JP2000272927A - Tempered glass products and their production - Google Patents

Tempered glass products and their production

Info

Publication number
JP2000272927A
JP2000272927A JP11082992A JP8299299A JP2000272927A JP 2000272927 A JP2000272927 A JP 2000272927A JP 11082992 A JP11082992 A JP 11082992A JP 8299299 A JP8299299 A JP 8299299A JP 2000272927 A JP2000272927 A JP 2000272927A
Authority
JP
Japan
Prior art keywords
tempered glass
glass
air
foreign matter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11082992A
Other languages
Japanese (ja)
Inventor
Chihiro Sakai
千尋 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11082992A priority Critical patent/JP2000272927A/en
Priority to CNB998010790A priority patent/CN1159240C/en
Priority to EP20030027756 priority patent/EP1413557A1/en
Priority to KR1020007002288A priority patent/KR100661762B1/en
Priority to EP99926943A priority patent/EP1018490A4/en
Priority to CA002302544A priority patent/CA2302544A1/en
Priority to PCT/JP1999/003631 priority patent/WO2000001627A1/en
Publication of JP2000272927A publication Critical patent/JP2000272927A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To provide a production process for thermally tempered glass products that can completely avoid the natural damage to thermally tempered glass caused by foreign substances including nickel sulfide. SOLUTION: In the annealing step continuously following the glass-enhancing step where the glass is heated and then cooled down by wind, the thermally tempered and nickel sulfide-containing glass that has thermally residual stress and extends the cracks caused by the stress is continuously and gradually cooled from about 300 deg.C down to 150-200 deg.C at a rate of <=12 deg.C/min. whereby the foreign substance-containing tempered glass is broken by the volume expansion of the foreign substance and removed therefrom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、風冷強化を行うこ
とのできる全てのガラス組成に対して、強化ガラスの自
然破損を起こす原因の1つとなる異物を全く含まない、
高品質の風冷強化ガラス製品とその製造方法に関する。
The present invention relates to all glass compositions that can be tempered by air-cooling without any foreign matter which is one of the causes of spontaneous breakage of tempered glass.
The present invention relates to a high-quality tempered glass product and a method for producing the same.

【0002】本発明が対象とする風冷強化ガラス製品
は、板ガラスのような板状のものから、複雑な形状のも
のまでの全てのものを含んでいる。
[0002] The air-cooled tempered glass products to which the present invention is applied include everything from plate-like ones such as sheet glass to those having complicated shapes.

【0003】[0003]

【従来の技術】風冷強化ガラスは、通常の製造工程で行
われているように、600℃以上でガラスを加熱した後
に、ガラス表面にエアーを急激に吹き付けることによっ
て(一般には、この工程をクエンチという)、ガラス表
面に強い圧縮応力を生じさせ、さらに冷却することによ
って製造される。
2. Description of the Related Art As in the usual manufacturing process, wind-cooled tempered glass is heated by heating the glass at a temperature of 600 ° C. or higher, and then rapidly blowing air onto the glass surface (generally, this process is performed in this process). It is manufactured by generating a strong compressive stress on the glass surface and further cooling.

【0004】ガラス原料の溶解によって製造されたガラ
スは、溶解時に混入したニッケル(Ni)系金属(例え
ばステンレス破片や溶接の火花など)などが溶解の過程
におけるイオウ成分(ガラス中の溶解成分や炉内雰囲気
中のガス成分)との反応で形成された硫化ニッケル(N
iS)をしばしば含む。また、耐火煉瓦との反応で形成
されたガラス質の侵食相や溶解窯の構成相、あるいは未
溶解の原料粒子そのものなどの未溶解異物も含む場合が
ある。
[0004] In glass produced by melting glass raw materials, nickel (Ni) -based metal (for example, stainless shards or sparks of welding) mixed during melting is dissolved in sulfur components (melting components in glass or furnace). Nickel sulfide (N) formed by reaction with gas components in the internal atmosphere
iS). Further, there may be cases in which unmelted foreign substances such as a vitreous erosion phase or a constituent phase of a melting furnace formed by a reaction with a refractory brick or unmelted raw material particles themselves are included.

