JP2000273503A - Hard particle-dispersed sintered steel and its production - Google Patents

Hard particle-dispersed sintered steel and its production

Info

Publication number
JP2000273503A
JP2000273503A JP11081171A JP8117199A JP2000273503A JP 2000273503 A JP2000273503 A JP 2000273503A JP 11081171 A JP11081171 A JP 11081171A JP 8117199 A JP8117199 A JP 8117199A JP 2000273503 A JP2000273503 A JP 2000273503A
Authority
JP
Japan
Prior art keywords
powder
hard
sintered steel
tic
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11081171A
Other languages
Japanese (ja)
Other versions
JP4279935B2 (en
Inventor
Masaya Tokuhira
雅也 得平
Shogo Murakami
昌吾 村上
Nobuhiro Yamazaki
伸宏 山崎
Shinichi Fukumizu
伸一 福水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP08117199A priority Critical patent/JP4279935B2/en
Publication of JP2000273503A publication Critical patent/JP2000273503A/en
Application granted granted Critical
Publication of JP4279935B2 publication Critical patent/JP4279935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce hard particle-dispersed sintered steel excellent in reliability in the face of strength and wear resistance and to provide a method for producing it. SOLUTION: This is the sintered steel in which, into a matrix essentially consisting of Fe or an Fe alloy, hard particles contg. TiC are dispersed by 20 to 40 mass %, in which, after a sample is subjected to specular grinding, in optical microphotography of 400 magnifications in which the surface of the steel is photographed, hard particles inevitably contg. TiC are allowed to exist on an optional segment of 20 mm length. In the method for producing hard particle-dispersed sintered steel in which the raw material powder composed of Fe or Fe allay powder and carbide powder is subjected to wet blending, is subjected to compacting and is thereafter sintered in a vacuum, the wet blending is executed with a solvent (such as hexane and xylene) substantially free from hygroscopicity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷間加工用工具や熱
間加工用工具等に好適な硬質粒分散焼結鋼及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard grain dispersion sintered steel suitable for a cold working tool, a hot working tool, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】冷間および熱間加工用工具に使用する材
料としては、強度面の信頼性が高く(最低強度が大き
く)、耐摩耗性に優れていることが要望され、粉末冶金
法によりTiC等の硬質粒を分散させた焼結鋼(硬質粒
分散焼結鋼)が開発されている(例えば、特開昭53−
64608,特開昭53−6207,特開平6−330
107,特開平8−253845など)。
2. Description of the Related Art Materials used for cold and hot working tools are required to have high reliability in terms of strength (high minimum strength) and excellent wear resistance. Sintered steel in which hard grains such as TiC are dispersed (hard grain dispersed sintered steel) has been developed (see, for example,
64608, JP-A-53-6207, JP-A-6-330
107, JP-A-8-253845, etc.).

【0003】硬質粒分散焼結鋼においては、微細な硬質
粒をできるだけ均一に分散させることが望まれる。なぜ
なら、硬質粒の凝集体は破壊の起点となり材料の信頼性
を低下させるからである。また凝集体が残存していると
いうことは、硬質粒が粗な領域が多く存在するというこ
とであり、耐摩耗性が劣化するからである。
[0003] In hard grain dispersed sintered steel, it is desired to disperse fine hard grains as uniformly as possible. This is because the aggregates of the hard grains serve as starting points of destruction and reduce the reliability of the material. In addition, the fact that the aggregates remain means that there are many regions where hard grains are coarse, and the abrasion resistance is deteriorated.

【0004】しかしながら、市販の金属粉と炭化物等の
硬質粒では粒径と比重に大きな差があることから、均一
に混合することは難しく、従来の硬質粒分散焼結鋼は、
必ずしも硬質粒が均一に分散するものではなく、強度の
信頼性や耐摩耗性が十分に高いものではなかった。
However, since there is a large difference in particle size and specific gravity between commercially available metal powders and hard particles such as carbides, it is difficult to uniformly mix them.
The hard particles were not always uniformly dispersed, and the reliability of strength and the wear resistance were not sufficiently high.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、強度面の信頼性及び耐摩
耗性に優れた硬質粒分散焼結鋼とその製造方法を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a hard-grain-dispersed sintered steel having excellent strength reliability and wear resistance and a method for producing the same. It is assumed that.

【0006】[0006]

【課題を解決するための手段】上記課題を解決した本発
明の製造方法とは、FeまたはFe合金粉末と炭化物粉
末からなる原料粉末の湿式混合を行い、プレス成形後、
真空中で焼結する硬質粒分散焼結鋼の製造方法であっ
て、実質的に吸湿性がない溶媒を用いて湿式混合を行う
ことを要旨とするものである。上記実質的に吸湿性がな
い溶媒としては、ヘキサンまたはキシレンを用いればよ
い。また、前記FeまたはFe合金粉末としては平均粒
径15μm以下の粉末を用い、炭化物粉末としては平均
粒径5μm以下の粉末を用いることが望ましく、原料粉
末として、更に平均粒径5μm以下のTiN粉末を用い
てもよい。焼結を行うにあたっては、1300〜145
0℃の温度範囲で、1〜10時間保持することが望まし
い。
Means for Solving the Problems The manufacturing method of the present invention which has solved the above-mentioned problems is that a raw material powder comprising Fe or Fe alloy powder and a carbide powder is wet-mixed, and after press molding,
A method for producing a hard-grain-dispersed sintered steel that is sintered in a vacuum, and it is intended to perform wet mixing using a solvent having substantially no hygroscopicity. Hexane or xylene may be used as the solvent having substantially no hygroscopicity. Further, it is desirable to use a powder having an average particle size of 15 μm or less as the Fe or Fe alloy powder, and to use a powder having an average particle size of 5 μm or less as the carbide powder. May be used. In performing sintering, 1300-145
It is desirable that the temperature is maintained at 0 ° C. for 1 to 10 hours.

