JP2000270588A - Dynamic pressure bearing motor controller - Google Patents

Dynamic pressure bearing motor controller

Info

Publication number
JP2000270588A
JP2000270588A JP11072987A JP7298799A JP2000270588A JP 2000270588 A JP2000270588 A JP 2000270588A JP 11072987 A JP11072987 A JP 11072987A JP 7298799 A JP7298799 A JP 7298799A JP 2000270588 A JP2000270588 A JP 2000270588A
Authority
JP
Japan
Prior art keywords
speed
motor
bearing motor
dynamic pressure
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11072987A
Other languages
Japanese (ja)
Inventor
Kotoji Kawashima
琴司 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Kumagaya Seimitsu Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Kumagaya Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Kumagaya Seimitsu Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11072987A priority Critical patent/JP2000270588A/en
Publication of JP2000270588A publication Critical patent/JP2000270588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stopping Of Electric Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce rotation period, while the rotary shaft of a dynamic pressure motor is brought into contact with a bearing and reduce the wear of the shaft and bearing. SOLUTION: A velocity command signal and a velocity detection signal related to a dynamic pressure bearing motor are compared with each other by a comparison unit 1 and a deviation (e) is outputted. A driver unit 3 controls a drive current applied to the dynamic pressure bearing motor M so as to reduce the deviation (e). The revolution detection unit FG detects the number of revolution of the motor M. A 1st velocity detection unit 7 outputs the velocity detection signal corresponding to the revolution in accordance with the detection signal of the revolution detection unit FG to the comparison unit 1. A 2nd velocity detection unit 9 compares its detected velocity with a reference velocity, corresponding to the revolution of 1/2-1/4 of the rated revolution of the motor M, and if the detected velocity is reduced below the reference velocity, outputs a brake signal S to the driver unit 3. The driver unit 3 controls the brake of the dynamic pressure bearing motor M based on with the brake signal S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は動圧軸受モータ制御
装置に係り、特に、動圧浮上軸受を有する動圧軸受モー
タの減速時における制動を制御する制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing motor control device, and more particularly, to a control device for controlling braking during deceleration of a dynamic pressure bearing motor having a dynamic pressure floating bearing.

【0002】[0002]

【従来の技術】従来、動圧軸受モータを制御する制御装
置としては、例えば図3に示すように、外部から指令さ
れた速度指令信号と動圧軸受モータMの速度検出信号と
を比較部1で比較して偏差eを出力し、この偏差eに基
づきドライバ部3では動圧軸受モータMの複数の駆動コ
イルLへドライブ電流を切換え通電して駆動する一方、
動圧軸受モータMに配置した周波数発電部FGでその回
転数に応じた周波数信号を発電出力し、速度検出部5で
はその周波数信号に応じたレベルの電圧信号に変換して
回転数を検出するとともにこれを速度検出信号として上
記比較部1へ出力する構成を有していた。
2. Description of the Related Art Conventionally, as a control device for controlling a hydrodynamic bearing motor, as shown in FIG. 3, for example, a comparing unit 1 compares a speed command signal externally commanded and a speed detection signal of the hydrodynamic bearing motor M. And outputs a deviation e. Based on the deviation e, the driver unit 3 drives the plurality of drive coils L of the dynamic pressure bearing motor M by switching the drive current and energizing the drive coils.
The frequency generator FG disposed in the hydrodynamic bearing motor M generates and outputs a frequency signal corresponding to the number of rotations, and the speed detector 5 detects the number of rotations by converting the frequency signal into a voltage signal having a level corresponding to the frequency signal. At the same time, it has a configuration in which this is output to the comparison unit 1 as a speed detection signal.

【0003】動圧軸受モータMは、詳細な図示はしない
が、レーザープリンタやデジタル複写機等に用いられる
ポリゴンミラーモータとか、VCRやハードディスクド
ライブに用いられるモータであり、回転軸とこれを軸支
する軸受(いずれも図示せず。)との間に空気又は油等
の流体媒体を介在させ、定常の高速回転時に軸受に直接
接触させることなくその回転軸を流体媒体を介在させて
軸支し、安定した高速回転を確保するものである。
Although not shown in detail, the hydrodynamic bearing motor M is a polygon mirror motor used for a laser printer, a digital copying machine, or the like, or a motor used for a VCR or a hard disk drive. A fluid medium such as air or oil is interposed between the bearing and the bearing (neither is shown), and the rotating shaft is supported by the fluid medium without direct contact with the bearing during steady high-speed rotation. To ensure stable high-speed rotation.

【0004】なお、図3では駆動コイルLおよび周波数
発電部FGを動圧軸受モータMから取り出して図示して
いるが、実際には内蔵されている。以下同じ。
Although FIG. 3 shows the drive coil L and the frequency generator FG taken out of the hydrodynamic bearing motor M, they are actually built in. same as below.