【0005】これらの異物は、母材のガラスに対して熱
膨張係数が異なったり、またそれ自身が温度の関数とし
て相転移を起こす場合がある。例えば硫化ニッケルの場
合では、350℃付近に高温で安定なα相と低温で安定
なβ相の相転移の境界があり、風冷強化ガラスが急冷さ
れて短時間でこの温度以下に至る場合には、α相が不安
定な状態でガラス製品中に残存していることになる(い
わゆるガラスが過冷却になっている状態)。このα相が
室温で長時間の放置によって次第に安定なβ相に相転移
していき、同時に4%以上の体積膨張を伴ってβ相に相
転移が完了する。
[0005] These contaminants may have different coefficients of thermal expansion relative to the base glass, or may themselves undergo a phase transition as a function of temperature. For example, in the case of nickel sulfide, there is a boundary of a phase transition between a stable α phase at a high temperature and a stable β phase at a low temperature around 350 ° C., and when the tempered glass is rapidly cooled to reach this temperature or less in a short time. Means that the α phase remains in the glass product in an unstable state (a state in which the glass is supercooled). The α phase gradually changes into a stable β phase when left at room temperature for a long time, and at the same time, the phase transition to the β phase is completed with a volume expansion of 4% or more.

【0006】風冷強化ガラスは、その性質からガラス表
面では強い圧縮応力が働き、また内部では引張り応力が
働くため、硫化ニッケル異物の周囲でガラス母材に対し
て強い圧縮応力が働いた結果としてクラックが形成さ
れ、さらに成長して最終的にはガラス自身の破損に至
る。
Due to the nature of the air-cooled tempered glass, a strong compressive stress acts on the glass surface and a tensile stress acts on the inside, and as a result, a strong compressive stress acts on the glass base material around the nickel sulfide foreign matter. Cracks form and grow further, eventually leading to breakage of the glass itself.

【0007】風冷強化ガラス製品に含まれる硫化ニッケ
ルの異物をはじめとするガラス欠点による強化ガラスの
自然破損を防止するためには、強化工程で製造され常温
に戻されたガラス製品を再び焼成炉(一般的には熱ソー
ク炉と呼ばれている)の中に挿入して、最高温度で30
0℃までの任意の温度条件で一定時間保持することによ
って、主として硫化ニッケルを室温で不安定なα相から
安定なβ相に相転移させることによって、約4%の体積
膨張を生じさせ、製造した強化ガラス製品を急激なクラ
ックの伸展によって、自ら破損することによって不良品
を除去している。
In order to prevent spontaneous breakage of tempered glass due to glass defects such as nickel sulfide foreign matter contained in the tempered glass product, the glass product produced in the tempering process and returned to room temperature is again fired in a firing furnace. (Generally called a heat soak oven) at a maximum temperature of 30
Maintaining nickel sulfide at a given temperature condition up to 0 ° C. for a certain period of time mainly causes a phase transition from an unstable α-phase to a stable β-phase at room temperature, thereby causing a volume expansion of about 4%. Defective products are removed by breaking the tempered glass products themselves by rapid crack extension.

【0008】この従来の室温から昇温するタイプの熱的
なソーク処理法は、風冷強化ガラス・ソーク処理の従来
の工程を示す図1に示されるように一度室温まで冷えた
強化ガラスを再度昇温によって所定の温度に保持するた
め、保持すべき温度域までの昇温に多くの時間とコスト
を費やし、またガラスが板状の場合には、板厚の変化に
対して、昇温速度や一定温度域での保持時間も異なり、
生産性の低下や歩留まりの低下、あるいは生産コストの
アップにもつながっていた。
[0008] This conventional thermal soaking treatment of the type in which the temperature is raised from room temperature is performed, as shown in FIG. 1 showing a conventional process of air-cooled tempered glass soaking treatment. In order to maintain the specified temperature by raising the temperature, much time and cost are required to raise the temperature to the temperature range to be maintained. And the holding time in a certain temperature range is also different,
This has led to lower productivity, lower yield, and higher production costs.

【0009】[0009]

【発明が解決しようとする課題】強化ガラスは、特に板
ガラス製品に関しては、自動車や鉄道を中心とした輸送
用車両用や住宅や非住宅などの建材用に広く使われてい
る。近年、建材用の風冷強化板ガラスは、人の多く出入
りする開口部にも広い面積で使用され、その安全上の品
質の向上も要求されている。また、ガラスの形状の変化
によっては、板ガラス以外にも多方面の用途に使用され
ている。
[0005] Tempered glass is widely used, especially for sheet glass products, for transportation vehicles, mainly automobiles and railways, and for building materials such as houses and non-houses. In recent years, wind-cooled tempered glazing for building materials has been used in a wide area for openings where many people come in and out, and there is a demand for improved safety quality. Further, depending on the change in the shape of the glass, it is used for various purposes other than the sheet glass.

