JP2000268970A - Organic el element - Google Patents
Organic el elementInfo
- Publication number
- JP2000268970A JP2000268970A JP11069965A JP6996599A JP2000268970A JP 2000268970 A JP2000268970 A JP 2000268970A JP 11069965 A JP11069965 A JP 11069965A JP 6996599 A JP6996599 A JP 6996599A JP 2000268970 A JP2000268970 A JP 2000268970A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- organic
- hole
- electrode
- transport layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010410 layer Substances 0.000 claims abstract description 190
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000012044 organic layer Substances 0.000 claims abstract description 8
- 238000002347 injection Methods 0.000 claims description 86
- 239000007924 injection Substances 0.000 claims description 86
- 230000005525 hole transport Effects 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 12
- 150000004767 nitrides Chemical class 0.000 claims description 11
- 229910021332 silicide Inorganic materials 0.000 claims description 11
- 150000001247 metal acetylides Chemical class 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims description 2
- 239000010409 thin film Substances 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 7
- 239000011147 inorganic material Substances 0.000 abstract description 7
- 238000001771 vacuum deposition Methods 0.000 abstract description 7
- 239000012535 impurity Substances 0.000 abstract description 3
- 239000003086 colorant Substances 0.000 abstract 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 36
- 239000000463 material Substances 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 28
- 239000000758 substrate Substances 0.000 description 25
- 230000006870 function Effects 0.000 description 22
- 230000032258 transport Effects 0.000 description 21
- 238000004544 sputter deposition Methods 0.000 description 20
- 239000010408 film Substances 0.000 description 18
- 239000011521 glass Substances 0.000 description 17
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 15
- 239000000126 substance Substances 0.000 description 14
- 238000007789 sealing Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 8
- -1 8-hydroxy-5-quinolinyl Chemical group 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 6
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 229960003540 oxyquinoline Drugs 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- BRSRUYVJULRMRQ-UHFFFAOYSA-N 1-phenylanthracene Chemical class C1=CC=CC=C1C1=CC=CC2=CC3=CC=CC=C3C=C12 BRSRUYVJULRMRQ-UHFFFAOYSA-N 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910017073 AlLi Inorganic materials 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 150000003248 quinolines Chemical class 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000012945 sealing adhesive Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical class [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- XFYQEBBUVNLYBR-UHFFFAOYSA-N 12-phthaloperinone Chemical class C1=CC(N2C(=O)C=3C(=CC=CC=3)C2=N2)=C3C2=CC=CC3=C1 XFYQEBBUVNLYBR-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- OZJYZNVZBUZORU-UHFFFAOYSA-N 4-(4-aminophenyl)aniline;1,1'-biphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C1=CC(N)=CC=C1C1=CC=C(N)C=C1 OZJYZNVZBUZORU-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101100321669 Fagopyrum esculentum FA02 gene Proteins 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101001034314 Homo sapiens Lactadherin Proteins 0.000 description 1
- 102100039648 Lactadherin Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- PSYWRPCLOJXWEN-UHFFFAOYSA-K aluminum;2-phenylphenolate Chemical compound [Al+3].[O-]C1=CC=CC=C1C1=CC=CC=C1.[O-]C1=CC=CC=C1C1=CC=CC=C1.[O-]C1=CC=CC=C1C1=CC=CC=C1 PSYWRPCLOJXWEN-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229930192419 itoside Natural products 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000990 laser dye Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000434 metal complex dye Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000012508 resin bead Substances 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical class [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機EL(エレク
トロルミネッセンス)素子に関し、詳しくは、有機化合
物の薄膜に電界を印加して光を放出する素子に用いられ
る無機/有機接合構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL (electroluminescence) device, and more particularly, to an inorganic / organic junction structure used in a device that emits light by applying an electric field to a thin film of an organic compound.
【0002】[0002]
【従来の技術】有機EL素子は、ガラス上に大面積で素
子を形成できるため、ディスプレー用等に研究開発が進
められている。一般に有機EL素子は、ガラス基板上に
ITO等の透明電極を形成し、その上に有機アミン系の
ホール輸送層、電子導電性を示しかつ強い発光を示すた
とえばAlq3 材からなる有機発光層を積層し、さら
に、MgAgなどの仕事関数の小さい電極を形成し、基
本素子としている。2. Description of the Related Art Organic EL devices can be formed on glass in a large area, and are being researched and developed for displays and the like. In general, an organic EL element is formed by forming a transparent electrode such as ITO on a glass substrate, and laminating an organic amine-based hole transport layer and an organic light emitting layer made of, for example, an Alq3 material which exhibits electron conductivity and emits strong light. Further, an electrode having a small work function, such as MgAg, is formed and used as a basic element.
【0003】これまでに報告されている素子構造として
は、ホール注入電極及び電子注入電極の間に1層または
複数層の有機化合物層が挟まれた構造となっており、有
機化合物層としては、2層構造あるいは3層構造があ
る。[0003] The element structure reported so far has a structure in which one or more organic compound layers are interposed between a hole injection electrode and an electron injection electrode. There is a two-layer structure or a three-layer structure.
【0004】2層構造の例としては、ホール注入電極と
電子注入電極の間にホール輸送層と発光層が形成された
構造または、ホール注入電極と電子注入電極の間に発光
層と電子輸送層が形成された構造がある。3層構造の例
としては、ホール注入電極と電子注入電極の間にホール
輸送層と発光層と電子輸送層とが形成された構造があ
る。また、単一層に全ての役割を持たせた単層構造も高
分子や混合系で報告されている。[0004] Examples of the two-layer structure include a structure in which a hole transport layer and a light emitting layer are formed between a hole injection electrode and an electron injection electrode, or a light emitting layer and an electron transport layer between a hole injection electrode and an electron injection electrode. Is formed. As an example of the three-layer structure, there is a structure in which a hole transport layer, a light emitting layer, and an electron transport layer are formed between a hole injection electrode and an electron injection electrode. Also, a single-layer structure in which a single layer has all the functions has been reported for polymers and mixed systems.
【0005】図3および図4に、有機EL素子の代表的
な構造を示す。FIGS. 3 and 4 show a typical structure of an organic EL device.
【0006】図3では基板11上に設けられたホール注
入電極12と電子注入電極13の間に有機化合物である
ホール輸送層14と発光層15が形成されている。この
場合、発光層15は、電子輸送層の機能も果たしてい
る。In FIG. 3, a hole transport layer 14 and a light emitting layer 15 which are organic compounds are formed between a hole injection electrode 12 and an electron injection electrode 13 provided on a substrate 11. In this case, the light emitting layer 15 also functions as an electron transport layer.
【0007】図4では、基板11上に設けられたホール
注入電極12と電子注入電極13の間に有機化合物であ
るホール輸送層14と発光層15と電子輸送層16が形
成されている。In FIG. 4, a hole transport layer 14, an emission layer 15, and an electron transport layer 16, which are organic compounds, are formed between a hole injection electrode 12 and an electron injection electrode 13 provided on a substrate 11.
【0008】これら有機EL素子においては、共通し
て、信頼性が問題となっている。すなわち、有機EL素
子は、原理的にホール注入電極と、電子注入電極とを有
し、これら電極間から効率よくホール・電子を注入輸送
するための有機層を必要とする。しかしながら、これら
の材料は、製造時にダメージを受けやすく、電極との親
和性にも問題がある。また、有機薄膜の劣化もLED、
LDに較べると著しく大きいという問題を有している。In these organic EL devices, reliability is a common problem. That is, the organic EL element has a hole injection electrode and an electron injection electrode in principle, and requires an organic layer for injecting and transporting holes and electrons efficiently between these electrodes. However, these materials are susceptible to damage at the time of manufacturing, and have a problem in affinity with electrodes. In addition, degradation of the organic thin film LED
There is a problem that it is significantly larger than LD.
【0009】電界発光(EL)素子は、電界の影響によ
り発光する。このようなELを構成する半導体層での作
用は、一対の電極から半導体に注入される電子−ホール
対の放射結合を通して行われる。その一例としては、G
aPおよび同様なIII 族−V族半導体を基礎とする発光
ダイオードがある。これらの素子は、効果的且つ広範囲
に利用されているものの、その大きさが非常に微小であ
るために大面積ディスプレイに使用するに際しては、困
難を伴うばかりか不経済でもある。大面積ディスプレイ
への使用が可能な代替品の材料は幾種類か知られてい
る。そして、このような無機半導体のなかでもZnSが
最も有用である。しかしながら、この系は無視できない
実用上の欠点、第1に信頼性が乏しいという問題があ
る。ZnSに係るメカニズムの一例は、強電界下におい
て、半導体を通って1種のキャリヤが加速されることに
より、放射発光によって緩和する半導体の局部的励起が
生じることであると考えられる。An electroluminescent (EL) element emits light under the influence of an electric field. The operation of the semiconductor layer constituting such an EL is performed through radiative coupling of electron-hole pairs injected into the semiconductor from a pair of electrodes. One example is G
There are light emitting diodes based on aP and similar III-V semiconductors. Although effective and widely used, these devices are extremely difficult to use in large area displays due to their very small size. Several alternative materials are known that can be used for large area displays. And ZnS is the most useful among such inorganic semiconductors. However, this system has practical drawbacks that cannot be ignored, first of all, its reliability is poor. One example of a mechanism related to ZnS is considered to be that, under a strong electric field, one kind of carrier is accelerated through the semiconductor, thereby causing local excitation of the semiconductor which is alleviated by radiation emission.