【0005】動圧軸受モータMは、図4に示すように、
電源をオン(ON)操作して起動させると、所定の回転
数Dに至るまでは、回転軸と軸受が部分的に接触する接
触回転状態にあり、これを越えて回転数が上昇すると、
回転軸の外周全体にわたって軸受との間に流体媒体が介
在して回転軸が浮上し、高速の定格回転が確保される。
[0005] As shown in FIG.
When the power is turned on (ON) to start up, the rotating shaft and the bearing are in a contact rotating state until the rotating speed reaches a predetermined rotating speed D, and when the rotating speed increases beyond this, the rotating shaft and the bearing increase.
A fluid medium is interposed between the bearing and the bearing over the entire outer periphery of the rotating shaft, whereby the rotating shaft floats, and a high-speed rated rotation is secured.

【0006】もっとも、回転軸が軸受と部分的に接触す
る状態から浮上状態へ移る所定の回転数は、後述するよ
うに動圧軸受モータの構成によって大きく異なる。その
後、電源をオフ(OFF)操作すると、ドライバ部3か
らのドライブ電流が切られるが、慣性によって回転軸が
回転しながら減速し、所定の回転数Dまで減速すると、
再び回転軸が軸受と部分的に接触する接触回転状態を経
て停止する。
However, the predetermined number of rotations at which the rotating shaft shifts from a state of partial contact with the bearing to a floating state greatly differs depending on the configuration of the hydrodynamic bearing motor as described later. Thereafter, when the power is turned off (OFF), the drive current from the driver unit 3 is cut off. However, when the rotation shaft is decelerated while rotating due to inertia and decelerated to a predetermined rotation speed D,
Again, the rotation shaft stops after passing through a contact rotation state in which the rotation shaft partially contacts the bearing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た構成の動圧軸受モータ制御装置で動圧軸受モータMを
回転制御すると、図4Aのように電源をオン(ON)操
作して起動する際には、同図Bのようにすぐ高速回転状
態となって回転軸と軸受とが速やかに非接触状態となる
ものの、電源をオフ(OFF)操作した場合には、回転
軸が減速して所定の回転数Dまで減速して再び回転軸が
軸受と部分的に接触した後、この接触回転状態から完全
に停止するまでの摺動期間が比較的長く、回転軸および
軸受の摩耗が進み易い難点がある。
However, when the rotation of the dynamic bearing motor M is controlled by the dynamic bearing motor control device having the above-described configuration, when the power is turned on (ON) as shown in FIG. As shown in FIG. B, although the rotating shaft and the bearing are immediately brought into a non-contact state immediately after the high-speed rotation as shown in FIG. B, when the power is turned off (OFF), the rotating shaft decelerates to a predetermined speed. After the rotation shaft is decelerated to the rotation speed D and the rotation shaft partially contacts the bearing again, the sliding period from this contact rotation state to the complete stop is relatively long, and the wear of the rotation shaft and the bearing tends to progress. is there.

【0008】例えば、定格回転数が30,000rpm
程度の動圧軸受モータMでは、電源をオフ(OFF)操
作して接触回転状態になってから回転軸が完全に停止す
るまで1分程度かかり、回転軸および軸受の耐久性の向
上が望まれていた。
For example, when the rated speed is 30,000 rpm
With the hydrodynamic bearing motor M, it takes about one minute from when the power is turned off to the contact rotation state until the rotary shaft completely stops, and it is desired to improve the durability of the rotary shaft and the bearing. I was

【0009】しかも、回転軸が軸受と部分的に再接触し
て接触回転状態となる回転数Dも一定ではなく、一般的
に5,000rpm〜1,000rpmの間で変化し易
く、完全に停止するまでの期間が一定しない難点もあ
る。
In addition, the rotational speed D at which the rotating shaft partially comes into contact with the bearing and comes into a contact rotation state is not constant, but generally varies easily from 5,000 rpm to 1,000 rpm, and completely stops. There is also a drawback that the period of time to do so is not fixed.

【0010】本発明はこのような課題を解決するために
なされたもので、動圧軸受を有するモータに対して、こ
の制動過程における回転軸と軸受との接触回転期間を短
くして、動圧軸受モータの耐久性を向上させることが可
能な動圧軸受モータ制御装置を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and a motor having a dynamic pressure bearing is provided with a dynamic pressure reduction by shortening a contact rotation period between the rotating shaft and the bearing in the braking process. An object of the present invention is to provide a dynamic pressure bearing motor control device capable of improving the durability of a bearing motor.

【0011】[0011]

【課題を解決するための手段】そのような課題を解決す
るために本発明の動圧軸受モータ制御装置は、目標とす
る回転数に応じた速度指令信号と動圧軸受モータに係る
速度検出信号とを比較して偏差を出力する比較部と、そ
の偏差が小さくなるようにその動圧軸受モータへドライ
ブ電流を流してこれを回転駆動制御するドライバ部と、
その動圧軸受モータの回転数を検出する回転数検出部
と、この回転数検出部からの検出信号に基づき回転数に
応じた速度検出信号を出力する第1の速度検出部と、そ
の回転数検出部からの検出信号が所定の基準速度を越え
て低下したとき制動信号を出力する第2の速度検出部と
を具備し、そのドライバ部は制動信号によって動圧軸受
モータを制動制御するよう形成されている。
SUMMARY OF THE INVENTION In order to solve such a problem, a dynamic pressure bearing motor control device according to the present invention comprises a speed command signal corresponding to a target rotational speed and a speed detection signal relating to the dynamic pressure bearing motor. And a comparing unit that outputs a deviation by comparing the driving current to the hydrodynamic bearing motor so as to reduce the deviation, and a driver unit that controls the rotational driving of the driving current.
A rotation speed detection unit for detecting the rotation speed of the hydrodynamic bearing motor, a first speed detection unit for outputting a speed detection signal corresponding to the rotation speed based on the detection signal from the rotation speed detection unit, A second speed detecting section for outputting a braking signal when a detection signal from the detecting section falls below a predetermined reference speed, wherein the driver section controls the dynamic pressure bearing motor by the braking signal. Have been.

