定に保つ。このようにして、膨張機
102の出口温度を一定に保つことができる。
At this time, when the intake air temperature of the compressor 101 changes, if the cooling capacity of the cooler 103 is constant,
The inlet temperature of the expander 102 changes, and the temperature of the air at the outlet of the expander 102 falls below the freezing point temperature. Then, problems such as freezing of condensed water in the gas-liquid separator 111 and abnormal decrease in temperature of air used for cooling occur. Therefore, in this embodiment, the medium temperature detecting means 104 detects the medium temperature at the outlet or the inlet of the expander 102, and the arithmetic control means 105 compares it with the set temperature value to calculate the manipulated variable. Then, by controlling the medium temperature adjusting means 106, the expander 1
Keep the inlet temperature of 02 constant. In this way, the outlet temperature of the expander 102 can be kept constant.

【0011】本実施例の媒体温度調整手段106は、具
体的には、圧縮機101の出口と膨張機102の入口を
繋ぐ冷却器103に並列接続した、絞り手段161であ
る。この絞り手段161は、圧縮機101から吐出され
る媒体ガスが冷却器103をバイパスする量を変え、圧
縮ガスの膨張機入口温度を所定温度に保つのである。
The medium temperature adjusting means 106 of this embodiment is specifically a throttle means 161 which is connected in parallel to the cooler 103 which connects the outlet of the compressor 101 and the inlet of the expander 102. The expansion means 161 changes the amount of the medium gas discharged from the compressor 101 bypassing the cooler 103, and maintains the expander inlet temperature of the compressed gas at a predetermined temperature.

【0012】本実施例の作用を更に詳しく述べる。今、
各物理量の記号を次のとおり定める。
The operation of this embodiment will be described in more detail. now,
The symbols for each physical quantity are defined as follows.

【0013】[0013]

【数1】 [Equation 1]

【0014】そうすると、圧縮機101、膨張機10
2、冷却器103を循環する作動ガスの状態変化は、図
4で示される。すなわち、圧縮機101の入口状態(P
1 ,T 1 )のガスは圧力P2 まで断熱圧縮され、圧力損
失を無視すると、冷却器103により等圧P2 (P2
3 )の下に温度T3 まで冷却された後、膨張機102
で圧力P4 (=P1 )まで断熱膨張し、利用側の送気通
路へ排出される。この時温度T2 ,T4 の間には、次式
で示される関係が成立する。
Then, the compressor 101 and the expander 10
2, the state change of the working gas circulating through the cooler 103
4 is shown. That is, the inlet state of the compressor 101 (P
1, T 1) Gas is pressure P2Adiabatic compression up to pressure loss
If the loss is ignored, the cooler 103 causes an equal pressure P2(P2=
P3) Under temperature T3Expander 102 after being cooled to
At pressure PFour(= P1) Adiabatic expansion to
It is discharged to the road. At this time the temperature T2, TFourIn between
The relationship shown by is established.

【0015】[0015]

【数2】 [Equation 2]

【0016】圧力比P1 /P2 、膨張機の効率ηt は、
それぞれ運転条件と膨張機により決まり、また定圧比熱
p はガスの種類により決まるから、膨張機での温度低
下ΔTは圧力比P4 /P3 (=P1 /P2 )により決ま
る。したがって膨張機の出口温度T4 を一定に保つため
には、膨張機の入口温度T3 を一定に保てれば良い。こ
うして温度降下量を計算してみると、次のようになる。
The pressure ratio P 1 / P 2 and the expander efficiency η t are
Since each is determined by the operating conditions and the expander, and the constant pressure specific heat C p is determined by the type of gas, the temperature drop ΔT in the expander is determined by the pressure ratio P 4 / P 3 (= P 1 / P 2 ). Therefore, in order to keep the outlet temperature T 4 of the expander constant, the inlet temperature T 3 of the expander may be kept constant. The calculation of the amount of temperature drop is as follows.

【0017】[0017]

【数3】 [Equation 3]

【0018】次に、圧縮機101の出口と膨張機102
の入口を繋ぐ冷却器103に並列接続された絞り手段1
06は、開度に応じて圧縮機101の吐出するガスを冷
却器103をバイパスさせる。バイパス率をX、冷却器
103の出口を添字3とすれば、次式(5),(6)が
成立する。
Next, the outlet of the compressor 101 and the expander 102
Means 1 connected in parallel to the cooler 103 connecting the inlets of the
06 causes the gas discharged from the compressor 101 to bypass the cooler 103 according to the opening degree. If the bypass rate is X and the outlet of the cooler 103 is subscript 3, the following equations (5) and (6) are established.