【0007】更に、上記課題を解決した本発明の硬質粒
分散焼結鋼とは、FeまたはFe合金を主成分とするマ
トリックス中にTiCを含む硬質粒が20〜40質量%
分散した焼結鋼であって、試料を鏡面研磨後、その鋼表
面を撮影した400倍の光学顕微鏡写真内において、長
さ20mmの任意の線分上に、必ずTiCを含む硬質粒
が存在することを要旨とするものである。
Further, the hard grain dispersion sintered steel of the present invention which has solved the above-mentioned problems is characterized in that the hard grains containing TiC in a matrix mainly composed of Fe or an Fe alloy contain 20 to 40% by mass.
Hard particles containing TiC always exist on an arbitrary line segment having a length of 20 mm in a 400-magnification optical microscope photograph of a dispersed sintered steel, which is a mirror-polished sample of a sample, and the steel surface is photographed. The gist is that.

【0008】上記焼結鋼のマトリックスの成分として
は、Fe以外にNi:3〜20%、Co:2〜40%、
Mo:2〜15%、Al:0.2〜2.0%、Ti:
0.2〜3.0%、Cu:0.2〜5.0%を含むこと
が望ましく、更にCr:3〜20%及び/又はB:0.
01〜0.10%を含むことが望ましい。
[0008] In addition to Fe, Ni: 3 to 20%, Co: 2 to 40%,
Mo: 2 to 15%, Al: 0.2 to 2.0%, Ti:
It is desirable to contain 0.2 to 3.0%, Cu: 0.2 to 5.0%, and further Cr: 3 to 20% and / or B: 0.
Desirably, the content is 0.01 to 0.10%.

【0009】また前記TiCを含む硬質粒としては、全
てがTiCであっても良いが、その50%以上をTiC
とすれば、残りはV,Cr,Zr,Nb,Mo,Hf,
Ta,Wよりなる群から選択される金属の炭化物及びT
iNの1種以上としてもよい。
As the hard particles containing TiC, all may be TiC, but 50% or more of the hard particles may be TiC.
Then, V, Cr, Zr, Nb, Mo, Hf,
A metal carbide selected from the group consisting of Ta and W;
One or more of iN may be used.

【0010】[0010]

【発明の実施の形態】これまでの硬質粒分散焼結鋼にお
いても、硬質粒をできるだけ分散すべく製造されていた
が、硬質粒は均一には分散されていなかった。本発明者
らは、硬質粒の分散について鋭意研究を重ねた結果、従
来の製造方法において十分に硬質粒が分散しなかった要
因として、湿式混合における溶媒に問題があったことを
突き止めた。金属粉と硬質粒の混合は、ボールミルやア
トライタを用いた湿式混合で行われているが、この時、
アルコール類等の吸湿性がある溶媒が用いられており、
これが硬質粒の均一な分散を阻害していたのである。そ
の理由は、吸湿した溶媒と接触することで粉末が酸化し
やすくなり、粉末表面が酸化すると、焼結時に液相と硬
質粒のぬれが悪くなり、均一に液相が広がることを妨げ
るからである。したがって、溶媒は例えばヘキサンやキ
シレン等のような実質的に吸湿性がない溶媒を使用する
必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION Hard grain-dispersed sintered steels have been manufactured to disperse hard grains as much as possible, but hard grains are not uniformly dispersed. As a result of intensive studies on the dispersion of hard particles, the present inventors have found out that there was a problem with the solvent in wet mixing as a cause of insufficient dispersion of the hard particles in the conventional production method. The mixing of metal powder and hard particles is performed by wet mixing using a ball mill or attritor.
Solvents having hygroscopicity such as alcohols are used,
This hindered the uniform dispersion of the hard grains. The reason is that the powder is easily oxidized by contact with the solvent that has absorbed moisture, and if the powder surface is oxidized, the liquid phase and the hard particles become poorly wet during sintering, preventing the liquid phase from spreading uniformly. is there. Therefore, it is necessary to use a solvent having substantially no hygroscopicity, such as hexane and xylene.

【0011】更に、本発明者らが硬質粒の分散状態と機
械的特性との関係を調べた結果、硬質粒の分散度の指標
として、400倍の光学顕微鏡写真内に20mmの長さ
の直線を引き、それがいずれの場所においても炭化チタ
ンを横切る程に均一に硬質粒が分散した場合には、強度
の信頼性が大きく(最低強度が高く)、しかも優れた耐
摩耗性を有する硬質粒分散焼結鋼が得られることを見出
し、本発明に想到した。
Further, the present inventors examined the relationship between the dispersion state of the hard particles and the mechanical properties. As a result, as a measure of the degree of dispersion of the hard particles, a straight line having a length of 20 mm was observed in a 400-fold optical microscope photograph. If the hard particles are dispersed uniformly so as to cross the titanium carbide in any place, the reliability of the strength is high (the minimum strength is high) and the hard particles have excellent wear resistance. The inventors have found that a dispersion sintered steel can be obtained, and have reached the present invention.