【0012】また、本発明では、上記動圧軸受モータに
あってロータを回転させる駆動コイルを短絡制御して制
動をかけるよう上記ドライバ部を形成可能である。さら
に、本発明では、第2の速度検出部における基準速度と
して、動圧軸受モータの定格回転数の1/2〜1/4の
範囲に選定すると良い。
In the present invention, the driver section can be formed so as to apply a short-circuit control to the drive coil for rotating the rotor in the dynamic pressure bearing motor to apply the braking. Further, in the present invention, it is preferable that the reference speed in the second speed detector is selected in a range of 1/2 to 1/4 of the rated rotation speed of the hydrodynamic bearing motor.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。なお、従来例と共通する部分には
同一の符号を付す。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same reference numerals are given to portions common to the conventional example.

【0014】図1は、本発明に係る動圧軸受モータ制御
装置の実施の形態を示すブロック図である。図1におい
て、比較部1は、図示しない速度指令信号形成部から出
力された可変又は固定した速度指令信号と、後述する第
1の速度検出部7からの速度検出信号とを比較して偏差
eを出力するもので、ドライバ部3に接続されている。
FIG. 1 is a block diagram showing an embodiment of a dynamic bearing motor control device according to the present invention. In FIG. 1, a comparison unit 1 compares a variable or fixed speed command signal output from a speed command signal forming unit (not shown) with a speed detection signal from a first speed detection unit 7, which will be described later, and calculates a deviation e. And is connected to the driver unit 3.

【0015】ドライバ部3は、ドライブ電流を切換え通
電するとともに動圧軸受モータMの例えば複数の駆動コ
イルLに接続されており、その偏差eに基づきこれを小
さくするようにそのドライブ電流を駆動コイルLへ切換
え通電して動圧軸受モータMを回転駆動させるものであ
る。ドライバ部3はこれ以外の機能も有しているが、詳
細は後述する。
The driver section 3 switches the drive current and supplies the current, and is connected to, for example, a plurality of drive coils L of the hydrodynamic bearing motor M. Based on the deviation e, the drive section 3 reduces the drive current to reduce the drive current. The current is switched to L and the dynamic pressure bearing motor M is driven to rotate. The driver unit 3 has other functions, but details will be described later.

【0016】動圧軸受モータMは、その詳細は図示しな
いが、例えばステータ側に軸受や複数の駆動コイルLを
配置し、その軸受内にこの内壁との間に空気又は油等の
流体媒体を介在させた状態で回転軸を挿通し、この回転
軸にロータマグネット、ポリゴンミラー等を配置してな
る従来公知のブラシレス構成を有し、所定の回転数以上
の回転時に軸受に直接接触させることなくその回転軸を
流体媒体を介在させた状態で浮上軸支し、安定した高速
回転を確保するものである。
Although not shown in detail, the hydrodynamic bearing motor M has, for example, a bearing and a plurality of drive coils L arranged on the stator side, and a fluid medium such as air or oil is provided between the bearing and the inner wall in the bearing. A conventionally known brushless configuration in which a rotating shaft is inserted with the intervening state, and a rotor magnet, a polygon mirror, and the like are arranged on the rotating shaft, without directly contacting the bearing at the time of rotation at a predetermined rotation speed or more The rotating shaft is supported by a floating shaft with a fluid medium interposed therebetween to ensure stable high-speed rotation.

【0017】動圧軸受モータMは、この回転数に応じた
周波数の周波数信号を発電出力する回転数検出部として
の従来公知の周波数発電部FGを有しており、この周波
数発電部FGは第1の速度検出部7および第2の速度検
出部9に接続されている。
The hydrodynamic bearing motor M has a conventionally known frequency power generation unit FG as a rotation speed detection unit for generating and outputting a frequency signal having a frequency corresponding to the rotation speed. It is connected to the first speed detector 7 and the second speed detector 9.

【0018】第1の速度検出部7は、周波数発電部FG
からの周波数信号に応じたレベルの電圧信号に変換して
回転数を検出し、この電圧信号を速度検出信号として上
述した比較部1へ出力するものである。なお、この第1
の速度検出部7は、上述した図4中の速度検出部5と実
質的に同一であるが、便宜上符号も変えて示す。
The first speed detecting section 7 includes a frequency power generating section FG
The rotational speed is detected by converting the voltage signal into a voltage signal having a level corresponding to the frequency signal from the controller, and this voltage signal is output to the above-described comparison unit 1 as a speed detection signal. In addition, this first
Is substantially the same as the speed detecting unit 5 in FIG. 4 described above, but the reference numerals are changed for convenience.