【0010】このような問題を解決するために、有機材
料と無機半導体材料のそれぞれのメリットを利用する方
法が考えられている。すなわち、有機ホール輸送層を無
機p型半導体に置き換えた有機/無機半導体接合であ
る。このような検討は、特許第2636341号、特開
平2−139893号公報、特開平2−207488号
公報、特開平6−119973号公報で検討されている
が、発光特性や基本素子の信頼性で従来素子の有機EL
を越える特性を得ることが極めて困難であった。[0010] In order to solve such a problem, there has been proposed a method utilizing the respective merits of the organic material and the inorganic semiconductor material. That is, an organic / inorganic semiconductor junction in which the organic hole transport layer is replaced with an inorganic p-type semiconductor. Such a study has been discussed in Japanese Patent No. 2636341, Japanese Patent Application Laid-Open No. 2-139983, Japanese Patent Application Laid-Open No. 2-207488, and Japanese Patent Application Laid-Open No. 6-119773. Organic EL of conventional element
It was extremely difficult to obtain a characteristic exceeding.
【0011】[0011]
【発明が解決しようとする課題】本発明の目的は、有機
材料と無機材料の有するメリットを併せ持ち、高効率、
長寿命で低コストな有機EL素子を提供することであ
る。SUMMARY OF THE INVENTION It is an object of the present invention to combine the advantages of organic materials and inorganic materials with high efficiency,
An object of the present invention is to provide a long-life, low-cost organic EL element.
【0012】[0012]
【課題を解決するための手段】すなわち、上記目的は、
以下の構成により達成される。 (1) ホール注入電極と電子注入電極と、これらの電
極間に少なくとも発光層を有する有機層とを有し、前記
発光層とホール注入電極との間には電子をブロックする
とともにホールを搬送するための導通パスを有する高抵
抗の無機ホール輸送層を有し、この高抵抗の無機ホール
輸送層とホール注入電極との間には有機のホール注入層
を有する有機EL素子。 (2) 前記高抵抗の無機ホール輸送層は、抵抗率が1
〜1×1011Ω・cmである上記(1)の有機EL素子。 (3) 前記高抵抗の無機ホール輸送層は、金属および
/または金属の酸化物、炭化物、窒化物、ケイ化物およ
び硼化物のいずれか1種以上を含有する上記(1)また
は(2)の有機EL素子。 (4) 前記高抵抗の無機ホール輸送層は、シリコンお
よび/またはゲルマニウムの酸化物を主成分とし、この
主成分を(Si1-xGex)Oyと表したとき 0≦x≦1、 1.7≦y≦2.2 であり、さらに、仕事関数4.5eV以上の金属および/
または金属の酸化物、炭化物、窒化物、ケイ化物および
硼化物のいずれか1種以上を含有する上記(1)〜
(3)のいずれかの有機EL素子。 (5) 前記金属は、Au,Cu、Fe、Ni、Ru、
Sn,Cr,Ir,Nb,Pt,W,Mo,Ta,Pd
およびCoのいずれか1種以上である上記(4)の有機
EL素子。 (6) 前記金属および/または金属の酸化物、炭化
物、窒化物、ケイ化物および硼化物の含有量は、0.2
〜40 mol%である上記(4)または(5)の有機EL
素子。 (7) 前記高抵抗のホール輸送層の膜厚は、0.2〜
100nmである上記(1)〜(6)のいずれかの有機E
L素子。Means for Solving the Problems That is, the above object is as follows.
This is achieved by the following configuration. (1) It has a hole injection electrode, an electron injection electrode, and an organic layer having at least a light emitting layer between these electrodes, and blocks electrons and transports holes between the light emitting layer and the hole injection electrode. EL device having a high-resistance inorganic hole-transporting layer having a conduction path for forming a hole, and an organic hole-injecting layer between the high-resistance inorganic hole-transporting layer and the hole injecting electrode. (2) The high-resistance inorganic hole transport layer has a resistivity of 1
The organic EL device according to the above (1), which has a size of 1 to 10 11 Ω · cm. (3) The high-resistance inorganic hole transport layer according to the above (1) or (2), wherein the high-resistance inorganic hole transport layer contains one or more of a metal and / or an oxide, carbide, nitride, silicide, and boride of the metal. Organic EL element. (4) The high-resistance inorganic hole transport layer is mainly composed of an oxide of silicon and / or germanium. When this main component is represented by (Si 1-x Ge x ) O y , 0 ≦ x ≦ 1, 1.7 ≦ y ≦ 2.2, and a metal having a work function of 4.5 eV or more and / or
Or (1) to (1) containing any one or more of metal oxides, carbides, nitrides, silicides, and borides
The organic EL device according to any one of (3). (5) The metal is Au, Cu, Fe, Ni, Ru,
Sn, Cr, Ir, Nb, Pt, W, Mo, Ta, Pd
And the organic EL device according to the above (4), which is at least one of Co and Co. (6) The content of the metal and / or oxide, carbide, nitride, silicide and boride of the metal is 0.2
The organic EL according to the above (4) or (5), wherein
element. (7) The high-resistance hole transport layer has a thickness of 0.2 to
Organic E according to any of (1) to (6) above,
L element.
【0013】[0013]
【発明の実施の形態】本発明の有機EL素子は、ホール
注入電極と電子注入電極と、これらの電極間に少なくと
も発光層を有する有機層とを有し、前記発光層とホール
注入電極との間には電子をブロックするとともにホール
を搬送するための導通パスを有する高抵抗の無機ホール
輸送層を有し、この高抵抗の無機ホール輸送層とホール
注入電極との間には有機のホール注入層を有する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The organic EL device of the present invention has a hole injection electrode, an electron injection electrode, and an organic layer having at least a light emitting layer between these electrodes. There is a high-resistance inorganic hole transport layer having a conduction path for blocking electrons and transporting holes between them, and an organic hole injection layer is provided between the high-resistance inorganic hole transport layer and the hole injection electrode. With layers.
【0014】電子注入電極材料は、低仕事関数の物質が
好ましく、例えば、K、Li、Na、Mg、La、C
e、Ca、Sr、Ba、Al、Ag、In、Sn、Z
n、Zr等の金属元素単体、または安定性を向上させる
ためにそれらを含む2成分、3成分の合金系、あるいは
これらの酸化物等を用いることが好ましい。また、L
i、Na、K、Rb、Csなどのアルカリ金属の酸化
物、フッ化物でもよい。合金系としては、例えばAg・
Mg(Ag:0.1〜50at%)、Al・Li(Li:
0.01〜12at%)、In・Mg(Mg:50〜80
at%)、Al・Ca(Ca:0.01〜20at%)等が
挙げられる。電子注入電極層にはこれらの材料からなる
薄膜、それらの2種類以上の多層薄膜が用いられる。The electron injecting electrode material is preferably a material having a low work function, for example, K, Li, Na, Mg, La, C
e, Ca, Sr, Ba, Al, Ag, In, Sn, Z
It is preferable to use a single metal element such as n or Zr, or a two- or three-component alloy system containing them for improving the stability, or an oxide thereof. Also, L
Oxides and fluorides of alkali metals such as i, Na, K, Rb, and Cs may be used. As an alloy system, for example, Ag.
Mg (Ag: 0.1 to 50 at%), Al.Li (Li:
0.01 to 12 at%), In.Mg (Mg: 50 to 80)
at%), Al.Ca (Ca: 0.01 to 20 at%) and the like. As the electron injection electrode layer, a thin film made of these materials, or a multilayer thin film of two or more of these materials is used.
【0015】電子注入電極薄膜の厚さは、電子注入を十
分行える一定以上の厚さとすれば良く、0.1nm以上、
好ましくは0.5nm以上、特に1nm以上とすればよい。
また、その上限値には特に制限はないが、通常膜厚は1
〜500nm程度とすればよい。電子注入電極の上には、
さらに補助電極(保護電極)を設けてもよい。The thickness of the electron-injection electrode thin film may be a certain thickness or more capable of sufficiently injecting electrons.
The thickness is preferably 0.5 nm or more, particularly 1 nm or more.
The upper limit is not particularly limited.
It may be about 500 nm. On the electron injection electrode,
Further, an auxiliary electrode (protection electrode) may be provided.
【0016】補助電極の厚さは、電子注入効率を確保
し、水分や酸素あるいは有機溶媒の進入を防止するた
め、一定以上の厚さとすればよく、好ましくは50nm以
上、さらには100nm以上、特に100〜500nmの範
囲が好ましい。補助電極層が薄すぎると、その効果が得
られず、また、補助電極層の段差被覆性が低くなってし
まい、端子電極との接続が十分ではなくなる。一方、補
助電極層が厚すぎると、補助電極層の応力が大きくなる
ため、ダークスポットの成長速度が速くなってしまう等
といった弊害が生じてくる。The thickness of the auxiliary electrode should be a certain thickness or more, preferably 50 nm or more, more preferably 100 nm or more, in order to secure electron injection efficiency and prevent entry of moisture, oxygen or an organic solvent. A range from 100 to 500 nm is preferred. If the auxiliary electrode layer is too thin, the effect cannot be obtained, and the step coverage of the auxiliary electrode layer is reduced, and the connection with the terminal electrode is not sufficient. On the other hand, if the auxiliary electrode layer is too thick, the stress of the auxiliary electrode layer increases, which causes adverse effects such as an increase in the growth rate of dark spots.
【0017】補助電極は、組み合わせる電子注入電極の
材質により最適な材質を選択して用いればよい。例え
ば、電子注入効率を確保することを重視するのであれば
Al等の低抵抗の金属を用いればよく、封止性を重視す
る場合には、TiN等の金属化合物を用いてもよい。As the auxiliary electrode, an optimum material may be selected and used depending on the material of the electron injection electrode to be combined. For example, if importance is placed on ensuring electron injection efficiency, a low-resistance metal such as Al may be used, and if importance is placed on sealing properties, a metal compound such as TiN may be used.