【0010】しかしながら、従来ではガラス原料の溶融
時にガラス素板に含まれる異物やガラス表面の傷などの
影響によって、強化ガラスは製造時あるいは強化ガラス
が製造された後に自然破損する場合があった。
However, conventionally, the tempered glass sometimes spontaneously breaks at the time of manufacturing or after the tempered glass is manufactured due to the influence of foreign substances contained in the glass base plate and scratches on the glass surface when the glass raw material is melted.

【0011】このような問題を無くすために、前述した
ように、現在ではガラス製造の段階で強化ガラスの製造
後に再び再加熱(アニール)を行って、異物周囲に応力
歪みを発生させ、含まれる異物や傷を始発点としたクラ
ックを急速に伸展させ、このような欠点を持つ強化ガラ
スの不良品を除く方法が広く採用されている。このよう
な自然破損のない品質の高い風冷強化ガラスを製造する
工程を、ソーク処理工程(いわゆるバッチ式ソーク処
理)と呼んでいる。この従来のソーク処理の工程では、
以下のことが問題となっている。
In order to eliminate such a problem, as described above, reheating (annealing) is performed again after the tempered glass is manufactured at the glass manufacturing stage, so that stress distortion is generated around the foreign matter. A method of rapidly expanding a crack starting from a foreign matter or a scratch and removing a defective tempered glass having such a defect is widely used. The process of producing high-quality tempered glass without such natural damage is called a soak process (so-called batch soak process). In this conventional soak process,
The following are problems:

【0012】1)加熱と風冷(クエンチ)後に、一度常
温に降下させた風冷強化ガラスを再び焼成炉内で加熱す
るため、所定の温度(通常は300℃以下)までの昇温
や最高温度域での保持に時間がかかり、製造に占めるコ
ストのアップにつながっている。
1) After heating and air-cooling (quenching), the air-cooled tempered glass once lowered to room temperature is heated again in the firing furnace, so that the temperature is raised to a predetermined temperature (usually 300 ° C. or lower) or the maximum. It takes a long time to keep in the temperature range, which leads to an increase in the cost of manufacturing.

【0013】2)強化ガラスの製造工程と異物を除去す
るためのソーク処理の工程とが、分かれているために、
強化後の製品を再度運搬し直すなど、製造上の効率化の
低下や、生産性の向上ができない。
2) Since the manufacturing process of tempered glass and the process of soaking treatment for removing foreign matter are separated,
It is not possible to reduce the efficiency of production and to improve the productivity by transporting the reinforced product again.

【0014】3)従来のソーク処理では、室温に放置し
た製品を再度加熱するため、昇温時にガラスの形状や品
種、あるいは板厚が異なるために、硫化ニッケルの相転
移を起こす条件が異なり、これらの異物を含む強化ガラ
ス製品を除くことは困難であった。
3) In the conventional soak treatment, since the product left at room temperature is heated again, the conditions under which the phase transition of nickel sulfide changes due to the difference in the shape, type, or plate thickness of the glass when the temperature is increased. It was difficult to remove tempered glass products containing these foreign substances.

【0015】本発明の目的は、これらの問題を解決した
風冷強化ガラス製品およびその製造方法を提供すること
にある。
An object of the present invention is to provide an air-cooled tempered glass product which solves these problems and a method for producing the same.

【0016】[0016]

【課題を解決するための手段】本発明の風冷強化ガラス
は、硫化ニッケルをはじめとしたガラスの溶融時あるい
は製造時の未溶解異物や混入異物が除かれたものであ
る。このような風冷強化ガラス製品は、以下のような熱
的な処理を行って製造される。
SUMMARY OF THE INVENTION The air-cooled tempered glass of the present invention is one in which undissolved foreign matter and contaminant foreign matter during melting or production of glass such as nickel sulfide are removed. Such an air-cooled tempered glass product is manufactured by performing the following thermal treatment.