【0019】第2の速度検出部9は、周波数発電部FG
からの周波数信号をこの周波数に応じたレベルの電圧信
号に変換して回転数を検出するとともに、この検出電圧
と基準となる制動開始回転数(基準速度:基準回転数)
Fに応じた基準電圧とを比較し、その検出電圧が基準電
圧を越えて低下したとき制動信号Sを出力するものであ
り、上述したドライバ部3に接続されている。
The second speed detecting section 9 includes a frequency power generating section FG.
Is converted into a voltage signal of a level corresponding to this frequency to detect the rotation speed, and the detected voltage and a reference braking start rotation speed (reference speed: reference rotation speed)
It compares a reference voltage corresponding to F and outputs a braking signal S when the detected voltage falls below the reference voltage, and is connected to the driver unit 3 described above.

【0020】制動信号Sは、図2Bに示すように、パル
ス状の一過性信号や、図示はしないが検出電圧が基準電
圧を越えて低下してリセットされるまで出力し続ける連
続信号であっても良く、これに合せて第2の速度検出部
9が形成される。
The braking signal S is, as shown in FIG. 2B, a pulse-like transient signal or a continuous signal (not shown) which continues to be output until the detected voltage falls below the reference voltage and is reset. The second speed detector 9 may be formed accordingly.

【0021】そして、ドライバ部3は、入力された制動
信号Sに基づき、駆動コイルLへ流すドライブ電流を切
るとともに、駆動コイルLを例えば抵抗(図示せず。)
等を介して短絡する等して動圧軸受モータMに強制的に
制動をかけ、回転軸が完全に停止しリセットされるまで
制動をかける機能を有している。
The driver section 3 cuts off the drive current flowing through the drive coil L based on the input braking signal S, and also drives the drive coil L with, for example, a resistor (not shown).
For example, the dynamic pressure bearing motor M is forcibly braked by short-circuiting or the like, and the brake is applied until the rotary shaft is completely stopped and reset.

【0022】次に、上述した本発明の動圧軸受モータ制
御装置の動作を簡単に説明する。図2Aに示すように、
電源をオン(ON)して起動操作すると、速度指令信号
が比較部1に加えられるが、速度検出信号が入力されな
いか極めて小さいので大きな偏差eがドライバ部3へ加
えられ、このドライバ部3から大きなドライブ電流が動
圧軸受モータMの駆動コイルLへ切換え通電され、同図
Cのように回転軸が起動開始する。
Next, the operation of the above-described hydrodynamic bearing motor control device of the present invention will be briefly described. As shown in FIG. 2A,
When the power is turned on (ON) and a start operation is performed, a speed command signal is applied to the comparison unit 1. However, since a speed detection signal is not input or extremely small, a large deviation e is applied to the driver unit 3, and the driver unit 3 A large drive current is switched and energized to the drive coil L of the hydrodynamic bearing motor M, and the rotating shaft starts to start as shown in FIG.

【0023】軸受に部分的に接触した接触回転状態とな
っている回転軸は、すぐに所定の回転数に達して浮上状
態となり、安定した高速回転が確保される。
The rotating shaft, which is in a contact rotation state in which the bearing is partially in contact with the bearing, immediately reaches a predetermined number of revolutions and becomes a floating state, so that stable high-speed rotation is secured.

【0024】定常回転状態では、第1の速度検出部7か
らの動圧軸受モータMの回転数に応じた速度検出信号と
の偏差eが小さくなるよう、ドライバ部3が動圧軸受モ
ータMを定常回転制御する。この状態では、周波数発電
部FGからの周波数信号に応じた電圧信号レベルが基準
電圧より大きいから、第2の速度検出部9から制動信号
Sがドライバ部3へ出力されない。
In the steady rotation state, the driver unit 3 controls the dynamic pressure bearing motor M so that the deviation e from the speed detection signal from the first speed detecting unit 7 corresponding to the rotational speed of the dynamic pressure bearing motor M becomes small. Control the steady rotation. In this state, since the voltage signal level corresponding to the frequency signal from the frequency generator FG is higher than the reference voltage, the braking signal S is not output from the second speed detector 9 to the driver 3.

【0025】そして、図2Aのように電源がオフ(OF
F)されて停止操作されると、ドライバ部3からのドラ
イブ電流が切られ、動圧軸受モータMの回転軸は慣性に
よって回転が継続されるものの回転数が低下してゆく。
Then, as shown in FIG. 2A, the power is turned off (OF).
F), when the stop operation is performed, the drive current from the driver unit 3 is cut off, and the rotating shaft of the hydrodynamic bearing motor M continues to rotate due to inertia, but the rotation speed decreases.

【0026】周波数発電部FGからの周波数信号の周波
数も低下し、これに伴う検出信号レベルが基準速度レベ
ルを越えて低下すると、図2Bに示すように、第2の速
度検出部9から制動信号Sがドライバ部3へ印加され、
このドライバ部3では駆動コイルLを短絡する。
When the frequency of the frequency signal from the frequency generator FG also decreases, and the detection signal level accompanying the frequency signal drops below the reference speed level, as shown in FIG. S is applied to the driver unit 3,
In the driver section 3, the drive coil L is short-circuited.