【0012】即ち、本発明の硬質粒分散焼結鋼は、40
0倍の光学顕微鏡写真内に20mmの長さの直線を引
き、それがいずれの場所においても炭化チタンを横切る
程に均一に硬質粒が分散しており、高い最低強度を有し
優れた耐摩耗性を発揮する焼結鋼である。その製造方法
について以下に示す。
That is, the hard grain dispersion sintered steel of the present invention is
Draw a straight line with a length of 20 mm in the optical microscope photograph of 0 times, and the hard grains are uniformly dispersed so that it crosses the titanium carbide everywhere, and has high minimum strength and excellent wear resistance It is a sintered steel that demonstrates its properties. The manufacturing method will be described below.

【0013】まず用いる原料粉末としては、可能な限り
微細なものを用いる事が好ましい。特に、主成分となる
鉄粉末およびTiC粉末については、微細なものを用い
ることが効果的である。微細な粉末を用いることによ
り、鉄粉と硬質粒との共晶反応により生じる液相を均一
な状態にすることができる。具体的には、鉄粉末は、平
均粒径で15μm以下の粉末を用いることが好ましい。
この時、他の成分を合金化した合金粉末として用いる方
法も有効である。この時の平均粒径も15μm以下とす
ることが好ましい。また、TiC粉末についても平均粒
径で5μm以下の粉末を用いることが好ましい。更に、
硬質粒として、V,Cr,Zr,Nb,Mo,Hf,T
a,Wよりなる群から選択される金属の炭化物及び窒化
チタンを用いる場合にも、平均粒径5μm以下のものを
用いることが好ましい。
First, it is preferable to use the finest possible raw material powder. In particular, it is effective to use fine iron powder and TiC powder as main components. By using the fine powder, the liquid phase generated by the eutectic reaction between the iron powder and the hard particles can be made uniform. Specifically, it is preferable to use iron powder having an average particle size of 15 μm or less.
At this time, a method of using other components as an alloy powder obtained by alloying is also effective. The average particle size at this time is also preferably 15 μm or less. It is also preferable to use a TiC powder having an average particle size of 5 μm or less. Furthermore,
V, Cr, Zr, Nb, Mo, Hf, T
Also when using metal carbide and titanium nitride selected from the group consisting of a and W, it is preferable to use those having an average particle size of 5 μm or less.

【0014】混合時には、前述の通り、湿式混合に用い
る溶媒として、ヘキサンやキシレン等のような実質的に
吸湿性がない溶媒を使用する必要がある。また、混合時
に粉末が粉砕あるいは変形して新生面ができると、酸化
量が多くなり均一な分散に悪影響を与えるので、混合時
間・回転数等に注意する必要がある。例えばアトライタ
を用いて混合する場合には、5時間以下とすることが必
要であり、3時間程度にすることが好ましい。
At the time of mixing, as described above, it is necessary to use a solvent having substantially no hygroscopicity, such as hexane or xylene, as a solvent used for wet mixing. Further, if the powder is crushed or deformed during mixing to form a new surface, the amount of oxidation is increased and adversely affects uniform dispersion. For example, when mixing using an attritor, it is necessary to set the mixing time to 5 hours or less, and it is preferable to set the mixing time to about 3 hours.

【0015】さらに、焼結時は、炉内の雰囲気・焼結温
度・保持時間を考慮する必要がある。焼結は通常の真空
焼結炉を用いて真空焼結を行えばよい。このとき、炉内
雰囲気によって液相量およびその広がり易さ等が変化す
る。その程度は、さまざまな条件によって微妙に変化す
るため、注意深く焼結時間・保持時間を決定して、硬質
粒が微細・均一に分散する条件を探す必要があり、温度
と保持時間の組み合わせは、組成・炉内雰囲気等を考慮
して決めることが必要である。焼結温度が1300℃未
満であると、液相の広がりが十分でないために、硬質粒
の分散が不十分となる。また、焼結温度が1450℃を
超えたり、保持時間が10時間を超えると、TiC粒が
粒成長して粗大化するために、結果として硬質粒の分散
度が低下することになる。更にTiCが大きくなると、
破壊の起点となり、強度低下の原因となる。従って、焼
結条件としては、1300〜1450℃で1〜10時間
の保持をすることが好ましい。
Further, at the time of sintering, it is necessary to consider the atmosphere in the furnace, the sintering temperature, and the holding time. Vacuum sintering may be performed using a normal vacuum sintering furnace. At this time, the amount of the liquid phase and the spreadability of the liquid phase vary depending on the atmosphere in the furnace. Since the degree varies subtly depending on various conditions, it is necessary to carefully determine the sintering time and holding time and search for the conditions under which the hard particles are finely and uniformly dispersed. It is necessary to determine in consideration of the composition, the atmosphere in the furnace, and the like. If the sintering temperature is lower than 1300 ° C., the dispersion of the hard particles becomes insufficient due to insufficient expansion of the liquid phase. On the other hand, if the sintering temperature exceeds 1450 ° C. or the holding time exceeds 10 hours, the TiC grains grow and become coarse, and as a result, the degree of dispersion of the hard grains decreases. When TiC further increases,
It becomes the starting point of destruction and causes a decrease in strength. Therefore, as sintering conditions, it is preferable to hold at 1300 to 1450 ° C. for 1 to 10 hours.

【0016】このように、本発明の硬質粒分散焼結鋼
は、液相焼結によって緻密化がなされるものである。焼
結時、この液相によって硬質粒は再配列を起こし、均一
に分散するようになる。従って、試料全体に亘って液相
を均一に生じさせることが、硬質粒を均一に分散させる
ことにつながる。
As described above, the hard grain dispersion sintered steel of the present invention is densified by liquid phase sintering. During sintering, this liquid phase causes the hard grains to rearrange and become uniformly dispersed. Therefore, generating the liquid phase uniformly over the entire sample leads to uniform dispersion of the hard particles.