【0017】すなわち、600℃以上での加熱とその後
に行われる風冷強化(クエンチ)の処理後に、一定の温
度と時間の条件で、風冷強化後のガラスを連続的に徐冷
することによって、ガラスの内部に硫化ニッケルの異物
が含まれる場合には、すでに述べたような高温で安定な
α相から室温で安定なβ相に相転移させることによっ
て、約4%の体積膨張を生じさせることにより、同時に
異物の周囲のガラス相にクラックを伸展させガラスを破
損させてこれらの異物を含まない強化ガラスを得る。
That is, after the heat treatment at a temperature of 600 ° C. or more and the subsequent heat treatment (quenching), the glass after the heat treatment is continuously gradually cooled at a constant temperature and time. When nickel sulfide foreign matter is contained in the glass, about 4% volume expansion is caused by a phase transition from the above-mentioned α phase which is stable at high temperature to the β phase which is stable at room temperature. As a result, cracks are simultaneously extended in the glass phase around the foreign matter to break the glass, and a tempered glass containing no such foreign matter is obtained.

【0018】本発明によれば、約300℃の温度域から
の連続的な徐冷条件は以下の通りである。
According to the present invention, the continuous slow cooling conditions from a temperature range of about 300 ° C. are as follows.

【0019】すなわち、風冷(クエンチ)後に約300
℃の温度域から、12℃/分未満の冷却速度で150〜
200℃まで徐冷する。その後は、ガラスが熱割れしな
い程度に冷却して取り出す。
That is, about 300 after air cooling (quenching).
From a temperature range of 150 ° C. at a cooling rate of less than 12 ° C./min.
Slowly cool to 200 ° C. Thereafter, the glass is cooled and taken out to such an extent that the glass does not crack.

【0020】このような徐冷条件は、硫化ニッケルを含
むガラスサンプルを用意し、熱処理実験を行うことによ
り求められる。
Such slow cooling conditions can be determined by preparing a glass sample containing nickel sulfide and conducting a heat treatment experiment.

【0021】徐冷条件が求められると、具体的には、次
に述べる(1)から(4)のプロセスを順次行って、強
化ガラス製品を製造する。
When the slow cooling condition is required, specifically, the following processes (1) to (4) are sequentially performed to produce a tempered glass product.

【0022】(1)風冷強化ガラスは、通常の製造工程
で行われているように、600℃以上でガラスを加熱し
た後に、ガラス表面にエアーを急激に吹き付けることに
よって、ガラス表面に強い圧縮応力を生じさせ、さらに
冷却することによって製造する。
(1) As in the normal manufacturing process, the air-cooled tempered glass is heated at a temperature of 600 ° C. or higher, and then the air is rapidly blown onto the glass surface so that the glass surface is strongly compressed. Manufactured by generating stress and further cooling.

【0023】(2)通常の工程ではこれ以後の作業で室
温近くまでガラスを冷却するが、本発明では、最適な温
度と時間の条件の中で、強化後のガラスを徐冷する。処
理時間を考慮すると、連続徐冷の場合には、12℃/分
未満の熱履歴で処理することが望ましい。
(2) In a normal process, the glass is cooled to near room temperature in a subsequent operation. In the present invention, the tempered glass is gradually cooled under the optimal temperature and time conditions. Considering the processing time, in the case of continuous slow cooling, it is desirable to perform the processing with a heat history of less than 12 ° C./min.

【0024】(3)上記の適正な温度と時間の条件で
は、ガラス中に含まれる硫化ニッケルは、高温で安定な
α相から低温で安定なβ相に完全な相転移を起こし、同
時に4%程度の体積膨張を生じて粒子周囲のガラスに圧
縮応力を発生することによって、クラックが急激に進展
され、ガラスは内部の引張応力の部分で破壊が生じて破
損を起こす。
(3) Under the above-mentioned appropriate temperature and time conditions, nickel sulfide contained in the glass undergoes a complete phase transition from a high-temperature stable α phase to a low-temperature stable β phase, and at the same time, 4% By generating a compressive stress in the glass around the particles by causing a certain degree of volume expansion, cracks are rapidly developed, and the glass breaks at the internal tensile stress portion, causing breakage.