【0027】そのため、駆動コイルLが短絡されること
により、回転を続ける動圧軸受モータMは発電機として
機能し、その回転によって駆動コイルLに誘起した電流
が上述した抵抗によって消費されてブレーキとして作用
し、図2Cのように動圧軸受モータMに強制的に制動が
かかって速やかに回転が停止する。
[0027] Therefore, when the drive coil L is short-circuited, the hydrodynamic bearing motor M that continues to rotate functions as a generator, and the current induced in the drive coil L by the rotation is consumed by the above-described resistance and used as a brake. As a result, as shown in FIG. 2C, the dynamic pressure bearing motor M is forcibly braked and the rotation stops immediately.

【0028】図2B中の遅延tは電源がオフ(OFF)
されてから制動信号Sが出力されるまでの、遅延時間で
ある。
In the delay t in FIG. 2B, the power is off (OFF).
This is a delay time from when the braking signal S is output until the braking signal S is output.

【0029】このように本発明の動圧軸受モータ制御装
置は、速度指令信号と動圧軸受モータMに係る速度検出
信号とを比較減算して偏差eを出力する比較部1と、そ
の偏差eが小さくなるようにその動圧軸受モータMへド
ライブ電流を流してこれを回転駆動制御するドライバ部
3と、その動圧軸受モータMの回転数を検出する周波数
発電部FGと、この周波数発電部FGからの検出信号に
基づき回転数に応じた速度検出信号を出力する第1の速
度検出部7と、その周波数発電部FGからの検出信号が
所定の基準速度を越えて低下したとき制動信号Sを出力
する第2の速度検出部9とを具備し、そのドライバ部3
は制動信号Sによって動圧軸受モータMを制動制御する
構成としたから、動圧軸受モータMを停止操作したと
き、慣性によって回転し続ける回転軸がその基準速度F
に達すると、その回転軸に制動(ブレーキ)がかかり、
速やかに回転軸が停止する。
As described above, the dynamic bearing motor control device of the present invention compares and subtracts the speed command signal and the speed detection signal of the dynamic bearing motor M to output the deviation e, and the deviation e. A driver unit 3 for supplying a drive current to the dynamic pressure bearing motor M so as to reduce the rotational speed and controlling the rotation of the driver unit, a frequency power generation unit FG for detecting the rotation speed of the dynamic pressure bearing motor M, and a frequency power generation unit A first speed detector 7 for outputting a speed detection signal corresponding to the number of revolutions based on a detection signal from the FG, and a braking signal S when the detection signal from the frequency generator FG falls below a predetermined reference speed. And a second speed detection unit 9 for outputting the
Is configured to control the braking of the hydrodynamic bearing motor M by the braking signal S, so that when the hydrodynamic bearing motor M is stopped, the rotating shaft that continues to rotate due to inertia has its reference speed F
, The rotation axis is braked,
The rotating shaft stops immediately.

【0030】そのため、その第2の速度制御部9におけ
る基準速度Fを適当に選定すれば、動圧軸受モータMを
停止操作した後、接触回転状態となった後では速やかに
その回転を停止できるから、回転軸と軸受の接触回転期
間すなわち摺動回転期間が短くなり、動圧軸受モータ
M、特に回転軸と軸受の耐久性を大幅に向上させること
が可能となる。
Therefore, if the reference speed F in the second speed control section 9 is appropriately selected, the rotation of the hydrodynamic bearing motor M can be stopped immediately after the stop operation and the contact rotation state. Therefore, the contact rotation period, that is, the sliding rotation period, between the rotating shaft and the bearing is shortened, and the durability of the dynamic pressure bearing motor M, particularly, the durability of the rotating shaft and the bearing can be significantly improved.

【0031】しかも、上記ドライバ部3は、動圧軸受モ
ータMの駆動コイルLを短絡制御するから、動圧軸受モ
ータMの慣性による回転に伴う発電作用によって確実か
つ効率良い制動をかけることが可能であるうえ、制動回
路構成が簡単となる。
In addition, since the driver section 3 controls the driving coil L of the hydrodynamic bearing motor M in a short-circuit manner, it is possible to apply a reliable and efficient braking by the power generating action accompanying the rotation of the hydrodynamic bearing motor M by inertia. In addition, the configuration of the braking circuit is simplified.

【0032】特に、第2の速度検出部9に選定する基準
速度Fとして、動圧軸受モータMの定格回転数の1/2
〜1/4を選定すると、その基準速度Fまで低下する前
に再起動させれば、回転軸の浮上(非接触)状態が不必
要に短くならず、接触回転状態からの再起動に比べて速
やかな再起動が可能となる。
In particular, the reference speed F selected by the second speed detection unit 9 is set to 1 / of the rated rotation speed of the hydrodynamic bearing motor M.
If 1 / is selected, if the rotation is restarted before decreasing to the reference speed F, the floating (non-contact) state of the rotating shaft will not be shortened unnecessarily, as compared with restarting from the contact rotation state. Quick restart is possible.