【0018】電子注入電極と補助電極とを併せた全体の
厚さとしては、特に制限はないが、通常50〜500nm
程度とすればよい。The total thickness of the electron injecting electrode and the auxiliary electrode is not particularly limited, but is usually 50 to 500 nm.
It should be about the degree.
【0019】ホール注入電極材料は、ホール注入層等へ
ホールを効率よく注入することのできるものが好まし
く、仕事関数4.5eV〜5.5eVの物質が好ましい。具
体的には、錫ドープ酸化インジウム(ITO)、亜鉛ド
ープ酸化インジウム(IZO)、酸化インジウム(In
2O3 )、酸化スズ(SnO2 )および酸化亜鉛(Zn
O)のいずれかを主組成としたものが好ましい。これら
の酸化物はその化学量論組成から多少偏倚していてもよ
い。In2 O3 に対するSnO2 の混合比は、1〜20
wt%、さらには5〜12wt%が好ましい。また、IZO
でのIn2 O3 に対するZnOの混合比は、通常、12
〜32wt%程度である。The material for the hole injection electrode is preferably a material capable of efficiently injecting holes into the hole injection layer or the like, and is preferably a substance having a work function of 4.5 eV to 5.5 eV. Specifically, tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), indium oxide (In
2 O 3 ), tin oxide (SnO 2 ) and zinc oxide (Zn
O) having a main composition of either of them is preferable. These oxides may deviate somewhat from their stoichiometric composition. The mixing ratio of SnO 2 to In 2 O 3 is 1 to 20.
wt%, more preferably 5 to 12 wt%. Also, IZO
The mixing ratio of ZnO to In 2 O 3 is usually 12
About 32% by weight.
【0020】ホール注入電極は、仕事関数を調整するた
め、酸化シリコン(SiO2 )を含有していてもよい。
酸化シリコン(SiO2 )の含有量は、ITOに対する
SiO2 の mol比で0.5〜10%程度が好ましい。S
iO2 を含有することにより、ITOの仕事関数が増大
する。The hole injection electrode may contain silicon oxide (SiO 2 ) to adjust the work function.
The content of silicon oxide (SiO 2 ) is preferably about 0.5 to 10% by mol ratio of SiO 2 to ITO. S
The inclusion of iO 2 increases the work function of ITO.
【0021】光を取り出す側の電極は、発光波長帯域、
通常400〜700nm、特に各発光光に対する光透過率
が50%以上、さらには80%以上、特に90%以上で
あることが好ましい。透過率が低くなりすぎると、発光
層からの発光自体が減衰され、発光素子として必要な輝
度を得難くなってくる。The electrode on the light extraction side is an emission wavelength band,
The light transmittance is usually 400 to 700 nm, particularly preferably 50% or more, more preferably 80% or more, and particularly preferably 90% or more for each emitted light. If the transmittance is too low, the light emission itself from the light emitting layer is attenuated, and it becomes difficult to obtain the luminance required for the light emitting element.
【0022】電極の厚さは、50〜500nm、特に50
〜300nmの範囲が好ましい。また、その上限は特に制
限はないが、あまり厚いと透過率の低下や剥離などの心
配が生じる。厚さが薄すぎると、十分な効果が得られ
ず、製造時の膜強度等の点でも問題がある。The thickness of the electrode is 50-500 nm, especially 50
The range of -300 nm is preferred. The upper limit is not particularly limited. However, if the thickness is too large, there is a fear that the transmittance is reduced or the layer is peeled off. If the thickness is too small, a sufficient effect cannot be obtained, and there is a problem in film strength at the time of production and the like.
【0023】発光層は、少なくとも発光機能に関与する
1種類、または2種類以上の有機化合物薄膜、またはそ
の積層膜からなる。The light emitting layer comprises at least one kind or two or more kinds of organic compound thin films involved in the light emitting function, or a laminated film thereof.
【0024】発光層は、ホール(正孔)および電子の注
入機能、それらの輸送機能、ホールと電子の再結合によ
り励起子を生成させる機能を有する。発光層には、比較
的電子的にニュートラルな化合物を用いることで、電子
とホールを容易かつバランスよく注入・輸送することが
できる。The light emitting layer has a function of injecting holes (holes) and electrons, a function of transporting them, and a function of generating excitons by recombination of holes and electrons. By using a relatively electronically neutral compound for the light emitting layer, electrons and holes can be easily injected and transported in a well-balanced manner.
【0025】発光層の厚さは、特に制限されるものでは
なく、形成方法によっても異なるが、通常5〜500nm
程度、特に10〜300nmとすることが好ましい。The thickness of the light emitting layer is not particularly limited and varies depending on the forming method.
It is preferable that the thickness be in the range of 10 to 300 nm.
【0026】有機EL素子の発光層には、発光機能を有
する化合物である蛍光性物質を含有させる。このような
蛍光性物質としては、例えば、特開昭63−26469
2号公報に開示されているような化合物、例えばキナク
リドン、ルブレン、スチリル系色素等の化合物から選択
される少なくとも1種が挙げられる。また、トリス(8
−キノリノラト)アルミニウム等の8−キノリノールま
たはその誘導体を配位子とする金属錯体色素などのキノ
リン誘導体、テトラフェニルブタジエン、アントラセ
ン、ペリレン、コロネン、12−フタロペリノン誘導体
等が挙げられる。さらには、特開平8−12600号公
報(特願平6−110569号)に記載のフェニルアン
トラセン誘導体、特開平8−12969号公報(特願平
6−114456号)に記載のテトラアリールエテン誘
導体等を用いることができる。The light emitting layer of the organic EL element contains a fluorescent substance which is a compound having a light emitting function. Examples of such a fluorescent substance include, for example, JP-A-63-26469.
No. 2 discloses at least one compound selected from compounds such as quinacridone, rubrene, and styryl dyes. Also, Tris (8
Quinolinol derivatives such as metal complex dyes having 8-quinolinol or a derivative thereof as a ligand, such as (quinolinolato) aluminum; tetraphenylbutadiene, anthracene, perylene, coronene, and 12-phthaloperinone derivatives. Further, phenylanthracene derivatives described in JP-A-8-12600 (Japanese Patent Application No. 6-110569), tetraarylethene derivatives described in JP-A-8-12969 (Japanese Patent Application No. 6-114456), and the like are described. Can be used.
【0027】また、それ自体で発光が可能なホスト物質
と組み合わせて使用することが好ましく、ドーパントと
しての使用が好ましい。このような場合の発光層におけ
る化合物の含有量は0.01〜10体積%、さらには
0.1〜5体積%であることが好ましい。また、ルブレ
ン系では0.01〜20体積%程度が好ましい。ホスト
物質と組み合わせて使用することによって、ホスト物質
の発光波長特性を変化させることができ、長波長に移行
した発光が可能になるとともに、素子の発光効率や安定
性が向上する。Further, it is preferable to use in combination with a host substance capable of emitting light by itself, and it is preferable to use it as a dopant. In such a case, the content of the compound in the light emitting layer is preferably 0.01 to 10% by volume, and more preferably 0.1 to 5% by volume. In the case of rubrene, the content is preferably about 0.01 to 20% by volume. When used in combination with a host substance, the emission wavelength characteristics of the host substance can be changed, light emission shifted to a longer wavelength becomes possible, and the luminous efficiency and stability of the device are improved.
【0028】ホスト物質としては、キノリノラト錯体が
好ましく、さらには8−キノリノールまたはその誘導体
を配位子とするアルミニウム錯体が好ましい。このよう
なアルミニウム錯体としては、特開昭63−26469
2号、特開平3−255190号、特開平5−7073
3号、特開平5−258859号、特開平6−2158
74号等に開示されているものを挙げることができる。The host substance is preferably a quinolinolato complex, and more preferably an aluminum complex having 8-quinolinol or a derivative thereof as a ligand. Such an aluminum complex is disclosed in JP-A-63-26469.
No. 2, JP-A-3-255190, JP-A-5-7073
3, JP-A-5-258859, JP-A-6-2158
No. 74 and the like.
【0029】具体的には、まず、トリス(8−キノリノ
ラト)アルミニウム、ビス(8−キノリノラト)マグネ
シウム、ビス(ベンゾ{f}−8−キノリノラト)亜
鉛、ビス(2−メチル−8−キノリノラト)アルミニウ
ムオキシド、トリス(8−キノリノラト)インジウム、
トリス(5−メチル−8−キノリノラト)アルミニウ
ム、8−キノリノラトリチウム、トリス(5−クロロ−
8−キノリノラト)ガリウム、ビス(5−クロロ−8−
キノリノラト)カルシウム、5,7−ジクロル−8−キ
ノリノラトアルミニウム、トリス(5,7−ジブロモ−
8−ヒドロキシキノリノラト)アルミニウム、ポリ[亜
鉛(II)−ビス(8−ヒドロキシ−5−キノリニル)メ
タン]等がある。Specifically, first, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis (benzo {f} -8-quinolinolato) zinc, bis (2-methyl-8-quinolinolato) aluminum Oxide, tris (8-quinolinolato) indium,
Tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris (5-chloro-
8-quinolinolato) gallium, bis (5-chloro-8-
Quinolinolato) calcium, 5,7-dichloro-8-quinolinolatoaluminum, tris (5,7-dibromo-
8-hydroxyquinolinolato) aluminum and poly [zinc (II) -bis (8-hydroxy-5-quinolinyl) methane].