【0019】[0019]

【数4】 [Equation 4]

【0020】上記(6)式からバイパス率Xの時の冷却
器103出口のガスの温度T3 が得られ、また(5)式
からは、冷却器103出口のガスの温度がT3 ′の時、
所定温度T3 に加熱するに要するバイパス率Xが求ま
る。これらの2式(5),(6)を連立する関係で、膨
張機102の入口温度を所定温度以上に保つ。またこの
時、次式(7),(8)が成り立ち、圧縮機101と膨
張機102の軸を連結すれば、大部分の動力が回収され
る。圧縮機101と膨張機102が共軸ならば、損失動
力は摩擦損失のみで、ηmt≒1となる。
From the above equation (6), the temperature T 3 of the gas at the outlet of the cooler 103 at the bypass rate X is obtained, and from the equation (5), the temperature of the gas at the outlet of the cooler 103 is T 3 ′. Time,
The bypass rate X required for heating to the predetermined temperature T 3 is obtained. Due to the relationship in which these two equations (5) and (6) are connected, the inlet temperature of the expander 102 is maintained at a predetermined temperature or higher. At this time, the following equations (7) and (8) are established, and most power is recovered by connecting the shafts of the compressor 101 and the expander 102. If the compressor 101 and the expander 102 are coaxial, the loss power is only friction loss and η mt ≈1 .

【0021】[0021]

【数5】 [Equation 5]

【0022】次に図2は本発明の第2実施例を示す概略
図である。この図において、201は圧縮機、202は
膨張機、203は冷却器、204は膨張機202の出口
または入口の媒体温度を検出する手段、205は演算制
御手段、206は媒体温度調整手段、207は駆動手
段、208は吸入通路、209は送気通路、210はフ
ィルタ、211は気液分離器ある。
Next, FIG. 2 is a schematic diagram showing a second embodiment of the present invention. In this figure, 201 is a compressor, 202 is an expander, 203 is a cooler, 204 is means for detecting the medium temperature at the outlet or inlet of the expander 202, 205 is arithmetic control means, 206 is medium temperature adjusting means, and 207. Is a driving means, 208 is an intake passage, 209 is an air supply passage, 210 is a filter, and 211 is a gas-liquid separator.

【0023】本実施例においては、媒体温度調整手段2
06が、冷却器203の冷却媒体である冷却空気203
aまたは冷却水の、強制循環量可変型ポンプ手段231
である。循環量可変型ポンプ手段231は、演算制御手
段205の出力に応じて、運転周波数を変えて運転され
る。そして、冷却媒体の循環量を変え、冷却器203の
冷却能力を変えて、圧縮ガスの冷却器出口温度(=膨張
機入口温度)を所定温度に保つ。
In the present embodiment, the medium temperature adjusting means 2
06 is the cooling air 203 which is the cooling medium of the cooler 203
a or cooling water, forced circulation amount variable type pump means 231
Is. The circulation amount variable pump unit 231 is operated by changing the operating frequency according to the output of the arithmetic control unit 205. Then, the circulation amount of the cooling medium is changed, the cooling capacity of the cooler 203 is changed, and the cooler outlet temperature (= expander inlet temperature) of the compressed gas is maintained at a predetermined temperature.

【0024】この作用を更に詳しく述べる。冷却器20
3に作用する冷却媒体を強制循環させる循環量可変型ポ
ンプ手段231は、前記(6)式におけるGaを可変に
することができる。これにより、X=0に相当する冷却
器203の冷却特性f(G0,Ga)が可変となり、T
2 の変化によるT3 ′の変化に対して、T3 ′+Δ
3 ′=T3 =constなる制御をして、膨張機20
2の入口温度を一定以上に保ち得る。
This operation will be described in more detail. Cooler 20
A variable circulation type port that forcibly circulates the cooling medium that acts on
The pump means 231 changes the Ga in the formula (6) above.
can do. As a result, cooling corresponding to X = 0
Characteristics of the container 203 f (G0, Ga) becomes variable and T
2Due to changes in3′ Changes to T3′ + Δ
T 3′ = T3= Const, the expander 20 is controlled.
The inlet temperature of 2 can be kept above a certain level.