【0033】一般に、モータを搭載した最近の電子機
器、例えばプリンターでは、その使用が一定時間停止さ
れるとモータ等をOFFする機能があるが、この場合に
OFF時にブレーキをかけて動圧軸受モータの回転を停
止させると、再起動に時間を要するばかりか、この動作
が繰返されると、動圧軸受モータの加速およびブレーキ
時の双方において発熱量が増加し、動圧軸受モータが異
常に加熱してしまうことが考えられる。
In general, a recent electronic device equipped with a motor, such as a printer, has a function of turning off a motor or the like when the use of the motor is stopped for a certain period of time. If the rotation of the motor is stopped, not only does it take time to restart, but if this operation is repeated, the calorific value increases both during acceleration and braking of the hydrodynamic bearing motor, and the hydrodynamic bearing motor heats up abnormally. Can be considered.

【0034】この点、動圧軸受モータMの定格回転数の
1/2〜1/4にその基準速度Fを選定すると、動圧軸
受モータをOFF制御した後に定格回転数の1/2〜1
/4に至る期間内に再起動させる場合には、そのような
モータ異常を回避できるし、その好ましい再起動期間を
比較的長く確保できる。
In this regard, if the reference speed F is selected to be 2〜 to の of the rated rotation speed of the dynamic bearing motor M, after controlling the dynamic bearing motor to OFF, the reference speed F is reduced to 2〜 to 11 of the rated rotation speed.
If the motor is restarted within the period of / 4, such a motor abnormality can be avoided, and a preferable restart period can be secured relatively long.

【0035】なお、この動圧軸受モータMの定格回転数
の1/2〜1/4の範囲は、回転軸の接触回転の開始さ
れる回転数(回転速度)より僅かに高い回転数又は回転
速度が好ましく、個々の動圧軸受モータの構成が決る
と、その具体的な回転数も決まる。
The range of 1/2 to 1/4 of the rated rotation speed of the hydrodynamic bearing motor M is a rotation speed or rotation speed slightly higher than the rotation speed (rotation speed) at which the contact rotation of the rotary shaft starts. When the speed is preferable and the configuration of each hydrodynamic bearing motor is determined, its specific rotation speed is also determined.

【0036】本発明における、動圧軸受モータMの回転
に制動をかける構成は任意であり、上述したように動圧
軸受モータMの駆動コイルを抵抗を介して短絡する構成
に限定されないし、動圧軸受モータMへ制動をかける期
間も任意であり、制動期間に合せてドライバ部3を適当
に形成すれば良い。
The configuration for braking the rotation of the dynamic pressure bearing motor M in the present invention is arbitrary, and is not limited to the configuration in which the drive coil of the dynamic pressure bearing motor M is short-circuited via a resistor as described above. The period in which braking is applied to the pressure bearing motor M is also arbitrary, and the driver section 3 may be appropriately formed in accordance with the braking period.

【0037】制動をかける構成については、例えば、回
転軸に逆回転トルクを生じさせるようなドライブ電流を
ドライバ部3から駆動コイルLへ流す構成の他、第2の
速度検出部9からの制動信号Sによって動圧軸受モータ
Mの回転軸を機械的に締めつける等の負荷をかける機械
的構成その他が考えられる。また、動圧軸受モータMの
回転数を検出する周波数発電部FGも、従来公知のモー
タの回転数を検出する回転数検出部であれば、本発明の
目的達成が可能である。
As for the configuration for applying the braking, for example, in addition to the configuration in which a drive current for generating a reverse rotation torque on the rotating shaft is supplied from the driver unit 3 to the driving coil L, the braking signal from the second speed detecting unit 9 is also provided. A mechanical configuration or the like that applies a load such as mechanically tightening the rotating shaft of the hydrodynamic bearing motor M by S may be considered. The object of the present invention can also be achieved if the frequency power generation unit FG that detects the rotation speed of the dynamic pressure bearing motor M is a rotation speed detection unit that detects the rotation speed of a conventionally known motor.

【0038】ところで、本発明の動圧軸受モータ制御装
置で制御される動圧軸受モータMとしては、従来公知の
一般的な構成において実施可能であり、その構成に限定
はない。
The hydrodynamic bearing motor M controlled by the hydrodynamic bearing motor control device of the present invention can be implemented in a conventionally known general configuration, and the configuration is not limited.

【0039】[0039]