【0030】また、8−キノリノールまたはその誘導体
のほかに他の配位子を有するアルミニウム錯体であって
もよく、このようなものとしては、ビス(2−メチル−
8−キノリノラト)(フェノラト)アルミニウム(III)
、ビス(2−メチル−8−キノリノラト)(オルト−
クレゾラト)アルミニウム(III) 、ビス(2−メチル−
8−キノリノラト)(メタークレゾラト)アルミニウム
(III) 、ビス(2−メチル−8−キノリノラト)(パラ
−クレゾラト)アルミニウム(III) 、ビス(2−メチル
−8−キノリノラト)(オルト−フェニルフェノラト)
アルミニウム(III) 、ビス(2−メチル−8−キノリノ
ラト)(メタ−フェニルフェノラト)アルミニウム(II
I) 、ビス(2−メチル−8−キノリノラト)(パラ−
フェニルフェノラト)アルミニウム(III) 、ビス(2−
メチル−8−キノリノラト)(2,3−ジメチルフェノ
ラト)アルミニウム(III) 、ビス(2−メチル−8−キ
ノリノラト)(2,6−ジメチルフェノラト)アルミニ
ウム(III) 、ビス(2−メチル−8−キノリノラト)
(3,4−ジメチルフェノラト)アルミニウム(III) 、
ビス(2−メチル−8−キノリノラト)(3,5−ジメ
チルフェノラト)アルミニウム(III) 、ビス(2−メチ
ル−8−キノリノラト)(3,5−ジ−tert−ブチルフ
ェノラト)アルミニウム(III) 、ビス(2−メチル−8
−キノリノラト)(2,6−ジフェニルフェノラト)ア
ルミニウム(III) 、ビス(2−メチル−8−キノリノラ
ト)(2,4,6−トリフェニルフェノラト)アルミニ
ウム(III) 、ビス(2−メチル−8−キノリノラト)
(2,3,6−トリメチルフェノラト)アルミニウム(I
II) 、ビス(2−メチル−8−キノリノラト)(2,
3,5,6−テトラメチルフェノラト)アルミニウム(I
II) 、ビス(2−メチル−8−キノリノラト)(1−ナ
フトラト)アルミニウム(III) 、ビス(2−メチル−8
−キノリノラト)(2−ナフトラト)アルミニウム(II
I) 、ビス(2,4−ジメチル−8−キノリノラト)
(オルト−フェニルフェノラト)アルミニウム(III) 、
ビス(2,4−ジメチル−8−キノリノラト)(パラ−
フェニルフェノラト)アルミニウム(III) 、ビス(2,
4−ジメチル−8−キノリノラト)(メタ−フェニルフ
ェノラト)アルミニウム(III) 、ビス(2,4−ジメチ
ル−8−キノリノラト)(3,5−ジメチルフェノラ
ト)アルミニウム(III) 、ビス(2,4−ジメチル−8
−キノリノラト)(3,5−ジ−tert−ブチルフェノラ
ト)アルミニウム(III) 、ビス(2−メチル−4−エチ
ル−8−キノリノラト)(パラ−クレゾラト)アルミニ
ウム(III) 、ビス(2−メチル−4−メトキシ−8−キ
ノリノラト)(パラ−フェニルフェノラト)アルミニウ
ム(III) 、ビス(2−メチル−5−シアノ−8−キノリ
ノラト)(オルト−クレゾラト)アルミニウム(III) 、
ビス(2−メチル−6−トリフルオロメチル−8−キノ
リノラト)(2−ナフトラト)アルミニウム(III) 等が
ある。Further, in addition to 8-quinolinol or its derivative, an aluminum complex having another ligand may be used, such as bis (2-methyl-
8-quinolinolato) (phenolato) aluminum (III)
, Bis (2-methyl-8-quinolinolato) (ortho-
Cresolato) aluminum (III), bis (2-methyl-
8-quinolinolato) (meth-cresolate) aluminum
(III), bis (2-methyl-8-quinolinolato) (para-cresolato) aluminum (III), bis (2-methyl-8-quinolinolato) (ortho-phenylphenolate)
Aluminum (III), bis (2-methyl-8-quinolinolato) (meth-phenylphenolato) aluminum (II
I), bis (2-methyl-8-quinolinolato) (para-
Phenylphenolato) aluminum (III), bis (2-
Methyl-8-quinolinolato) (2,3-dimethylphenolato) aluminum (III), bis (2-methyl-8-quinolinolato) (2,6-dimethylphenolato) aluminum (III), bis (2-methyl- 8-quinolinolato)
(3,4-dimethylphenolato) aluminum (III),
Bis (2-methyl-8-quinolinolato) (3,5-dimethylphenolato) aluminum (III), bis (2-methyl-8-quinolinolato) (3,5-di-tert-butylphenolato) aluminum (III) ), Bis (2-methyl-8)
-Quinolinolato) (2,6-diphenylphenolato) aluminum (III), bis (2-methyl-8-quinolinolato) (2,4,6-triphenylphenolato) aluminum (III), bis (2-methyl- 8-quinolinolato)
(2,3,6-trimethylphenolato) aluminum (I
II), bis (2-methyl-8-quinolinolato) (2,
3,5,6-tetramethylphenolato) aluminum (I
II), bis (2-methyl-8-quinolinolato) (1-naphthrat) aluminum (III), bis (2-methyl-8
-Quinolinolato) (2-naphthrat) aluminum (II
I), bis (2,4-dimethyl-8-quinolinolato)
(Ortho-phenylphenolato) aluminum (III),
Bis (2,4-dimethyl-8-quinolinolato) (para-
Phenylphenolato) aluminum (III), bis (2,
4-dimethyl-8-quinolinolato) (meta-phenylphenolato) aluminum (III), bis (2,4-dimethyl-8-quinolinolato) (3,5-dimethylphenolato) aluminum (III), bis (2 4-dimethyl-8
-Quinolinolato) (3,5-di-tert-butylphenolato) aluminum (III), bis (2-methyl-4-ethyl-8-quinolinolato) (para-cresolato) aluminum (III), bis (2-methyl) -4-methoxy-8-quinolinolato) (para-phenylphenolato) aluminum (III), bis (2-methyl-5-cyano-8-quinolinolato) (ortho-cresolato) aluminum (III),
Bis (2-methyl-6-trifluoromethyl-8-quinolinolato) (2-naphthrat) aluminum (III);
【0031】このほか、ビス(2−メチル−8−キノリ
ノラト)アルミニウム(III) −μ−オキソ−ビス(2−
メチル−8−キノリノラト)アルミニウム(III) 、ビス
(2,4−ジメチル−8−キノリノラト)アルミニウム
(III) −μ−オキソ−ビス(2,4−ジメチル−8−キ
ノリノラト)アルミニウム(III) 、ビス(4−エチル−
2−メチル−8−キノリノラト)アルミニウム(III) −
μ−オキソ−ビス(4−エチル−2−メチル−8−キノ
リノラト)アルミニウム(III) 、ビス(2−メチル−4
−メトキシキノリノラト)アルミニウム(III) −μ−オ
キソ−ビス(2−メチル−4−メトキシキノリノラト)
アルミニウム(III) 、ビス(5−シアノ−2−メチル−
8−キノリノラト)アルミニウム(III) −μ−オキソ−
ビス(5−シアノ−2−メチル−8−キノリノラト)ア
ルミニウム(III) 、ビス(2−メチル−5−トリフルオ
ロメチル−8−キノリノラト)アルミニウム(III) −μ
−オキソ−ビス(2−メチル−5−トリフルオロメチル
−8−キノリノラト)アルミニウム(III) 等であっても
よい。In addition, bis (2-methyl-8-quinolinolato) aluminum (III) -μ-oxo-bis (2-
Methyl-8-quinolinolato) aluminum (III), bis (2,4-dimethyl-8-quinolinolato) aluminum
(III) -μ-oxo-bis (2,4-dimethyl-8-quinolinolato) aluminum (III), bis (4-ethyl-
2-methyl-8-quinolinolato) aluminum (III)-
μ-oxo-bis (4-ethyl-2-methyl-8-quinolinolato) aluminum (III), bis (2-methyl-4
-Methoxyquinolinolato) aluminum (III) -μ-oxo-bis (2-methyl-4-methoxyquinolinolato)
Aluminum (III), bis (5-cyano-2-methyl-
8-quinolinolato) aluminum (III) -μ-oxo-
Bis (5-cyano-2-methyl-8-quinolinolato) aluminum (III), bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum (III) -μ
-Oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum (III) and the like.
【0032】このほかのホスト物質としては、特開平8
−12600号公報(特願平6−110569号)に記
載のフェニルアントラセン誘導体や特開平8−1296
9号公報(特願平6−114456号)に記載のテトラ
アリールエテン誘導体なども好ましい。Other host materials include those disclosed in
Phenylanthracene derivative described in JP-A-12600 (Japanese Patent Application No. 6-110569) and JP-A-8-1296
No. 9 (Japanese Patent Application No. 6-114456) is also preferable.
【0033】発光層は電子注入輸送層を兼ねたものであ
ってもよく、このような場合はトリス(8−キノリノラ
ト)アルミニウム等を使用することが好ましい。これら
の蛍光性物質を蒸着すればよい。The light emitting layer may also serve as an electron injection / transport layer. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like. These fluorescent substances may be deposited.
【0034】また、発光層は、必要に応じて、少なくと
も1種のホール注入輸送性化合物と少なくとも1種の電
子注入輸送性化合物との混合層とすることも好ましく、
さらにはこの混合層中にドーパントを含有させることが
好ましい。このような混合層における化合物の含有量
は、0.01〜20体積%、さらには0.1〜15体積
%とすることが好ましい。The light emitting layer is preferably a mixed layer of at least one kind of hole injecting and transporting compound and at least one kind of electron injecting and transporting compound, if necessary.