【0017】以上のように、金属粉末の粒径・混合条件
・焼結条件を選択し、硬質粒の均一分散が可能な液相量
を生じさせ、液相量の増加に伴う試料の変形を抑えるこ
とで、硬質粒が微細・均一に分散した任意の形状の焼結
鋼を得ることが可能であり、得られた硬質粒分散焼結鋼
は、強度の信頼性及び耐摩耗性に非常に優れるものであ
る。
As described above, the particle size, mixing conditions, and sintering conditions of the metal powder are selected to generate a liquid phase amount capable of uniformly dispersing the hard particles, and the deformation of the sample accompanying the increase in the liquid phase amount is suppressed. By suppressing it, it is possible to obtain a sintered steel of any shape in which hard grains are finely and uniformly dispersed, and the obtained hard grain dispersion sintered steel has extremely high strength reliability and wear resistance. It is excellent.

【0018】次に、焼結鋼における好ましい成分と含有
量を以下に示す。
Next, preferable components and contents in the sintered steel are shown below.

【0019】Niは、Niマルエージング鋼とする場合
に特に必要であるが、3%未満ではマルテンサイトを生
成しないこと、20%を超えるとオーステナイトが残留
することから、その添加量の範囲を3〜20%とするこ
とが望ましい。
Ni is particularly necessary when forming a Ni maraging steel. However, if it is less than 3%, no martensite is formed, and if it exceeds 20%, austenite remains. It is desirable to set it to 20%.

【0020】Coを添加することにより鉄中へのMoの
溶解が抑えられ、硬度向上に必要な金属間化合物の析出
を可能にする。2%未満ではその析出強化の効果が少な
く、40%を超えると金属間化合物が多量に析出し、急
激な靭性の低下を招くため、Co添加量の範囲は2〜4
0%とすることが望ましい。
By adding Co, the dissolution of Mo in iron is suppressed, and the precipitation of intermetallic compounds necessary for improving the hardness is enabled. If it is less than 2%, the effect of strengthening the precipitation is small, and if it exceeds 40%, a large amount of intermetallic compound is precipitated, which causes a rapid decrease in toughness.
It is desirable to set it to 0%.

【0021】Moは、硬度向上に必要な金属間化合物と
して析出する元素であるが、2%未満ではその析出強化
の効果が少なく、15%を超えると金属間化合物が多量
に析出して急激な靭性の低下を招くので添加量の範囲を
2〜15%とすることが望ましい。
Mo is an element that precipitates as an intermetallic compound necessary for improving the hardness. If it is less than 2%, the effect of strengthening the precipitation is small, and if it exceeds 15%, a large amount of the intermetallic compound precipitates and sharply increases. Since the toughness is reduced, the range of the addition amount is desirably 2 to 15%.

【0022】Al,Tiは、いずれも硬度向上に必要な
金属間化合物として析出するが、0.2%未満ではその
析出強化の効果が少なく、多過ぎると脆化相を生じるた
め、Alは添加量を0.2〜2.0%とすることが望ま
しく、Tiは添加量を0.2〜3.0%とすることが望
ましい。
Al and Ti both precipitate as intermetallic compounds necessary for improving the hardness. If less than 0.2%, the effect of strengthening the precipitation is small, and if it is too large, an embrittled phase is generated. The amount is desirably 0.2 to 2.0%, and the amount of Ti is desirably 0.2 to 3.0%.

【0023】Cuは、析出して硬度向上に寄与するが、
0.2%未満ではその析出強化の効果が少なく、5.0
%を超えると脆化相を生じるため添加量を0.2〜5.
0%とすることが望ましい。
Although Cu precipitates and contributes to the improvement of hardness,
If it is less than 0.2%, the effect of the precipitation strengthening is small, and it is 5.0.
%, An embrittlement phase is generated, so that the amount of addition is 0.2 to 5.
It is desirable to set it to 0%.

【0024】Crは、耐腐食性を改善するものである。
しかしながら、3%未満ではその効果が少なく、20%
を超えると著しい焼結性の低下を招くために、添加量の
範囲を3〜20%以下とすることが望ましい。
Cr improves corrosion resistance.
However, if less than 3%, the effect is small, and 20%
If the ratio exceeds the above range, the sinterability will be remarkably reduced. Therefore, it is desirable to set the range of the addition amount to 3 to 20% or less.

【0025】Bの添加は焼結を容易にするものである。
0.01%未満ではその効果がなく、0.10%を超え
ると脆いホウ化物が生じるため、添加量の範囲を0.0
1〜0.10%とすることが望ましい。
The addition of B facilitates sintering.
If it is less than 0.01%, the effect is not obtained, and if it exceeds 0.10%, brittle borides are generated.
It is desirable to set it to 1 to 0.10%.