【0025】(4)上記の(2)および(3)の処理の
過程で、徐冷炉あるいは温度調整炉の内部で、硫化ニッ
ケル異物を含むガラスは急激な破損を起こし、さらに強
化が入っているために細かく粉砕されて不良品は除かれ
製品として出荷されることがなくなり、自然破損のない
高品質の強化ガラスを実現することができる。
(4) In the process of the above (2) and (3), the glass containing the nickel sulfide foreign matter rapidly breaks in the annealing furnace or the temperature control furnace, and is further strengthened. It is possible to realize a high-quality tempered glass free from spontaneous breakage by crushing finely and removing defective products and not being shipped as a product.

【0026】[0026]

【発明の実施の形態】クエンチの工程における徐冷にお
ける温度および時間を設定するために、以下のプロセス
を順次行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to set the temperature and time for slow cooling in the quench step, the following processes are sequentially performed.

【0027】試料の作成および熱処理実験 この熱処理実験に用いた硫化ニッケルの異物は、通常の
板ガラスの製造で得られたガラス板中に流出したもので
ある。これらの硫化ニッケルの異物は、電子線マイクロ
アナライザー(EPMA)を用いて組成的にNiS(あ
るいはそれに近いもの)であることが確認されたもので
ある。
Preparation of Sample and Heat Treatment Experiment The foreign substances of nickel sulfide used in this heat treatment experiment flowed out into the glass plate obtained in the production of ordinary sheet glass. These nickel sulfide contaminants were confirmed to be NiS (or similar) in composition using an electron beam microanalyzer (EPMA).

【0028】硫化ニッケルの相転移の調査は、それらの
粒子を含むガラス板(約10mmの厚み)を約3mmの
厚みに研磨して、そのサンプルA〜Hを500℃まで昇
温可能な顕微鏡(以下に高温顕微鏡とする)に装着した
ものを用いた。
To investigate the phase transition of nickel sulfide, a glass plate (about 10 mm thick) containing these particles was polished to a thickness of about 3 mm, and samples A to H were heated to 500 ° C. using a microscope ( A high-temperature microscope was used.

【0029】なお、サンプルの組成(重量%)は、次の
とおりである。
The composition (% by weight) of the sample is as follows.

【0030】SiO2 71〜73 Al2 3 1.5〜1.8 MgO 4.0〜4.5 CaO 8〜10 Na2 O 13〜14 K2 O 0.5〜1.5 Fe2 3 0.02〜0.05 SO3 0.1〜0.5 相転移の測定 上記のNiSを含むガラス板サンプルを室温から350
℃に70℃/分以上の昇温速度で昇温して、10分以上
350℃で保持して、完全に安定なα相をガラス中で形
成させた。その後、約50℃/分の速度で冷却を行い
(クエンチの過程を再現)、さらに300℃付近から徐
冷することよって、β相への転移の状況を高温顕微鏡下
のその場観察によって調査した。
SiO 2 71-73 Al 2 O 3 1.5-1.8 MgO 4.0-4.5 CaO 8-10 Na 2 O 13-14 K 2 O 0.5-1.5 Fe 2 O 3 0.02 to 0.05 SO 3 0.1 to 0.5 Measurement of phase transition
The temperature was raised to 70 ° C. at a rate of 70 ° C./min or more, and maintained at 350 ° C. for 10 minutes or more to form a completely stable α phase in the glass. Thereafter, cooling was performed at a rate of about 50 ° C./min (reproducing the quenching process), and the state of the transition to the β phase was investigated by in-situ observation under a high-temperature microscope by gradually cooling from about 300 ° C. .

【0031】徐冷速度は、サンプルAについては6℃/
分、サンプルBについては8℃/分、サンプルCについ
ては8.5℃/分、サンプルDについては 9.0℃/
分、サンプルE,Fについては10.0℃/分、サンプ
ルGについては12.0℃/分、サンプルHについては
15.0℃/分とした。
The slow cooling rate was 6 ° C. /
Min, 8 ° C / min for sample B, 8.5 ° C / min for sample C, and 9.0 ° C / min for sample D.
Min, samples E and F were 10.0 ° C./min, sample G was 12.0 ° C./min, and sample H was 15.0 ° C./min.

【0032】α相からβ相への相転移は、偏光顕微鏡下
で偏光板をクロスニコルの状態にして、さらに530μ
m鋭敏色検板を用いて、4%の体積増加に伴う異物周囲
のガラスへの圧縮による残留応力の発生状況と強さをレ
ターデーションの発生と変化を連続的に観察することで
行った。
The phase transition from the α-phase to the β-phase is carried out by setting the polarizing plate in a crossed Nicols state under a polarizing microscope and further 530 μm.
Using a m-sensitive color test plate, the generation state and strength of residual stress due to compression of the glass around the foreign matter with a volume increase of 4% were determined by continuously observing the generation and change of retardation.