Further, it is preferable that a dopant is contained in the mixed layer. The content of the compound in such a mixed layer is preferably 0.01 to 20% by volume, more preferably 0.1 to 15% by volume.
【0035】混合層では、キャリアのホッピング伝導パ
スができるため、各キャリアは極性的に有利な物質中を
移動し、逆の極性のキャリア注入は起こりにくくなるた
め、有機化合物がダメージを受けにくくなり、素子寿命
がのびるという利点がある。また、前述のドーパントを
このような混合層に含有させることにより、混合層自体
のもつ発光波長特性を変化させることができ、発光波長
を長波長に移行させることができるとともに、発光強度
を高め、素子の安定性を向上させることもできる。In the mixed layer, a hopping conduction path of carriers is formed, so that each carrier moves in a material having a favorable polarity, and injection of a carrier having the opposite polarity is less likely to occur, so that the organic compound is less likely to be damaged. This has the advantage that the element life is extended. Further, by including the above-described dopant in such a mixed layer, the emission wavelength characteristics of the mixed layer itself can be changed, the emission wavelength can be shifted to a longer wavelength, and the emission intensity is increased, The stability of the device can be improved.
【0036】混合層に用いられるホール注入輸送性化合
物および電子注入輸送性化合物は、各々、後述のホール
注入輸送性の化合物および電子注入輸送性の化合物の中
から選択すればよい。The hole injecting / transporting compound and the electron injecting / transporting compound used in the mixed layer may be selected from the below-described hole injecting / transporting compounds and electron injecting / transporting compounds, respectively.
【0037】電子注入輸送性の化合物としては、キノリ
ン誘導体、さらには8−キノリノールないしその誘導体
を配位子とする金属錯体、特にトリス(8−キノリノラ
ト)アルミニウム(Alq3 )を用いることが好まし
い。また、上記のフェニルアントラセン誘導体、テトラ
アリールエテン誘導体を用いるのも好ましい。As the compound capable of injecting and transporting electrons, it is preferable to use a quinoline derivative, furthermore a metal complex having 8-quinolinol or a derivative thereof as a ligand, particularly tris (8-quinolinolato) aluminum (Alq3). It is also preferable to use the above-mentioned phenylanthracene derivatives and tetraarylethene derivatives.
【0038】ホール注入輸送性の化合物としては、強い
蛍光を持ったアミン誘導体、例えば上記のホール輸送材
料であるトリフェニルジアミン誘導体、さらにはスチリ
ルアミン誘導体、芳香族縮合環を持つアミン誘導体を用
いるのが好ましい。As the compound capable of injecting and transporting holes, an amine derivative having strong fluorescence, for example, a triphenyldiamine derivative which is the above-described hole transporting material, a styrylamine derivative, or an amine derivative having an aromatic condensed ring is used. Is preferred.
【0039】この場合の混合比は、それぞれのキャリア
移動度とキャリア濃度によるが、一般的には、ホール注
入輸送性化合物の化合物/電子注入輸送機能を有する化
合物の重量比が、1/99〜99/1、さらに好ましく
は10/90〜90/10、特に好ましくは20/80
〜80/20程度となるようにすることが好ましい。The mixing ratio in this case depends on the respective carrier mobility and carrier concentration. In general, the weight ratio of the compound of the hole injecting / transporting compound / the compound having the electron injecting / transporting function is from 1/99 to more. 99/1, more preferably 10/90 to 90/10, particularly preferably 20/80
It is preferable to set it to about 80/20.
【0040】また、混合層の厚さは、分子層一層に相当
する厚み以上で、有機化合物層の膜厚未満とすることが
好ましい。具体的には1〜85nmとすることが好まし
く、さらには5〜60nm、特には5〜50nmとすること
が好ましい。The thickness of the mixed layer is preferably not less than the thickness of one molecular layer and less than the thickness of the organic compound layer. Specifically, the thickness is preferably 1 to 85 nm, more preferably 5 to 60 nm, particularly preferably 5 to 50 nm.
【0041】また、混合層の形成方法としては、異なる
蒸着源より蒸発させる共蒸着が好ましいが、蒸気圧(蒸
発温度)が同程度あるいは非常に近い場合には、予め同
じ蒸着ボード内で混合させておき、蒸着することもでき
る。混合層は化合物同士が均一に混合している方が好ま
しいが、場合によっては、化合物が島状に存在するもの
であってもよい。発光層は、一般的には、有機蛍光物質
を蒸着するか、あるいは、樹脂バインダー中に分散させ
てコーティングすることにより、発光層を所定の厚さに
形成する。As a method for forming a mixed layer, co-evaporation in which evaporation is performed from different evaporation sources is preferable. However, when the vapor pressures (evaporation temperatures) are approximately the same or very close, they are mixed in advance in the same evaporation board. Alternatively, it can be deposited. In the mixed layer, it is preferable that the compounds are uniformly mixed, but in some cases, the compounds may exist in an island shape. The light-emitting layer is generally formed to a predetermined thickness by vapor-depositing an organic fluorescent substance or by dispersing and coating the resin in a resin binder.
【0042】真空蒸着の条件は特に限定されないが、1
0-4Pa以下の真空度とし、蒸着速度は0.01〜1nm/
sec 程度とすることが好ましい。また、真空中で連続し
て各層を形成することが好ましい。真空中で連続して形
成すれば、各層の界面に不純物が吸着することを防げる
ため、高特性が得られる。また、素子の駆動電圧を低く
したり、ダークスポットの発生・成長を抑制したりする
ことができる。The conditions for vacuum deposition are not particularly limited.
The degree of vacuum is 0 -4 Pa or less, and the deposition rate is 0.01 to 1 nm /
It is preferable to set it to about sec. Further, it is preferable to form each layer continuously in a vacuum. If they are formed continuously in a vacuum, impurities can be prevented from adsorbing at the interface between the layers, so that high characteristics can be obtained. Further, the driving voltage of the element can be reduced, and the occurrence and growth of dark spots can be suppressed.
【0043】これら各層の形成に真空蒸着法を用いる場
合において、1層に複数の化合物を含有させる場合、化
合物を入れた各ボートを個別に温度制御して共蒸着する
ことが好ましい。In the case where a plurality of compounds are contained in one layer when a vacuum evaporation method is used for forming each of these layers, it is preferable to co-deposit each boat containing the compounds by individually controlling the temperature.
【0044】本発明の有機EL素子は、上記発光層と、
ホール注入層との間に、高抵抗の無機ホール輸送層を有
する。The organic EL device of the present invention comprises:
A high-resistance inorganic hole transport layer is provided between the hole injection layer and the hole injection layer.
【0045】このように、ホールの導通パスを有し、電
子をブロックできる高抵抗の無機ホール輸送層を発光層
と有機のホール注入層との間に配置することで、発光層
へホールを効率よく注入することができ、発光効率が向
上するとともに駆動電圧が低下する。As described above, by arranging a high-resistance inorganic hole transport layer having a hole conduction path and capable of blocking electrons between the light emitting layer and the organic hole injection layer, holes can be efficiently transferred to the light emitting layer. Injection can be performed well, the luminous efficiency is improved, and the driving voltage is reduced.
【0046】また、好ましくは高抵抗の無機ホール輸送
層の主成分としてシリコンや、ゲルマニウム等の金属ま
たは半金属の酸化物を用い、これに仕事関数4.5eV以
上、好ましくは4.5〜6eVの金属や、半金属および/
またはこれらの酸化物、炭化物、窒化物、ケイ化物、硼
化物のいずれか1種以上を含有させて導電パスを形成す
ることにより、ホール注入層から発光層側の有機層へ効
率よくホールを注入することができる。しかも、発光層
からホール注入電極側への電子の移動を抑制することが
でき、発光層でのホールと電子との再結合を効率よく行
わせることができる。また、無機材料の有するメリット
と、有機材料の有するメリットとを併せもった有機EL
素子とすることができる。本発明の有機EL素子は、従
来の有機ホール輸送層を有する素子と同等かそれ以上の
輝度が得られ、しかも、耐熱性、耐候性が高いので従来
のものよりも寿命が長く、リークやダークスポットの発
生も少ない。また、比較的高価な有機物質ばかりではな
く、安価で入手しやすく製造が容易な無機材料も用いる
ことで、製造コストを低減することもできる。Preferably, a metal or semimetal oxide such as silicon or germanium is used as a main component of the high-resistance inorganic hole transport layer, and the work function of the oxide is 4.5 eV or more, preferably 4.5 to 6 eV. Metal, semi-metal and / or
Alternatively, a hole is efficiently injected from the hole injection layer into the organic layer on the light emitting layer side by forming a conductive path containing at least one of these oxides, carbides, nitrides, silicides, and borides. can do. In addition, the movement of electrons from the light emitting layer to the hole injection electrode side can be suppressed, and the recombination of holes and electrons in the light emitting layer can be performed efficiently. In addition, an organic EL having both the advantages of an inorganic material and the advantages of an organic material
It can be an element. The organic EL device of the present invention can obtain a luminance equal to or higher than that of a device having a conventional organic hole transporting layer, and has a longer life than conventional devices because of high heat resistance and weather resistance, and has a leak and darkness. There are few spots. Further, not only relatively expensive organic substances but also inorganic materials which are inexpensive, easily available and easily manufactured can be used to reduce manufacturing costs.
【0047】高抵抗の無機ホール輸送層は、その抵抗率
が好ましくは1〜1×1011Ω・cm、特に1×103〜
1×108Ω・cmである。高抵抗の無機ホール輸送層の
抵抗率を上記範囲とすることにより、高い電子ブロック
性を維持したままホール注入効率を飛躍的に向上させる
ことができる。高抵抗の無機ホール輸送層の抵抗率は、
シート抵抗と膜厚からも求めることができる。この場
合、シート抵抗は4端子法等により測定することができ
る。The resistivity of the high-resistance inorganic hole transport layer is preferably 1 to 1 × 10 11 Ω · cm, particularly 1 × 10 3 to 10 × 10 11 Ω · cm.