【0026】また、硬質粒として20〜40%含有させ
るTiCを、第IVA・VA・VIA属(V,Cr,Zr,
Nb,Mo,Hf,Ta,W)の炭化物およびTiNの
単独または複数の化合物で50%まで置換しても良好な
結果が得られる。これらは、焼結時に一部TiCと固溶
することになり、複合炭化物を生成する。この複合炭化
物および単独で存在する炭化物とも、硬さ・靭性におい
て異なるが、硬質分散相として十分な役割を果たす。5
0%を超えると焼結性の低下を招くことになりポア等が
発生する。したがって、置換量は50%までとすること
が望ましい。
In addition, TiC containing 20 to 40% as hard particles is selected from the group IVA, VA and VIA (V, Cr, Zr,
Good results can be obtained even when substitution is made up to 50% with one or more compounds of carbides of Nb, Mo, Hf, Ta, W) and TiN. Some of these will form a solid solution with TiC during sintering, and form composite carbides. Although different from the composite carbide and the carbide existing alone in hardness and toughness, they play a sufficient role as a hard dispersed phase. 5
If it exceeds 0%, the sinterability is reduced, and pores and the like are generated. Therefore, the replacement amount is desirably up to 50%.

【0027】尚、硬質粒として含有させるTiC量が2
0%未満であると、十分な耐摩耗性を維持することが難
しく、40%を超すと強度低下を招くため、TiC量は
20〜40%と定めた。
When the amount of TiC contained as hard particles is 2
If it is less than 0%, it is difficult to maintain sufficient wear resistance, and if it exceeds 40%, the strength is reduced, so the TiC content is set to 20 to 40%.

【0028】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention. Are included within the technical scope of

【0029】[0029]

【実施例】実施例1 Co:10%,Ni:10%,Mo:9%,Ti:1
%,Al:1%,Cu:1%,B:0.02%を含有
し、残部Feの焼結鋼をマトリックスとし、硬質粒とし
てTiCを表1に示す含有比率で有する硬質粒分散焼結
鋼を、表1に併記する混合条件と焼結条件で作製した。
尚、使用した粉末の粒径は以下の通りである。
EXAMPLES Example 1 Co: 10%, Ni: 10%, Mo: 9%, Ti: 1
%, Al: 1%, Cu: 1%, B: 0.02%, with the sintered steel of the remainder Fe as a matrix, and hard particles dispersed and hardened with TiC in the content ratio shown in Table 1. Steel was produced under the mixing conditions and sintering conditions shown in Table 1.
The particle size of the powder used is as follows.

【0030】Fe粉末(平均粒径約5μm),TiC粉
末(平均粒径約2.5μm),Co粉末(平均粒径約
1.5μm),Ni粉末(平均粒径約2.5μm),M
o粉末(平均粒径約4.5μm),Ti粉末(<45μ
m),Al粉末(<45μm),Cu粉末(平均粒径約
2.5μm) また、混合機としてはアトライタを用い、回転数220
rpmで混合した。プレス成形は、成形圧:3000k
gf/cm2の金型成形により25×25×10mmの
サイズとした。
Fe powder (average particle size: about 5 μm), TiC powder (average particle size: about 2.5 μm), Co powder (average particle size: about 1.5 μm), Ni powder (average particle size: about 2.5 μm), M
o powder (average particle size about 4.5 μm), Ti powder (<45 μm)
m), Al powder (<45 μm), Cu powder (average particle size of about 2.5 μm)
Mix at rpm. Press molding, molding pressure: 3000k
The size was 25 × 25 × 10 mm by gf / cm 2 molding.

【0031】焼結後すべての試料について熱処理を行
い、750〜800Hvの硬さに調整し、試験片とし
た。
After sintering, all the samples were heat-treated, adjusted to a hardness of 750 to 800 Hv, and used as test pieces.

【0032】まず試験片の表面を鏡面研磨して400倍
の光学顕微鏡写真を撮影し、写真内に20mmの長さの
直線を引き、それがいずれの場所においても硬質粒を横
切るかどうかを確認した。この方法で確認した分散状態
の評価結果を表1に示す。
First, the surface of the test piece was mirror-polished, an optical microscope photograph of 400 times was taken, and a straight line having a length of 20 mm was drawn in the photograph, and it was confirmed whether or not it crossed the hard grains at any place. did. Table 1 shows the evaluation results of the dispersion state confirmed by this method.

【0033】これらの試験片を用いて、JIS−B−4
104(7.2)に基づいて抗折試験(試料本数20本)を
行い、最低強度値を測定すると共に、図1に示す摩耗試
験機と図2に形状を示す試験片を用いて以下の条件で摩
耗試験を行い試料の減量を測定した。結果は表1に併記
する。 [摩耗試験条件] 周速:15m/sec 面圧:10kgf/cm2 潤滑:65℃温水 試験時間:4.5時間 相手材:SKH10
Using these test pieces, JIS-B-4
A bending test (20 samples) was carried out based on 104 (7.2), the minimum strength value was measured, and a wear tester shown in FIG. 1 and a test piece having the shape shown in FIG. 2 were used under the following conditions. A wear test was performed to determine the weight loss of the sample. The results are shown in Table 1. [Wear test conditions] Circumferential speed: 15 m / sec Surface pressure: 10 kgf / cm 2 Lubrication: 65 ° C hot water Test time: 4.5 hours Counterpart material: SKH10

【0034】[0034]

【表1】 [Table 1]

【0035】No.1〜4は本発明に係る硬質粒分散焼
結鋼であり、いずれも160kgf/mm2以上の強度
を有し、しかも耐摩耗性に優れている。
No. Nos. 1 to 4 are hard grain dispersion sintered steels according to the present invention, each having a strength of 160 kgf / mm 2 or more and having excellent wear resistance.