【0033】β相への完全転移の状態は、この圧縮応力
の状態が最大になる時点(顕微鏡下ではレターデーショ
ンが最も強くなる時点)で判断した。硫化ニッケル欠点
サンプルA〜Hに対して、α相からβ相への相転移温度
と時間の結果を表1に示す。○印は硫化ニッケルがα相
の状態にあり、●印はβ相の状態にあることを示してい
る。これら印の側に記載されている数字は温度(℃)を
示す。
The state of the complete transition to the β phase was judged at the time when the state of the compressive stress was maximized (when the retardation was the strongest under a microscope). Table 1 shows the results of the phase transition temperature from α phase to β phase and the time for nickel sulfide defect samples A to H. Open circles indicate that nickel sulfide is in the α-phase state, and open circles indicate that the nickel sulfide is in the β-phase state. The numbers described beside these marks indicate the temperature (° C.).

【0034】[0034]

【表1】 [Table 1]

【0035】表1の結果を、グラフ化したものが図2で
ある。図2において、横軸は時間(分)を、縦軸は温度
(℃)を示す。図中、白抜きのマークは硫化ニッケルが
α相の状態にあり、黒く塗りつぶされたマークはβ相の
状態にあることを示している。
FIG. 2 is a graph of the results of Table 1. In FIG. 2, the horizontal axis represents time (minutes) and the vertical axis represents temperature (° C.). In the figure, a white mark indicates that nickel sulfide is in the α-phase state, and a black solid mark indicates that the nickel sulfide is in the β-phase state.

【0036】図2の座標系によれば、温度12℃/分未
満の速度で150℃まで徐冷すれば、完全β相に転移す
ることがわかる。
According to the coordinate system shown in FIG. 2, when the temperature is gradually cooled to 150 ° C. at a rate of less than 12 ° C./min, the phase is completely transformed into β phase.

【0037】以上により、クエンチ工程の徐冷におい
て、硫化ニッケルをα相からβ相に相転移させる徐冷速
度および温度の条件が定まった。
As described above, in the slow cooling in the quenching step, the conditions of the slow cooling rate and the temperature at which the nickel sulfide undergoes a phase transition from the α phase to the β phase were determined.

【0038】本発明によってNiSをはじめとした溶解
異物による破損のない風冷強化ガラスを製造するために
は、図3に示す工程の流れにしたがって行うのが好適で
ある。
In order to produce a tempered glass having no breakage due to dissolved foreign matter such as NiS according to the present invention, it is preferable to carry out the process according to the process flow shown in FIG.

【0039】600℃以上にガラスを加熱する。Heat the glass above 600 ° C.

【0040】風冷(クエンチ)により表面部分に強化
層を作る。
A reinforcing layer is formed on the surface by air cooling (quenching).

【0041】急冷して強化の残留歪みを保持する。こ
のとき、硫化ニッケルは安定α相の状態にある。
Rapid cooling keeps the residual strain of the reinforcement. At this time, the nickel sulfide is in a stable α-phase state.

【0042】徐冷炉で300℃付近から連続徐冷を行
う。このとき、12℃/分未満の冷却速度で150℃ま
で徐冷する。硫化ニッケルを含む場合には、この時点で
β相に転移して体積膨張によりガラスが破損する。
The continuous slow cooling is performed from about 300 ° C. in a slow cooling furnace. At this time, it is gradually cooled to 150 ° C. at a cooling rate of less than 12 ° C./min. When nickel sulfide is contained, the glass transitions to the β phase at this point and the glass is broken by volume expansion.

【0043】冷却 ユーザサイドで破損のない風冷強化ガラスを出荷 これらの工程に対する実際の温度調整炉または徐冷炉に
関しては、強化炉とクエンチ設備の下流側に連続的に設
置して、連続的に熱的ソーク処理を可能とした処理炉の
システムを作ることができる。すなわち、風冷後の徐冷
工程において、300℃付近から連続的な徐冷できる炉
が設置できれば本発明での効果が得られる。
Cooling Ships air-cooled tempered glass without breakage on the user side Regarding the actual temperature control furnace or annealing furnace for these processes, it is installed continuously downstream of the tempering furnace and the quench equipment, and is continuously heated. It is possible to create a processing furnace system that enables a specific soak process. That is, in the slow cooling step after the air cooling, the effect of the present invention can be obtained if a furnace capable of continuous slow cooling from around 300 ° C. can be installed.