It is 1 × 10 8 Ω · cm. By setting the resistivity of the high-resistance inorganic hole transport layer within the above range, the hole injection efficiency can be dramatically improved while maintaining high electron blocking properties. The resistivity of the high-resistance inorganic hole transport layer is
It can also be determined from the sheet resistance and the film thickness. In this case, the sheet resistance can be measured by a four-terminal method or the like.
【0048】主成分の材料は、シリコン、ゲルマニウム
の酸化物であり、好ましくは(Si1-xGex)Oyにお
いて 0≦x≦1、 1.7≦y≦2.2、好ましくは1.7≦y≦1.99 である。高抵抗の無機ホール輸送層の主成分は、酸化ケ
イ素でも酸化ゲルマニウムでもよく、それらの混合薄膜
でもよい。yがこれより大きくても小さくてもホール注
入機能は低下してくる傾向がある。組成は、例えばラザ
フォード後方散乱、化学分析等で調べればよい。The material of the main component is an oxide of silicon or germanium. Preferably, in (Si 1-x Ge x ) O y , 0 ≦ x ≦ 1, 1.7 ≦ y ≦ 2.2, preferably 1 0.7 ≦ y ≦ 1.99. The main component of the high-resistance inorganic hole transport layer may be silicon oxide or germanium oxide, or a mixed thin film thereof. If y is larger or smaller than this, the hole injection function tends to decrease. The composition may be determined by, for example, Rutherford backscattering or chemical analysis.
【0049】高抵抗の無機ホール輸送層は、さらに主成
分に加え、仕事関数4.5eV以上の金属(半金属を含
む)の酸化物、炭化物、窒化物、ケイ化物および硼化物
を含有することが好ましい。仕事関数4.5eV以上、好
ましくは4.5〜6eVの金属は、好ましくはAu,C
u、Fe、Ni、Ru、Sn,Cr,Ir,Nb,P
t,W,Mo,Ta,PdおよびCoのいずれか1種ま
た2種以上である。これらは一般に金属としてあるいは
酸化物の形で存在する。また、これらの炭化物、窒化
物、ケイ化物、硼化物であってもよい。これらを混合し
て用いる場合の混合比は任意である。これらの含有量は
好ましくは0.2〜40 mol%、より好ましくは1〜2
0 mol%である。含有量がこれより少ないとホール注入
機能が低下し、含有量がこれを超えると電子ブロック機
能が低下してくる。2種以上を併用する場合、合計の含
有量は上記の範囲にすることが好ましい。The high-resistance inorganic hole transport layer further contains, in addition to the main component, an oxide, carbide, nitride, silicide and boride of a metal (including a semimetal) having a work function of 4.5 eV or more. Is preferred. A metal having a work function of 4.5 eV or more, preferably 4.5 to 6 eV is preferably Au, C
u, Fe, Ni, Ru, Sn, Cr, Ir, Nb, P
At least one of t, W, Mo, Ta, Pd and Co. These are generally present as metals or in the form of oxides. Moreover, these carbides, nitrides, silicides, and borides may be used. When these are mixed and used, the mixing ratio is arbitrary. Their content is preferably from 0.2 to 40 mol%, more preferably from 1 to 2 mol%.
0 mol%. If the content is less than this, the hole injection function is reduced, and if the content exceeds this, the electron blocking function is reduced. When two or more kinds are used in combination, the total content is preferably in the above range.
【0050】上記金属または金属(半金属を含む)の酸
化物、炭化物、窒化物、ケイ化物および硼化物は、通
常、高抵抗の無機ホール輸送層中に分散している。分散
粒子の粒径としては、通常、1〜5nm程度である。この
導体である分散粒子同士との間で高抵抗の主成分を介し
てホールを搬送するためのホッピングパスが形成される
ものと考えられる。The oxides, carbides, nitrides, silicides and borides of the above metals or metals (including semimetals) are usually dispersed in a high-resistance inorganic hole transport layer. The particle size of the dispersed particles is usually about 1 to 5 nm. It is considered that a hopping path for transporting holes between the dispersed particles as conductors via the high-resistance main component is formed.
【0051】高抵抗の無機ホール輸送層には、他に、不
純物として、Hやスパッタガスに用いるNe、Ar、K
r、Xe等を合計5at%以下含有していてもよい。In the high-resistance inorganic hole transport layer, H, Ne, Ar, K
r, Xe, etc. may be contained in a total of 5 at% or less.
【0052】なお、高抵抗の無機ホール輸送層全体の平
均値としてこのような組成であれば、均一でなくてもよ
く、膜厚方向に濃度勾配を有する構造としてもよい。The average value of the whole high-resistance inorganic hole transporting layer is not necessarily uniform as long as it has such a composition, and a structure having a concentration gradient in the film thickness direction may be employed.
【0053】高抵抗の無機ホール輸送層は、通常、非晶
質状態である。The high-resistance inorganic hole transport layer is usually in an amorphous state.
【0054】高抵抗の無機ホール輸送層の膜厚として
は、好ましくは0.2〜100nm、より好ましくは0.
2〜30nm、特に0.2〜10nm程度が好ましい。高抵
抗の無機ホール輸送層がこれより薄くても厚くても、ホ
ール輸送層としての機能を十分に発揮できなくなくなっ
てくる。The thickness of the high-resistance inorganic hole transport layer is preferably 0.2 to 100 nm, more preferably 0.1 to 100 nm.
The thickness is preferably 2 to 30 nm, particularly preferably about 0.2 to 10 nm. Even if the high-resistance inorganic hole transport layer is thinner or thicker, the function as the hole transport layer cannot be sufficiently exhibited.
【0055】上記の高抵抗の無機ホール輸送層の製造方
法としては、スパッタ法、蒸着法などの各種の物理的ま
たは化学的な薄膜形成方法などが考えられるが、スパッ
タ法が好ましい。なかでも、上記主成分と金属または金
属酸化物等のターゲットを別個にスパッタする多元スパ
ッタが好ましい。多元スパッタにすることで、それぞれ
のターゲットに好適なスパッタ法を用いることができ
る。また、1元スパッタとする場合には、主成分のター
ゲット上に上記金属または金属酸化物等の小片を配置
し、両者の面積比を適当に調整することにより、組成を
調整してもよい。As a method for manufacturing the above-described inorganic hole transporting layer having a high resistance, various physical or chemical thin film forming methods such as a sputtering method and an evaporation method can be considered, but the sputtering method is preferable. Among them, multi-source sputtering in which the above main component and a target such as a metal or a metal oxide are separately sputtered is preferable. By using multi-source sputtering, a sputtering method suitable for each target can be used. Further, in the case of one-source sputtering, the composition may be adjusted by arranging small pieces of the above metal or metal oxide on the target of the main component and appropriately adjusting the area ratio of the two.
【0056】高抵抗の無機ホール輸送層をスパッタ法で
形成する場合、スパッタ時のスパッタガスの圧力は、
0.1〜1Paの範囲が好ましい。スパッタガスは、通常
のスパッタ装置に使用される不活性ガス、例えばAr,
Ne,Xe,Kr等が使用できる。また、必要によりN
2を用いてもよい。スパッタ時の雰囲気としては、上記
スパッタガスに加えO2を1〜99%程度混合して反応
性スパッタを行ってもよい。When a high-resistance inorganic hole transport layer is formed by a sputtering method, the pressure of a sputtering gas during sputtering is
The range is preferably from 0.1 to 1 Pa. The sputtering gas is an inert gas used in a normal sputtering apparatus, for example, Ar,
Ne, Xe, Kr, etc. can be used. Also, if necessary, N
2 may be used. As an atmosphere at the time of sputtering, reactive sputtering may be performed by mixing about 1 to 99% of O 2 in addition to the above-mentioned sputtering gas.
【0057】スパッタ法としてはRF電源を用いた高周
波スパッタ法や、DCスパッタ法等が使用できる。スパ
ッタ装置の電力としては、好ましくはRFスパッタで
0.1〜10W/cm2の範囲が好ましく、成膜レートは
0.5〜10nm/min 、特に1〜5nm/min の範囲が好
ましい。As a sputtering method, a high frequency sputtering method using an RF power source, a DC sputtering method, or the like can be used. The power of the sputtering apparatus is preferably in the range of 0.1 to 10 W / cm 2 by RF sputtering, and the film formation rate is preferably in the range of 0.5 to 10 nm / min, particularly 1 to 5 nm / min.
【0058】成膜時の基板温度としては、室温(25
℃)〜150℃程度である。The substrate temperature during film formation is room temperature (25
C) to about 150C.
【0059】本発明の有機EL素子は、高抵抗の無機ホ
ール輸送層を有することにより、耐熱性、耐候性が向上
し、素子の長寿命化を図れる。また、比較的高価な有機
物質ではなく、安価で入手しやすい無機材料を用いてい
るので、製造が容易となり、製造コストを低減すること
ができる。さらには、従来問題のあった無機材料である
電極との接続性も良好になる。このため、リーク電流の
発生やダークスポットの発生を抑えることができる。Since the organic EL device of the present invention has a high-resistance inorganic hole transport layer, heat resistance and weather resistance are improved, and the life of the device can be extended. In addition, since an inexpensive and easily available inorganic material is used instead of a relatively expensive organic substance, the production becomes easy and the production cost can be reduced. Further, the connectivity with the electrode, which is an inorganic material, which has been a problem in the past, is improved. For this reason, generation of a leak current and generation of a dark spot can be suppressed.