【0036】No.5〜11は、硬質粒の分散状態が良
好でない(即ち、400倍の光学顕微鏡写真内に20m
mの長さの直線を引いた場合、硬質粒を横切らない場合
がある)場合の比較例であり、最低強度が低く、耐摩耗
性も十分でないことが分かる。実施例2 表2において、No.2〜5は硬質粒としてTiCと共
にその他の炭・窒化物を用い、No.6〜13はマトリ
ックスの組成を変化させたこと以外は、実施例1のN
o.1と同様にして、試験片を作製し、実施例1と同様
にして最低強度と摩耗減量を測定した。尚、TiC以外
の炭・窒化物の平均粒径は次の通りである。TiC粉末
(約2.5μm),HfC粉末(約3μm),TaC粉
末(約1.0μm),Mo2C粉末(約3μm)結果は
表2に併記する。
No. Nos. 5 to 11 show that the dispersion state of the hard particles is not good (that is, 20 m in a 400 × optical microscope photograph).
This is a comparative example in which a straight line having a length of m may not cross a hard grain when a straight line having a length of m is drawn. It can be seen that the minimum strength is low and the abrasion resistance is not sufficient. Example 2 In Table 2, no. Nos. 2 to 5 used TiC and other carbon and nitride as hard particles. 6 to 13 are the same as those of Example 1 except that the composition of the matrix was changed.
o. A test piece was prepared in the same manner as in Example 1, and the minimum strength and abrasion loss were measured in the same manner as in Example 1. The average particle size of carbon / nitride other than TiC is as follows. Table 2 shows the results of TiC powder (about 2.5 μm), HfC powder (about 3 μm), TaC powder (about 1.0 μm), and Mo 2 C powder (about 3 μm).

【0037】[0037]

【表2】 [Table 2]

【0038】No.12〜15,No.19,No.2
1〜23は本発明に係る硬質粒分散焼結鋼であり、いず
れも160kg/mm2以上の強度を有し、しかも耐摩
耗性に優れている。
No. 12-15, No. 19, no. 2
Reference numerals 1 to 23 are hard grain dispersion sintered steels according to the present invention, each having a strength of 160 kg / mm 2 or more and having excellent wear resistance.

【0039】No.16〜18,No.20は、夫々A
l,B,Ti,Crの量が多過ぎる場合の比較例であ
り、十分な強度が得られなかった。
No. 16-18, No. 20 is A
This is a comparative example in which the amounts of 1, B, Ti, and Cr are too large, and sufficient strength was not obtained.

【0040】[0040]

【発明の効果】本発明は以上の様に構成されているの
で、強度面の信頼性及び耐摩耗性に優れた硬質粒分散焼
結鋼とその製造方法が提供できることとなった。
As described above, according to the present invention, it is possible to provide a hard-grain-dispersed sintered steel having excellent strength reliability and wear resistance and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた摩耗試験装置を示す説明図であ
る。
FIG. 1 is an explanatory view showing a wear test device used in an example.

【図2】実施例で用いた摩耗試験の試験片を示す説明図
である。
FIG. 2 is an explanatory view showing a test piece of a wear test used in Examples.

【図3】表1における本発明例No.1の鋼表面を撮影
した光学顕微鏡写真の写しである。
FIG. 3 is an example of the present invention No. 1 in Table 1. 1 is a copy of an optical microscope photograph of the steel surface of FIG.

【図4】表1における比較例No.5の鋼表面を撮影し
た光学顕微鏡写真の写しである。
FIG. 4 shows Comparative Example No. 1 in Table 1. 5 is a copy of an optical microscope photograph of the steel surface of No. 5.

【図5】表1における比較例No.10の鋼表面を撮影
した光学顕微鏡写真の写しである。
FIG. 5 shows Comparative Example No. 1 in Table 1. It is a copy of the optical microscope photograph which image | photographed the steel surface of No. 10.

【符号の説明】[Explanation of symbols]

1 空圧ホース 2 エアシリンダ 3 ロードセル 4 ローラ 5 ガイドブロック 6 試料取付具 7 回転ディスク 8 回転軸 9 ストレインゲージ 10 ストッパ 11 ロードセル DESCRIPTION OF SYMBOLS 1 Pneumatic hose 2 Air cylinder 3 Load cell 4 Roller 5 Guide block 6 Sample fixture 7 Rotating disk 8 Rotating shaft 9 Strain gauge 10 Stopper 11 Load cell