【0044】また、本発明の温度と処理時間の範囲で熱
処理を行う場合には、風冷強化によるガラス表面部分の
残留応力の分布は緩和されないので、強化の程度もほと
んど変化しない。すなわち強化ガラスとしての品質は損
なわれない。
When the heat treatment is performed within the range of the temperature and the treatment time according to the present invention, the distribution of the residual stress on the glass surface portion due to the air-cooling is not relaxed, and the degree of the hardening hardly changes. That is, the quality as tempered glass is not impaired.

【0045】[0045]

【発明の効果】本発明によれば、硫化ニッケルをはじめ
とした異物による風冷強化ガラスの自然破損を無くすこ
とが可能である。さらに、生産性を下げることなく、低
コストで処理することができるので、実用的には大きな
効果が得られる。
According to the present invention, it is possible to eliminate spontaneous damage of the air-cooled tempered glass due to foreign substances such as nickel sulfide. Furthermore, since the processing can be performed at low cost without lowering the productivity, a great effect can be obtained practically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のソーク工程を示す図である。FIG. 1 is a view showing a conventional soak process.

【図2】冷却時の連続的な徐冷によってα相からβ相へ
の相転移を起こす温度−時間条件を示す図である。
FIG. 2 is a diagram showing a temperature-time condition in which a phase transition from an α phase to a β phase is caused by continuous slow cooling during cooling.

【図3】本発明によるソーク工程を示す図である。FIG. 3 is a diagram showing a soak process according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガラスを加熱しおよび風冷により強化した
後の連続した徐冷工程において、熱的な残留応力とそれ
に伴って発生するクラックを伸展させる異物を含む風冷
強化ガラスを、300℃付近から連続的に徐冷すること
により、前記異物を含む風冷強化ガラスを前記異物の体
積膨張により破損させて除去することを特徴とする風冷
強化ガラス製品の製造方法。
(1) In a continuous slow cooling step after heating and strengthening the glass by air cooling, the air-cooled tempered glass containing a foreign substance that extends the thermal residual stress and the cracks generated thereby is heated to 300 ° C. A method for producing a tempered glass product, wherein the tempered glass containing the foreign matter is broken and removed by volume cooling of the foreign matter by continuously slow cooling from the vicinity.
【請求項2】前記異物が硫化ニッケルを含む場合には、
前記徐冷は、12℃/分未満の速度で、150〜200
℃まで冷却し、前記硫化ニッケルを、高温で安定なα相
から低温で安定なβ相に連続的に相転移させて、同時に
体積膨張を起こさせ、クラックを急激に伸展させること
によってガラスを破損させることを特徴とする請求項1
記載の強化ガラス製品の製造方法。
2. When the foreign matter contains nickel sulfide,
The slow cooling is performed at a rate of less than 12 ° C./min.
C., and the nickel sulfide undergoes a continuous phase transition from a high-temperature stable α-phase to a low-temperature stable β-phase, and at the same time, causes volume expansion and breaks the glass by rapidly expanding cracks. 2. The method according to claim 1, wherein
A method for producing the tempered glass product according to the above.
【請求項3】請求項1または2のいずれかに記載の方法
により製造され、熱的な残留応力とそれに伴って発生す
るクラックを伸展させる異物を含まないことを特徴とす
る強化ガラス製品。
3. A tempered glass product produced by the method according to claim 1, wherein the tempered glass product is free of foreign matter that extends thermal residual stress and cracks generated thereby.
【請求項4】風冷強化ガラス製品を製造するための強化
炉とクエンチ設備の下流側に連続して設置された温度調
整炉もしくは徐冷炉を備え、前記温度調整炉もしくは徐
冷炉において、熱的な残留応力とそれに伴って発生する
クラックを伸展させる異物を含む風冷強化ガラスを、徐
冷することにより、前記異物を含む風冷強化ガラスを破
損させて除去することを特徴とする風冷強化ガラス製品
の製造装置。
4. A tempering furnace for producing an air-cooled tempered glass product, and a temperature control furnace or an annealing furnace continuously installed downstream of the quench equipment, wherein the temperature adjustment furnace or the annealing furnace has a thermal residual furnace. The air-cooled tempered glass product, characterized in that the air-cooled tempered glass containing the foreign matter that expands the stress and the cracks generated by the stress is gradually cooled to break and remove the air-cooled tempered glass containing the foreign matter. Manufacturing equipment.
JP11082992A 1998-07-07 1999-03-26 Tempered glass products and their production Pending JP2000272927A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11082992A JP2000272927A (en) 1999-03-26 1999-03-26 Tempered glass products and their production
CNB998010790A CN1159240C (en) 1998-07-07 1999-07-06 Method for producing air-quench toughened glass plate
EP20030027756 EP1413557A1 (en) 1998-07-07 1999-07-06 Method for producing air-quench-touchende glass plate
KR1020007002288A KR100661762B1 (en) 1998-07-07 1999-07-06 Method for producing air-quench toughened glass plate
EP99926943A EP1018490A4 (en) 1998-07-07 1999-07-06 Method for producing air-quench toughened glass plate
CA002302544A CA2302544A1 (en) 1998-07-07 1999-07-06 Method for producing air-quench toughened glass plate
PCT/JP1999/003631 WO2000001627A1 (en) 1998-07-07 1999-07-06 Method for producing air-quench toughened glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11082992A JP2000272927A (en) 1999-03-26 1999-03-26 Tempered glass products and their production