【発明の効果】以上説明したように本発明は、目標とす
る回転数に応じた速度指令信号と動圧軸受モータに係る
速度検出信号とを比較部で比較して偏差を出力し、この
偏差が小さくなるようにドライバ部から動圧軸受モータ
へドライブ電流を流してこれを回転駆動制御し、回転数
検出部で動圧軸受モータの回転数を検出し、この回転数
検出部からの検出信号に基づき回転数に応じた速度検出
信号を第1の速度検出部から上記比較部へ出力し、同じ
く回転数検出部からの検出信号を第2の速度検出部で基
準速度と比較してこれを越えて低下したとき制動信号を
上記ドライバ部へ出力するとともに、そのドライバ部で
はその制動信号によって動圧軸受モータを制動制御する
よう構成したから、動圧軸受モータの制動過程、例えば
停止過程において、モータ回転軸と軸受との接触回転期
間を短くさせ、動圧軸受モータの耐久性を大幅に向上さ
せることが可能となる。また、本発明は、動圧軸受モー
タにあってロータを回転させる駆動コイルを短絡制御し
て制動をかけるよう上記ドライバ部を形成する構成で
は、簡単な構成で効率良い制動をかけることができる。
さらに、本発明は、第2の速度検出部において、動圧軸
受モータの定格回転数の1/2〜1/4に基準速度を選
定する構成では、短い期間で確実に停止させることが可
能であるとともに浮上状態も比較的長く維持できるの
で、すぐに再起動させる必要がある場合、浮上状態から
速やかな再起動が可能となり、相反する要望を実現し易
い。
As described above, according to the present invention, the deviation is output by comparing the speed command signal corresponding to the target rotational speed with the speed detection signal relating to the hydrodynamic bearing motor by the comparison section, and this deviation is output. A drive current is supplied from the driver section to the hydrodynamic bearing motor so that the rotational speed of the hydrodynamic bearing motor is reduced, and the rotational speed of the hydrodynamic bearing motor is detected by the rotational speed detecting section. A speed detection signal corresponding to the rotation speed is output from the first speed detection unit to the comparison unit based on the above, and the detection signal from the rotation speed detection unit is similarly compared with the reference speed by the second speed detection unit, and is compared with the reference speed. A braking signal is output to the driver unit when the voltage exceeds the threshold, and the driver unit is configured to control the braking of the hydrodynamic bearing motor by the braking signal. Contact rotation period of the motor rotating shaft and the bearing is shortened, it becomes possible to greatly improve the durability of the dynamic bearing motor. Further, according to the present invention, in the dynamic pressure bearing motor, in the configuration in which the driver section is formed so as to apply the short-circuit control to the drive coil for rotating the rotor to apply the braking, efficient braking can be applied with a simple configuration.
Further, according to the present invention, in the configuration in which the reference speed is selected to be 1/2 to 1/4 of the rated rotation speed of the hydrodynamic bearing motor in the second speed detection unit, it is possible to reliably stop the motor in a short period. In addition, since the floating state can be maintained for a relatively long time, when it is necessary to restart the vehicle immediately, it is possible to quickly restart from the floating state, and it is easy to realize conflicting demands.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の動圧軸受モータ制御装置の実施の形態
を示すブロック図である。
FIG. 1 is a block diagram illustrating an embodiment of a dynamic bearing motor control device of the present invention.

【図2】図1の動圧軸受モータ制御装置の動作を説明す
る図である。
FIG. 2 is a diagram illustrating the operation of the dynamic bearing motor control device of FIG. 1;

【図3】従来の動圧軸受モータ制御装置を示すブロック
図である。
FIG. 3 is a block diagram showing a conventional hydrodynamic bearing motor control device.

【図4】図3の動圧軸受モータ制御装置の動作を説明す
る図である。
FIG. 4 is a diagram for explaining the operation of the dynamic bearing motor control device of FIG. 3;

【符号の説明】[Explanation of symbols]

1 比較部 3 ドライバ部 5 速度検出部 7 第1の速度検出部(速度検出部) 9 第2の速度検出部 FG 周波数発電部(回転数検出部) L 駆動コイル M 動圧軸受モータ REFERENCE SIGNS LIST 1 comparison unit 3 driver unit 5 speed detection unit 7 first speed detection unit (speed detection unit) 9 second speed detection unit FG frequency power generation unit (rotation speed detection unit) L drive coil M dynamic pressure bearing motor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H530 AA01 AA07 BB10 BB14 CC08 CC24 CD22 CE15 CF02 DD03 DD12 EE01 5H560 AA04 AA10 BB04 BB07 BB12 DB07 EB01 HB05 JJ01 TT06 TT07 UA02 XA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H530 AA01 AA07 BB10 BB14 CC08 CC24 CD22 CE15 CF02 DD03 DD12 EE01 5H560 AA04 AA10 BB04 BB07 BB12 DB07 EB01 HB05 JJ01 TT06 TT07 UA02 XA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 目標とする回転数に応じた速度指令信号
と動圧軸受モータに係る速度検出信号とを比較して偏差
を出力する比較部と、 前記偏差が小さくなるように前記動圧軸受モータへドラ
イブ電流を流してこれを回転駆動するドライバ部と、 前記動圧軸受モータの回転数を検出する回転数検出部
と、 この回転数検出部からの検出信号に基づき前記回転数に
応じた前記速度検出信号を出力する第1の速度検出部
と、 前記回転数検出部からの検出信号が所定の基準速度を越
えて低下したとき制動信号を出力する第2の速度検出部
と、 を具備し、 前記ドライバ部は、前記制動信号によって前記動圧軸受
モータを制動制御するよう形成されたことを特徴とする
動圧軸受モータ制御装置。
A comparison section for comparing a speed command signal corresponding to a target rotational speed with a speed detection signal related to a hydrodynamic bearing motor to output a deviation, and the dynamic pressure bearing so as to reduce the deviation. A driver section for supplying a drive current to the motor to rotate the motor, a rotation number detection section for detecting the rotation number of the hydrodynamic bearing motor, and a rotation number corresponding to the rotation number based on a detection signal from the rotation number detection section. A first speed detection unit that outputs the speed detection signal; and a second speed detection unit that outputs a braking signal when the detection signal from the rotation speed detection unit falls below a predetermined reference speed. The driver unit is configured to control the braking of the dynamic bearing motor by the braking signal.
【請求項2】 前記ドライバ部は、前記動圧軸受モータ
にあってロータを回転させる駆動コイルを短絡制御して
制動をかけるものである請求項1記載の動圧軸受モータ
制御装置。
2. The dynamic pressure bearing motor control device according to claim 1, wherein the driver section applies short-circuit control to a drive coil that rotates the rotor in the dynamic pressure bearing motor to apply braking.
【請求項3】 前記第2の速度検出部は、前記動圧軸受
モータの定格回転数の1/2〜1/4に前記基準速度を
選定してなる請求項1又は2記載の動圧軸受モータ制御
装置。
3. The dynamic pressure bearing according to claim 1, wherein the second speed detector selects the reference speed to be 1/2 to 1/4 of a rated rotation speed of the dynamic pressure bearing motor. Motor control device.
JP11072987A 1999-03-18 1999-03-18 Dynamic pressure bearing motor controller Pending JP2000270588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11072987A JP2000270588A (en) 1999-03-18 1999-03-18 Dynamic pressure bearing motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11072987A JP2000270588A (en) 1999-03-18 1999-03-18 Dynamic pressure bearing motor controller