【0060】また、本発明の有機EL素子は、有機層と
して上記発光層以外に無機のホール輸送層に加え有機の
ホール注入層を有し、さらに必要により電子注入輸送層
を有してもよい。The organic EL device of the present invention has an organic hole injecting layer in addition to the inorganic hole transporting layer as an organic layer in addition to the light emitting layer, and may further have an electron injecting and transporting layer if necessary. .
【0061】有機材料からなる電子注入輸送層、および
ホール注入層には、上記発光層で示した電子注入輸送性
材料、ホール注入輸送性材料を用いることが好ましい。For the electron injection / transport layer and the hole injection layer made of an organic material, it is preferable to use the electron injection / transport material and the hole injection / transport material shown in the light emitting layer.
【0062】ホール注入層には、例えば、特開昭63−
295695号公報、特開平2−191694号公報、
特開平3−792号公報、特開平5−234681号公
報、特開平5−239455号公報、特開平5−299
174号公報、特開平7−126225号公報、特開平
7−126226号公報、特開平8−100172号公
報、EP0650955A1等に記載されている各種有
機化合物を用いることができる。例えば、テトラアリー
ルベンジシン化合物(トリアリールジアミンないしトリ
フェニルジアミン:TPD)、芳香族三級アミン、ヒド
ラゾン誘導体、カルバゾール誘導体、トリアゾール誘導
体、イミダゾール誘導体、アミノ基を有するオキサジア
ゾール誘導体、ポリチオフェン等である。これらの化合
物は、1種のみを用いても、2種以上を併用してもよ
い。2種以上を併用するときは、別層にして積層した
り、混合したりすればよい。The hole injection layer is described in, for example,
No. 295,695, JP-A-2-191694,
JP-A-3-792, JP-A-5-234681, JP-A-5-239455, JP-A-5-299
Various organic compounds described in JP-A-174, JP-A-7-126225, JP-A-7-126226, JP-A-8-100172, EP0650955A1, and the like can be used. For example, a tetraarylbendicine compound (triaryldiamine or triphenyldiamine: TPD), an aromatic tertiary amine, a hydrazone derivative, a carbazole derivative, a triazole derivative, an imidazole derivative, an oxadiazole derivative having an amino group, polythiophene, etc. . These compounds may be used alone or in combination of two or more. When two or more kinds are used in combination, they may be stacked as separate layers or mixed.
【0063】電子注入輸送層には、トリス(8−キノリ
ノラト)アルミニウム(Alq3 )等の8−キノリノー
ルまたはその誘導体を配位子とする有機金属錯体などの
キノリン誘導体、オキサジアゾール誘導体、ペリレン誘
導体、ピリジン誘導体、ピリミジン誘導体、キノキサリ
ン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオ
レン誘導体等を用いることができる。電子注入輸送層は
発光層を兼ねたものであってもよく、このような場合は
トリス(8−キノリノラト)アルミニウム等を使用する
ことが好ましい。電子注入輸送層の形成は、発光層と同
様に、蒸着等によればよい。A quinoline derivative such as an organometallic complex having 8-quinolinol such as tris (8-quinolinolato) aluminum (Alq3) or a derivative thereof as a ligand, an oxadiazole derivative, a perylene derivative, etc. A pyridine derivative, a pyrimidine derivative, a quinoxaline derivative, a diphenylquinone derivative, a nitro-substituted fluorene derivative, or the like can be used. The electron injection / transport layer may also serve as the light emitting layer. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like. The electron injecting and transporting layer may be formed by vapor deposition or the like, similarly to the light emitting layer.
【0064】電子注入輸送層を電子注入層と電子輸送層
とに分けて積層する場合には、電子注入輸送層用の化合
物の中から好ましい組み合わせを選択して用いることが
できる。このとき、電子注入電極側から電子親和力の値
の大きい化合物の順に積層することが好ましい。このよ
うな積層順については、電子注入輸送層を2層以上設け
るときも同様である。In the case where the electron injecting and transporting layer is divided into an electron injecting layer and an electron transporting layer, a preferable combination can be selected from the compounds for the electron injecting and transporting layer. At this time, it is preferable to stack the compounds in descending order of the electron affinity value from the electron injection electrode side. Such a stacking order is the same when two or more electron injection / transport layers are provided.
【0065】有機のホール注入層の厚さおよび電子注入
輸送層の厚さは、特に制限されるものではなく、形成方
法によっても異なるが、通常5〜500nm程度、特に1
0〜300nmとすることが好ましい。電子の注入層と輸
送層とを設ける場合は、注入層は1nm以上、輸送層は1
nm以上とするのが好ましい。このときの注入層、輸送層
の厚さの上限は、通常、注入層で500nm程度、輸送層
で500nm程度である。The thickness of the organic hole injecting layer and the thickness of the electron injecting and transporting layer are not particularly limited and vary depending on the forming method, but are usually about 5 to 500 nm, especially about 1 to 500 nm.
The thickness is preferably from 0 to 300 nm. When an electron injection layer and a transport layer are provided, the injection layer is 1 nm or more, and the transport layer is 1 nm or more.
It is preferably at least nm. At this time, the upper limit of the thickness of the injection layer and the transport layer is usually about 500 nm for the injection layer and about 500 nm for the transport layer.
【0066】発光層、有機のホール注入層、電子注入輸
送層の形成には、均質な薄膜が形成できることから、真
空蒸着法を用いることが好ましい。真空蒸着法を用いた
場合、アモルファス状態または結晶粒径が0.2μm 以
下の均質な薄膜が得られる。結晶粒径が0.2μm を超
えていると、不均一な発光となり、素子の駆動電圧を高
くしなければならなくなり、電子、ホールの注入効率も
著しく低下する。For forming a light emitting layer, an organic hole injection layer and an electron injection transport layer, it is preferable to use a vacuum deposition method since a uniform thin film can be formed. When a vacuum deposition method is used, a homogeneous thin film having an amorphous state or a crystal grain size of 0.2 μm or less can be obtained. If the crystal grain size exceeds 0.2 μm, the light emission becomes non-uniform, the driving voltage of the device must be increased, and the injection efficiency of electrons and holes is significantly reduced.
【0067】真空蒸着の条件は特に限定されないが、1
0-4Pa以下の真空度とし、蒸着速度は0.01〜1nm/
sec 程度とすることが好ましい。また、真空中で連続し
て各層を形成することが好ましい。真空中で連続して形
成すれば、各層の界面に不純物が吸着することを防げる
ため、高特性が得られる。また、素子の駆動電圧を低く
したり、ダークスポットの発生・成長を抑制したりする
ことができる。The conditions for vacuum deposition are not particularly limited.
The degree of vacuum is 0 -4 Pa or less, and the deposition rate is 0.01 to 1 nm /
It is preferable to set it to about sec. Further, it is preferable to form each layer continuously in a vacuum. If they are formed continuously in a vacuum, impurities can be prevented from adsorbing at the interface between the layers, so that high characteristics can be obtained. Further, the driving voltage of the element can be reduced, and the occurrence and growth of dark spots can be suppressed.
【0068】これら各層の形成に真空蒸着法を用いる場
合において、1層に複数の化合物を含有させる場合、化
合物を入れた各ボートを個別に温度制御して共蒸着する
ことが好ましい。In the case where a plurality of compounds are contained in one layer when a vacuum evaporation method is used for forming each of these layers, it is preferable to co-deposit each boat containing the compounds by individually controlling the temperature.
【0069】さらに、素子の有機層や電極の劣化を防ぐ
ために、素子上を封止板等により封止することが好まし
い。封止板は、湿気の浸入を防ぐために、接着性樹脂層
を用いて、封止板を接着し密封する。封止ガスは、A
r、He、N2 等の不活性ガス等が好ましい。また、こ
の封止ガスの水分含有量は、100ppm 以下、より好ま
しくは10ppm 以下、特には1ppm 以下であることが好
ましい。この水分含有量に下限値は特にないが、通常
0.1ppm 程度である。Further, in order to prevent the deterioration of the organic layer and the electrodes of the device, it is preferable to seal the device with a sealing plate or the like. The sealing plate adheres and seals the sealing plate using an adhesive resin layer in order to prevent moisture from entering. The sealing gas is A
An inert gas such as r, He, N 2 or the like is preferable. Further, the moisture content of the sealing gas is preferably 100 ppm or less, more preferably 10 ppm or less, and particularly preferably 1 ppm or less. Although there is no particular lower limit for the water content, it is usually about 0.1 ppm.
【0070】封止板の材料としては、好ましくは平板状
であって、ガラスや石英、樹脂等の透明ないし半透明材
料が挙げられるが、特にガラスが好ましい。このような
ガラス材として、コストの面からアルカリガラスが好ま
しいが、この他、ソーダ石灰ガラス、鉛アルカリガラ
ス、ホウケイ酸ガラス、アルミノケイ酸ガラス、シリカ
ガラス等のガラス組成のものも好ましい。特に、ソーダ
ガラスで、表面処理の無いガラス材が安価に使用でき、
好ましい。封止板としては、ガラス板以外にも、金属
板、プラスチック板等を用いることもできる。The material of the sealing plate is preferably a flat plate, and may be a transparent or translucent material such as glass, quartz, resin, etc., and glass is particularly preferred. As such a glass material, an alkali glass is preferable from the viewpoint of cost, and in addition, a glass composition such as soda lime glass, lead alkali glass, borosilicate glass, aluminosilicate glass, and silica glass is also preferable. In particular, soda glass, a glass material without surface treatment can be used at low cost,
preferable. As the sealing plate, other than a glass plate, a metal plate, a plastic plate, or the like can be used.