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/54 B22F 3/10 E (72)発明者 山崎 伸宏 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 福水 伸一 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 4K018 AA30 AA32 AB02 AC01 BA11 BA13 BB04 BC08 BC13 BC16 CA08 CA12 DA11 DA21 DA32 FA08 KA14 4K020 AA22 AC07 BA06 BB29 BC02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/54 B22F 3/10 E (72) Inventor Nobuhiro Yamazaki 2-3-1, Shinhama, Araimachi, Takasago-shi, Hyogo Prefecture No. Kobe Steel, Ltd. Takasago Works (72) Inventor Shinichi Fukumi 2-3-1, Shinhama, Araimachi, Takasago City, Hyogo Prefecture F-term (reference) 4K018 AA30 AA32 AB02 AC01 BA11 BA13 BB04 BC08 BC13 BC16 CA08 CA12 DA11 DA21 DA32 FA08 KA14 4K020 AA22 AC07 BA06 BB29 BC02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 FeまたはFe合金粉末と炭化物粉末か
らなる原料粉末の湿式混合を行い、プレス成形後、真空
中で焼結する硬質粒分散焼結鋼の製造方法であって、 実質的に吸湿性がない溶媒を用いて湿式混合を行うこと
を特徴とする硬質粒分散焼結鋼の製造方法。
1. A method for producing a hard grain dispersion sintered steel, comprising wet mixing raw material powder comprising Fe or Fe alloy powder and carbide powder, press-molding and sintering in vacuum. A method for producing hard-grain-dispersed sintered steel, comprising performing wet mixing using a solvent having no reactivity.
【請求項2】 実質的に吸湿性がない溶媒として、ヘキ
サンまたはキシレンを用いる請求項1に記載の製造方
法。
2. The method according to claim 1, wherein hexane or xylene is used as the solvent having substantially no hygroscopicity.
【請求項3】 前記FeまたはFe合金粉末として平均
粒径15μm以下の粉末を用い、炭化物粉末としては平
均粒径5μm以下の粉末を用いる請求項1または2に記
載の製造方法。
3. The method according to claim 1, wherein a powder having an average particle size of 15 μm or less is used as the Fe or Fe alloy powder, and a powder having an average particle size of 5 μm or less is used as the carbide powder.
【請求項4】 原料粉末として、更に平均粒径5μm以
下のTiN粉末を用いる請求項1〜3のいずれかに記載
の製造方法。
4. The production method according to claim 1, wherein a TiN powder having an average particle diameter of 5 μm or less is further used as the raw material powder.
【請求項5】 1300〜1450℃の温度範囲で、1
〜10時間保持することにより焼結を行う請求項1〜4
のいずれかに記載の製造方法。
5. In a temperature range of 1300 to 1450 ° C., 1
The sintering is performed by holding for 10 to 10 hours.
The production method according to any one of the above.
【請求項6】 FeまたはFe合金を主成分とするマト
リックス中にTiCを含む硬質粒が20〜40質量%分
散した焼結鋼であって、 その鋼表面を撮影した400倍の光学顕微鏡写真内にお
いて、長さ20mmの任意の線分上に、必ずTiCを含
む硬質粒が存在することを特徴とする硬質粒分散焼結
鋼。
6. A sintered steel in which hard particles containing TiC are dispersed in a matrix containing Fe or an Fe alloy as a main component in an amount of 20 to 40% by mass. The hard grain dispersion sintered steel according to claim 1, wherein hard grains containing TiC always exist on an arbitrary line segment having a length of 20 mm.
【請求項7】 前記マトリックスが、 Ni:3〜20%(質量%の意味、以下同じ)、 Co:2〜40%、 Mo:2〜15%、 Al:0.2〜2.0%、 Ti:0.2〜3.0%、 Cu:0.2〜5.0%を含む請求項6に記載の焼結
鋼。
7. The matrix comprises: Ni: 3 to 20% (meaning by mass%, the same applies hereinafter), Co: 2 to 40%, Mo: 2 to 15%, Al: 0.2 to 2.0%, The sintered steel according to claim 6, comprising 0.2 to 3.0% of Ti and 0.2 to 5.0% of Cu.
【請求項8】 前記マトリックスが、更にCr:3〜2
0%を含む請求項7に記載の焼結網。
8. The method according to claim 1, wherein the matrix further comprises Cr: 3 to 2.
8. The sintered net according to claim 7, comprising 0%.
【請求項9】 前記マトリックスが、更にB:0.01
〜0.10%を含む請求項7または8に記載の焼結鋼。
9. The method according to claim 1, wherein the matrix further comprises B: 0.01.
9. The sintered steel according to claim 7 or 8 containing 0.10%.
【請求項10】 前記TiCを含む硬質粒の50%以上
がTiCであり、残りがV,Cr,Zr,Nb,Mo,
Hf,Ta,Wよりなる群から選択される金属の炭化物
及びTiNの1種以上である請求項6〜9のいずれかに
記載の焼結鋼。
10. The hard grains containing TiC account for at least 50% of TiC, and V, Cr, Zr, Nb, Mo,
The sintered steel according to any one of claims 6 to 9, wherein the sintered steel is one or more of a carbide of a metal selected from the group consisting of Hf, Ta, and W and TiN.
JP08117199A 1999-03-25 1999-03-25 Hard grain dispersed sintered steel and method for producing the same Expired - Lifetime JP4279935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08117199A JP4279935B2 (en) 1999-03-25 1999-03-25 Hard grain dispersed sintered steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08117199A JP4279935B2 (en) 1999-03-25 1999-03-25 Hard grain dispersed sintered steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000273503A true JP2000273503A (en) 2000-10-03
JP4279935B2 JP4279935B2 (en) 2009-06-17

Family

ID=13739023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08117199A Expired - Lifetime JP4279935B2 (en) 1999-03-25 1999-03-25 Hard grain dispersed sintered steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP4279935B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149101A1 (en) * 2010-05-25 2011-12-01 パナソニック電工株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
US8795586B2 (en) 2004-12-21 2014-08-05 Diamet Corporation Method of producing powder sintered product
WO2016030396A1 (en) * 2014-08-28 2016-03-03 Deutsche Edelstahlwerke Gmbh Steel with high wear resistance, hardness and corrosion resistance and low thermal conductivity, and use of such a steel
KR20190008863A (en) 2016-05-19 2019-01-25 가부시끼가이샤 니혼 세이꼬쇼 Iron-based sintered alloy and method for manufacturing the same
JP2020023733A (en) * 2018-08-07 2020-02-13 国立大学法人広島大学 Fe-BASED SINTERED BODY, METHOD FOR PRODUCING Fe-BASED SINTERED BODY, AND HOT PRESS DIE
EP3800276A1 (en) * 2019-10-01 2021-04-07 The Boeing Company Maraging steel alloy and methods of making the same by additive processes