Publications (1)

Publication Number Publication Date
JP2000272927A true JP2000272927A (en) 2000-10-03

Family

ID=13789729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11082992A Pending JP2000272927A (en) 1998-07-07 1999-03-26 Tempered glass products and their production

Country Status (1)

Country Link
JP (1) JP2000272927A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500355A (en) * 1994-07-08 1997-01-14 フェトロテッヒ・アクチェンゲゼルシャフト Method for making flat or curved glass plates
JPH09169537A (en) * 1995-10-19 1997-06-30 Nippon Sheet Glass Co Ltd Production of soda lime glass
GB2324525A (en) * 1997-04-21 1998-10-28 Tamglass Ltd Oy Process for the heat-soak treatment of tempered glass panels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500355A (en) * 1994-07-08 1997-01-14 フェトロテッヒ・アクチェンゲゼルシャフト Method for making flat or curved glass plates
JPH09169537A (en) * 1995-10-19 1997-06-30 Nippon Sheet Glass Co Ltd Production of soda lime glass
GB2324525A (en) * 1997-04-21 1998-10-28 Tamglass Ltd Oy Process for the heat-soak treatment of tempered glass panels

Similar Documents

Publication Publication Date Title
US3833388A (en) Method of manufacturing sheet and float glass at high production rates
CN102557417B (en) Method for strengthening the ceramic of float glass process crystallizable glass
US7129192B2 (en) Molten and cast refractory product with high zirconia content
JP6020455B2 (en) Tempered glass plate
JP5954316B2 (en) Tempered glass plate
CN102753496A (en) Composition used to produce igneous rock crystal glass material, igneous rock crystal glass material and production method thereof
JP4630190B2 (en) High zirconia refractories
JP2010503601A (en) Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them
CN111074131B (en) Thermal mechanical treatment method of eutectic high-entropy alloy
GB2379659A (en) Making a transparent glass-ceramic armour
CN108821570B (en) Formula and method for preparing surface-strengthened transparent plate glass
EP1413557A1 (en) Method for producing air-quench-touchende glass plate
JPH0653592B2 (en) Manufacturing method of tempered glass
JP2000272927A (en) Tempered glass products and their production
JP4166361B2 (en) Manufacturing method of air-cooled tempered glass
JP2006513118A (en) Apparatus and method for producing float glass with reduced defect density
CN108623154B (en) Surface-strengthened transparent glass
US7213415B2 (en) Method for producing air-quench-toughened glass plate
JP2004161538A (en) Apparatus for manufacturing chemically strengthened glass
JP3810217B2 (en) Method for producing tempered glass sheet
JP2004161540A (en) Method and apparatus for manufacturing chemically strengthened glass
JP2000026130A (en) Production of tempered glass plate
JP2000026129A (en) Production of tempered glass plate
Hsich Glass workability study and correlation of melting history, microstructure, apparent liquidus temperature, and mechanical strength
JP4267896B2 (en) Method for producing tempered glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427