Publications (1)

Publication Number Publication Date
JP2000270588A true JP2000270588A (en) 2000-09-29

Family

ID=13505269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11072987A Pending JP2000270588A (en) 1999-03-18 1999-03-18 Dynamic pressure bearing motor controller

Country Status (1)

Country Link
JP (1) JP2000270588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509689A (en) * 2006-11-10 2010-03-25 ディーアールエス センサーズ アンド ターゲティング システムズ インコーポレイテッド Gimbal servo system bearing assembly with flex pivot to limit gimbal bearing friction
JP2013223360A (en) * 2012-04-18 2013-10-28 Lenovo Singapore Pte Ltd Method for extending life of fluid dynamic pressure bearing, and mobile electronic apparatus
JP2013240233A (en) * 2012-05-17 2013-11-28 Lenovo Singapore Pte Ltd Method of extending life of fluid dynamic pressure bearing used for thin electronic apparatus, and electronic apparatus
US8828699B2 (en) 2006-04-25 2014-09-09 Kikkoman Corporation Eukaryotic amadoriase, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of the eukaryotic amadoriase

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828699B2 (en) 2006-04-25 2014-09-09 Kikkoman Corporation Eukaryotic amadoriase, gene and recombinant DNA for the eukaryotic amadoriase, and process for production of the eukaryotic amadoriase
JP2010509689A (en) * 2006-11-10 2010-03-25 ディーアールエス センサーズ アンド ターゲティング システムズ インコーポレイテッド Gimbal servo system bearing assembly with flex pivot to limit gimbal bearing friction
JP2013223360A (en) * 2012-04-18 2013-10-28 Lenovo Singapore Pte Ltd Method for extending life of fluid dynamic pressure bearing, and mobile electronic apparatus
JP2013240233A (en) * 2012-05-17 2013-11-28 Lenovo Singapore Pte Ltd Method of extending life of fluid dynamic pressure bearing used for thin electronic apparatus, and electronic apparatus
CN103423295A (en) * 2012-05-17 2013-12-04 联想(新加坡)私人有限公司 Method for prolonging service life of hydrodynamic bearing for thin-type electronic device and the electronic device
CN103423295B (en) * 2012-05-17 2018-07-31 联想(新加坡)私人有限公司 The hydrodynamic pressure bearing service life of low profile electronic equipment extends method and electronic equipment

Similar Documents

Publication Publication Date Title
US5458098A (en) Method and system for starting automotive internal combustion engine
US7188475B2 (en) Starting and controlling speed of a two spool gas turbine engine
KR970016138A (en) Reverse Brake Rotary Compressor
JP2005067409A (en) Electric parking brake device and its control method
JP3940267B2 (en) Synchronous motor start control device and electric pump for controlling working fluid of automobile drive system using the device
KR950014129B1 (en) Method and apparatus for controlling brushless dc motor
JP2000270588A (en) Dynamic pressure bearing motor controller
US6445148B2 (en) Structure of plural motor assembly and method for controlling the same
JPH06117353A (en) Wind power generating device
JP2002095112A (en) Travel drive apparatus for industrial vehicle
JPH06150527A (en) Motor and motor driving device
JPH0968222A (en) Magnetic bearing device
JP3389328B2 (en) Motor starter
JP7088043B2 (en) Motor control device
JPH10215599A (en) Heat engine drive induction generator
JPH06105589A (en) Drive controller for dc brushless motor
JP7156153B2 (en) Vacuum pump and its startup control program
JPH0648157Y2 (en) Molecular pump drive
JP2828399B2 (en) Drive switching method for engine / motor selective drive device
CN101473525B (en) Method for controlling a reversible electrical machine coupled to a heat engine, engine suitable for carrying out the method, and use thereof
JPH09287412A (en) Turning gear of rotating machine rotor
JP2010242507A (en) Wind power generator
JP4584687B2 (en) Swivel control device for construction machinery
JP3220721B2 (en) Vacuum pump
WO2019116556A1 (en) Method and device for controlling hybrid vehicle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413