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795586B2 (en) 2004-12-21 2014-08-05 Diamet Corporation Method of producing powder sintered product
WO2011149101A1 (en) * 2010-05-25 2011-12-01 パナソニック電工株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
CN102905821A (en) * 2010-05-25 2013-01-30 松下电器产业株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
JP5579839B2 (en) * 2010-05-25 2014-08-27 パナソニック株式会社 Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
US8828116B2 (en) 2010-05-25 2014-09-09 Panasonic Corporation Metal powder for selective laser sintering, method for manufacturing three-dimensional shaped object by using the same, and three-dimensional shaped object obtained therefrom
CN102905821B (en) * 2010-05-25 2015-06-17 松下电器产业株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
RU2674174C2 (en) * 2014-08-28 2018-12-05 Дойче Эдельштальверке Спешелти Стил Гмбх Унд Ко. Кг Steel with high wear resistance, hardness, corrosion resistance and low heat conductivity and application thereof
JP2017532434A (en) * 2014-08-28 2017-11-02 ドイチェ エデルスタールヴェルケ ゲーエムベーハーDeutsche Edelstahlwerke Gmbh Steel with high wear resistance, high hardness and high corrosion resistance and low thermal conductivity, and use of the steel
US20180119257A1 (en) * 2014-08-28 2018-05-03 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Steel with High Wear Resistance, Hardness and Corrosion Resistance as well as Low Thermal Conductivity
WO2016030396A1 (en) * 2014-08-28 2016-03-03 Deutsche Edelstahlwerke Gmbh Steel with high wear resistance, hardness and corrosion resistance and low thermal conductivity, and use of such a steel
CN107075624A (en) * 2014-08-28 2017-08-18 德国不锈钢特钢有限及两合公司 The application of steel and this kind of steel with high wearability, hardness, corrosion resistance and low heat conductivity
US10907240B2 (en) 2016-05-19 2021-02-02 The Japan Steel Works, Ltd. Iron-based sintered alloy and method for producing same
KR20190008863A (en) 2016-05-19 2019-01-25 가부시끼가이샤 니혼 세이꼬쇼 Iron-based sintered alloy and method for manufacturing the same
KR102313707B1 (en) 2016-05-19 2021-10-18 가부시끼가이샤 니혼 세이꼬쇼 Iron-based sintered alloy and method for manufacturing the same
WO2020031702A1 (en) * 2018-08-07 2020-02-13 国立大学法人広島大学 Fe-based sintered body, fe-based sintered body production method, and hot-pressing die
CN112567060A (en) * 2018-08-07 2021-03-26 国立大学法人广岛大学 Fe-based sintered body, method for producing Fe-based sintered body, and die for hot pressing
JP2020023733A (en) * 2018-08-07 2020-02-13 国立大学法人広島大学 Fe-BASED SINTERED BODY, METHOD FOR PRODUCING Fe-BASED SINTERED BODY, AND HOT PRESS DIE
CN112567060B (en) * 2018-08-07 2022-04-12 国立大学法人广岛大学 Fe-based sintered body, method for producing Fe-based sintered body, and die for hot pressing
JP7100320B2 (en) 2018-08-07 2022-07-13 国立大学法人広島大学 Fe-based sintered body, manufacturing method of Fe-based sintered body, and hot pressing die
US11858045B2 (en) 2018-08-07 2024-01-02 Hiroshima University Fe-based sintered body, Fe-based sintered body production method, and hot-pressing die
EP3800276A1 (en) * 2019-10-01 2021-04-07 The Boeing Company Maraging steel alloy and methods of making the same by additive processes
US11608548B2 (en) 2019-10-01 2023-03-21 The Boeing Company Maraging steel alloy and methods of making the same

Also Published As

Publication number Publication date
JP4279935B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
US4029000A (en) Injection pump for injecting molten metal
JP2001514326A (en) Cermet with binder having improved plasticity, method of manufacture and use thereof
JP2005526178A (en) Method for producing a sintered part from a sinterable material
JP2004076049A (en) Hard metal of ultra-fine particles
JP2000273503A (en) Hard particle-dispersed sintered steel and its production
JP4713119B2 (en) Cutting tool insert and manufacturing method thereof
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JP5153624B2 (en) COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD, COMPOSITION USED FOR THE SAME, AND CUTTER USING SAME
JP3419582B2 (en) Method for producing high-strength aluminum-based composite material
JP4282298B2 (en) Super fine cemented carbide
Zhu et al. Effects of Al2O3@ Ni core-shell powders on the microstructure and mechanical properties of Ti (C, N) cermets via spark plasma sintering
Mahesh et al. Development and characterization of titanium nitride reinforced aluminium MMC’s through powder metallurgy technique
JP6378717B2 (en) Iron-based sintered alloy and method for producing the same
JP4140928B2 (en) Wear resistant hard sintered alloy
JPWO2008123258A1 (en) Binary aluminum alloy powder sintered material and method for producing the same
JP2001181776A (en) Cemented carbide sintered alloy and producing method therefor
JP7205257B2 (en) Mold for plastic working made of cemented carbide and its manufacturing method
JP2004263251A (en) Group 7a element-containing cemented carbide
JP6743663B2 (en) Cemented Carbide and Cemented Carbide
JP2002501983A (en) Iron aluminide composite and method for producing the same
JP2019123903A (en) Heat-resistant WC-based composite material having high thermal conductivity and method for producing the same
JP6900099B1 (en) Cemented carbide and mold
JP2000129389A (en) Molybdenum sintered compact and its manufacture
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

EXPY Cancellation because of completion of term