【0025】次に図3は本発明の第3実施例を示す概略
図である。この図において、301は圧縮機、302は
膨張機、303は冷却器、304は膨張機302の出口
または入口の媒体温度を検出する手段、305は演算制
御手段、306は媒体温度調整手段、307は駆動手
段、308は吸入通路、309は送気通路、310はフ
ィルタ、311は気液分離器である。本実施例において
は、媒体温度調整手段306が定吐出量のポンプ手段3
31とバイパス手段332とからなり、このバイパス手
段332が、演算制御手段305の出力に応じて冷却器
303を通過する冷却媒体の量を変え、冷却器303の
冷却能力を変えるようになっている。このようにして、
圧縮ガスの冷却器303の出口温度(=膨張機入口温
度)を所定温度に保つことができる。
Next, FIG. 3 is a schematic view showing a third embodiment of the present invention. In this figure, 301 is a compressor, 302 is an expander, 303 is a cooler, 304 is means for detecting the medium temperature at the outlet or inlet of the expander 302, 305 is arithmetic control means, 306 is medium temperature adjusting means, 307. Is a drive means, 308 is an intake passage, 309 is an air supply passage, 310 is a filter, and 311 is a gas-liquid separator. In this embodiment, the medium temperature adjusting means 306 is the pump means 3 with a constant discharge amount.
31 and bypass means 332, and this bypass means 332 changes the amount of the cooling medium passing through the cooler 303 according to the output of the arithmetic control means 305, and changes the cooling capacity of the cooler 303. .. In this way
The outlet temperature (= expander inlet temperature) of the compressed gas cooler 303 can be maintained at a predetermined temperature.

【0026】[0026]

【発明の効果】本発明によれば、膨張機出口の流体の温
度降下が過大になるのを防止し、気液分離器内での凝縮
水分の凍結に基づく不具合、送気通路内で氷が融解し通
路に水が溜る、濡れ通路に異物が付着する等の不具合を
解消することができる。
According to the present invention, it is possible to prevent the temperature drop of the fluid at the outlet of the expander from becoming excessively large, and to prevent problems due to freezing of condensed water in the gas-liquid separator and to prevent ice in the air supply passage. Problems such as melting and collecting water in the passage and adhering foreign matter to the wet passage can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】図2は本発明の第2実施例を示す概略図であ
る。
FIG. 2 is a schematic diagram showing a second embodiment of the present invention.

【図3】図3は本発明の第3実施例を示す概略図であ
る。
FIG. 3 is a schematic diagram showing a third embodiment of the present invention.

【図4】図4はサイクル中の作動ガスの状態を示す図で
ある。
FIG. 4 is a diagram showing a state of a working gas during a cycle.

【図5】図5は空気を作動媒体とする従来の解放型空気
サイクル式空気調和機の一例を示す概略図である。
FIG. 5 is a schematic view showing an example of a conventional open type air cycle type air conditioner using air as a working medium.

【図6】図6は図5の一改善例の具体的構造を示す図で
ある。
6 is a diagram showing a specific structure of an improved example of FIG.

【図7】図7は図5の他の改善例の具体的構造を示す図
である。
FIG. 7 is a diagram showing a specific structure of another improvement example of FIG.

【符号の説明】[Explanation of symbols]

6,39 エンジン 7,41 排気タービン 8,10,22 遠心圧縮機 9,20 被冷房空間 11,30 熱交換機 12,25 膨張タービン 13 外気導入ファン 21 遠心圧縮機の吸入ダクト 23 遠心圧縮機の吸入口 28 遠心圧縮機の吐出口 26 膨張タービンの流出口 29 膨張タービンの流入口 27 膨張タービンの排出ダクト 24 主軸 31 駆動軸 32 電動機 33 出力軸 34 増速機 35,43 冷却ファン 36 ベルト伝導装置 40 排気管 42 排気バイパス機構 101,201,301 圧縮機 102,202,302 膨張機 103,203,303 冷却器 203a,303a 冷却媒体 104,204,304 膨張機出口または入口の媒体
温度検出手段 105,205,305 演算制御手段 106,206,306 媒体温度調整手段 107,207,307 駆動手段 108,208,308 吸入通路 109,209,309 送気通路 110,210,310 フィルター 111,211,311 気液分離器 161 絞り手段 231,331 冷却媒体ポンプ手段 332 冷却媒体バイパス手段
6,39 Engine 7,41 Exhaust turbine 8,10,22 Centrifugal compressor 9,20 Cooled space 11,30 Heat exchanger 12,25 Expansion turbine 13 Outside air introduction fan 21 Centrifugal compressor suction duct 23 Centrifugal compressor suction Port 28 Centrifugal compressor outlet port 26 Expansion turbine outlet port 29 Expansion turbine inlet port 27 Expansion turbine exhaust duct 24 Main shaft 31 Drive shaft 32 Electric motor 33 Output shaft 34 Speed increaser 35,43 Cooling fan 36 Belt transmission device 40 Exhaust pipe 42 Exhaust bypass mechanism 101, 201, 301 Compressor 102, 202, 302 Expander 103, 203, 303 Cooler 203a, 303a Cooling medium 104, 204, 304 Expander outlet or inlet medium temperature detecting means 105, 205 , 305 arithmetic control means 106, 206, 306 medium Degree adjusting means 107, 207, 307 Driving means 108, 208, 308 Intake passage 109, 209, 309 Air supply passage 110, 210, 310 Filter 111, 211, 311 Gas-liquid separator 161 Throttling means 231, 331 Cooling medium pumping means 332 Cooling medium bypass means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気を作動媒体とし、圧縮機と膨張機と
圧縮空気を冷却する冷却器とを備えた空気サイクル式空
気調和機において、上記膨張機の入口または出口の媒体
温度を検出する手段と、上記膨張機の入口の媒体温度を
調整する手段と、上記媒体温度検出手段の出力に基づい
て上記媒体温度調整手段の操作量を演算出力し、上記膨
張機の出口の媒体温度を所定値に保つ制御手段とを備え
たことを特徴とする空気サイクル式空気調和機。
1. A means for detecting a medium temperature at an inlet or an outlet of an expander in an air cycle type air conditioner comprising air as a working medium and comprising a compressor, an expander and a cooler for cooling the compressed air. And a means for adjusting the medium temperature at the inlet of the expander, and a calculation output of the operation amount of the medium temperature adjusting means based on the output of the medium temperature detecting means, and the medium temperature at the outlet of the expander to a predetermined value. An air-cycle type air conditioner comprising:
【請求項2】 上記媒体温度調整手段が、上記冷却器に
並列に、上記圧縮機の出口と上記膨張機の入口との間に
接続された絞り手段よりなることを特徴とする請求項1
記載の空気サイクル式空気調和機。
2. The medium temperature adjusting means comprises a throttle means connected in parallel with the cooler between an outlet of the compressor and an inlet of the expander.
Air cycle type air conditioner described.
【請求項3】 上記媒体温度調整手段が、上記冷却器に
作用する冷却媒体を強制循環させる循環量可変型ポンプ
手段よりなることを特徴とする請求項1記載の空気サイ
クル式空気調和機。
3. The air cycle type air conditioner according to claim 1, wherein the medium temperature adjusting means comprises a circulation amount variable type pump means for forcibly circulating the cooling medium acting on the cooler.
JP3785792A 1992-02-25 1992-02-25 Air cycle type air conditioner Withdrawn JPH05231732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3785792A JPH05231732A (en) 1992-02-25 1992-02-25 Air cycle type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3785792A JPH05231732A (en) 1992-02-25 1992-02-25 Air cycle type air conditioner

Publications (1)

Publication Number Publication Date
JPH05231732A true JPH05231732A (en) 1993-09-07

Family

ID=12509216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3785792A Withdrawn JPH05231732A (en) 1992-02-25 1992-02-25 Air cycle type air conditioner

Country Status (1)

Country Link
JP (1) JPH05231732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077461A1 (en) * 1999-06-11 2000-12-21 Longwell Japan Co., Ltd. Cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077461A1 (en) * 1999-06-11 2000-12-21 Longwell Japan Co., Ltd. Cooling device

Similar Documents

Publication Publication Date Title
US5121610A (en) Air cycle air conditioner for heating and cooling
US5029449A (en) Heat pump booster compressor arrangement
EP1818629B1 (en) Compressor cooling system
CN203240833U (en) Turbine refrigerating machine
EP1416231A1 (en) Refrigeration cycle apparatus
EP1243878B1 (en) Cold air refrigerating system and turboexpander turbine for this system
KR20010094760A (en) Motor vehicle air-conditioning system and a method for operating a motor vehicle air conditioning system
US20110289961A1 (en) Enhanced liquid pressure cycle having an ejector
JPH05231732A (en) Air cycle type air conditioner
JP4153763B2 (en) Gas heat pump type refrigeration apparatus and control method thereof
JP3754645B2 (en) Engine-driven heat pump air conditioner
JP4109997B2 (en) Turbo refrigerator
JP2004286329A (en) Refrigerant cycle device
JP4169521B2 (en) Air conditioner
CN113710348A (en) Compressed air station
CN210625013U (en) Power turbine evaporation cycle refrigerating system for airplane
JPS5862391A (en) Method for controlling operation of variable displacement compressor in refrigerating unit
JPH08233382A (en) Method and apparatus for controlling capacity of turbo-refrigerator
US11448120B2 (en) Gas heat-pump system
JPH09119379A (en) Air compressor
KR102048737B1 (en) Gas heat-pump system
RU2101623C1 (en) Refrigerating installation and its two-stage turbocompressor set
US20210172656A1 (en) Gas heat-pump system
JP2004316986A (en) Refrigeration cycle device
JP2637525B2 (en) Centrifugal chiller capacity control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518