【0071】封止板は、スペーサーを用いて高さを調整
し、所望の高さに保持してもよい。スペーサーの材料と
しては、樹脂ビーズ、シリカビーズ、ガラスビーズ、ガ
ラスファイバー等が挙げられ、特にガラスビーズ等が好
ましい。スペーサーは、通常、粒径の揃った粒状物であ
るが、その形状は特に限定されるものではなく、スペー
サーとしての機能に支障のないものであれば種々の形状
であってもよい。その大きさとしては、円換算の直径が
1〜20μm 、より好ましくは1〜10μm 、特に2〜
8μm が好ましい。このような直径のものは、粒長10
0μm 以下程度であることが好ましく、その下限は特に
規制されるものではないが、通常直径と同程度以上であ
る。The height of the sealing plate may be adjusted to a desired height by using a spacer. Examples of the material of the spacer include resin beads, silica beads, glass beads, and glass fibers, and glass beads are particularly preferable. The spacer is usually a granular material having a uniform particle size, but the shape is not particularly limited, and may be various shapes as long as it does not hinder the function as the spacer. As the size, the diameter in terms of a circle is 1 to 20 μm, more preferably 1 to 10 μm, and especially 2 to 20 μm.
8 μm is preferred. Those having such a diameter have a grain length of 10
It is preferably about 0 μm or less, and the lower limit is not particularly limited, but is usually about the same as or larger than the diameter.
【0072】なお、封止板に凹部を形成した場合には、
スペーサーは使用しても、使用しなくてもよい。使用す
る場合の好ましい大きさとしては、前記範囲でよいが、
特に2〜8μm の範囲が好ましい。When a recess is formed in the sealing plate,
Spacers may or may not be used. The preferred size when used is within the above range,
Particularly, the range of 2 to 8 μm is preferable.
【0073】スペーサーは、予め封止用接着剤中に混入
されていても、接着時に混入してもよい。封止用接着剤
中におけるスペーサーの含有量は、好ましくは0.01
〜30wt%、より好ましくは0.1〜5wt%である。The spacer may be mixed in the sealing adhesive in advance, or may be mixed at the time of bonding. The content of the spacer in the sealing adhesive is preferably 0.01
-30 wt%, more preferably 0.1-5 wt%.
【0074】接着剤としては、安定した接着強度が保
て、気密性が良好なものであれば特に限定されるもので
はないが、カチオン硬化タイプの紫外線硬化型エポキシ
樹脂接着剤を用いることが好ましい。The adhesive is not particularly limited as long as it can maintain stable adhesive strength and has good airtightness, but it is preferable to use a cationic curing type ultraviolet curing epoxy resin adhesive. .
【0075】本発明において、有機EL構造体を形成す
る基板としては、非晶質基板たとえばガラス、石英な
ど、結晶基板たとえば、Si、GaAs、ZnSe、Z
nS、GaP、InPなどがあげられ、またこれらの結
晶基板に結晶質、非晶質あるいは金属のバッファ層を形
成した基板も用いることができる。また金属基板として
は、Mo、Al、Pt、Ir、Au、Pdなどを用いる
ことができ、好ましくはガラス基板が用いられる。基板
は、光取り出し側となる場合、上記電極と同様な光透過
性を有することが好ましい。In the present invention, the substrate on which the organic EL structure is formed is an amorphous substrate such as glass or quartz, or a crystalline substrate such as Si, GaAs, ZnSe, or Z.
Examples include nS, GaP, and InP, and a substrate in which a crystalline, amorphous, or metal buffer layer is formed on these crystalline substrates can also be used. As the metal substrate, Mo, Al, Pt, Ir, Au, Pd, or the like can be used, and a glass substrate is preferably used. When the substrate is on the light extraction side, it is preferable that the substrate has the same light transmittance as the above-mentioned electrodes.
【0076】さらに、本発明素子を、平面上に多数並べ
てもよい。平面上に並べられたそれぞれの素子の発光色
を変えて、カラーのディスプレーにすることができる。Further, a large number of the elements of the present invention may be arranged on a plane. By changing the emission color of each element arranged on a plane, a color display can be obtained.
【0077】基板に色フィルター膜や蛍光性物質を含む
色変換膜、あるいは誘電体反射膜を用いて発光色をコン
トロールしてもよい。The emission color may be controlled by using a color filter film, a color conversion film containing a fluorescent substance, or a dielectric reflection film on the substrate.
【0078】色フィルター膜には、液晶ディスプレイ等
で用いられているカラーフィルターを用いれば良いが、
有機EL素子の発光する光に合わせてカラーフィルター
の特性を調整し、取り出し効率・色純度を最適化すれば
よい。As the color filter film, a color filter used in a liquid crystal display or the like may be used.
The characteristics of the color filter may be adjusted in accordance with the light emitted from the organic EL element to optimize the extraction efficiency and the color purity.
【0079】また、EL素子材料や蛍光変換層が光吸収
するような短波長の外光をカットできるカラーフィルタ
ーを用いれば、素子の耐光性・表示のコントラストも向
上する。If a color filter capable of cutting off short-wavelength external light that is absorbed by the EL element material or the fluorescence conversion layer is used, the light resistance of the element and the contrast of display are improved.
【0080】また、誘電体多層膜のような光学薄膜を用
いてカラーフィルターの代わりにしても良い。An optical thin film such as a dielectric multilayer film may be used instead of the color filter.
【0081】蛍光変換フィルター膜は、EL発光の光を
吸収し、蛍光変換膜中の蛍光体から光を放出させること
で、発光色の色変換を行うものであるが、組成として
は、バインダー、蛍光材料、光吸収材料の三つから形成
される。The fluorescence conversion filter film absorbs EL light and emits light from the phosphor in the fluorescence conversion film to convert the color of the emitted light. It is formed from a fluorescent material and a light absorbing material.
【0082】蛍光材料は、基本的には蛍光量子収率が高
いものを用いれば良く、EL発光波長域に吸収が強いこ
とが望ましい。実際には、レーザー色素などが適してお
り、ローダミン系化合物・ペリレン系化合物・シアニン
系化合物・フタロシアニン系化合物(サブフタロシアニ
ン等も含む)ナフタロイミド系化合物・縮合環炭化水素
系化合物・縮合複素環系化合物・スチリル系化合物・ク
マリン系化合物等を用いればよい。As the fluorescent material, basically, a material having a high fluorescence quantum yield may be used, and it is desirable that the fluorescent material has strong absorption in the EL emission wavelength region. In practice, laser dyes and the like are suitable, and rhodamine compounds, perylene compounds, cyanine compounds, phthalocyanine compounds (including subphthalocyanines, etc.) naphthaloimide compounds, condensed ring hydrocarbon compounds, condensed heterocyclic compounds A styryl compound, a coumarin compound or the like may be used.
【0083】バインダーは、基本的に蛍光を消光しない
ような材料を選べば良く、フォトリソグラフィー・印刷
等で微細なパターニングが出来るようなものが好まし
い。また、基板上にホール注入電極と接する状態で形成
される場合、ホール注入電極(ITO、IZO)の成膜
時にダメージを受けないような材料が好ましい。As the binder, a material that does not quench the fluorescence may be basically selected, and a binder that can be finely patterned by photolithography, printing, or the like is preferable. In the case where the hole injection electrode is formed on the substrate in contact with the hole injection electrode, a material which is not damaged when the hole injection electrode (ITO, IZO) is formed is preferable.
【0084】光吸収材料は、蛍光材料の光吸収が足りな
い場合に用いるが、必要のない場合は用いなくても良
い。また、光吸収材料は、蛍光性材料の蛍光を消光しな
いような材料を選べば良い。The light absorbing material is used when the light absorption of the fluorescent material is insufficient, but may be omitted when unnecessary. As the light absorbing material, a material that does not quench the fluorescence of the fluorescent material may be selected.
【0085】本発明の有機EL素子は、通常、直流駆動
型、パルス駆動型のEL素子として用いられるが、交流
駆動とすることもできる。印加電圧は、通常、2〜30
V 程度とされる。The organic EL device of the present invention is generally used as a DC drive type or pulse drive type EL device, but it can also be driven by AC. The applied voltage is usually 2 to 30
V.
【0086】本発明の有機EL素子は、例えば図1に示
すように、基板1/ホール注入電極2/ホール注入層3
/高抵抗の無機ホール輸送層4/発光層5/電子注入電
極7とが順次積層された構成としてもよいし、図2に示
すように、基板1/ホール注入電極2/ホール注入層3
/高抵抗の無機ホール輸送層4/発光層5/電子注入輸
送層6/電子注入電極7とが順次積層された構成として
もよい。また、上記の積層順を逆にした、いわゆる逆積
層構成としてもよい。これらは、たとえば、ディスプレ
ーの仕様や作製プロセス等により、適宜選択し使用され
る。図1,2において、ホール注入電極2と電子注入電
極7の間には、駆動電源Eが接続されている。For example, as shown in FIG. 1, the organic EL device of the present invention comprises a substrate 1 / a hole injection electrode 2 / a hole injection layer 3
2, a high-resistance inorganic hole transport layer 4 / a light emitting layer 5 / an electron injection electrode 7 may be sequentially laminated, or as shown in FIG. 2, a substrate 1 / a hole injection electrode 2 / a hole injection layer 3
A / high-resistance inorganic hole transport layer 4 / light-emitting layer 5 / electron injection / transport layer 6 / electron injection electrode 7 may be sequentially laminated. Further, a so-called reverse lamination configuration in which the above lamination order is reversed may be adopted. These are appropriately selected and used depending on, for example, the specifications of the display and the manufacturing process. 1 and 2, a drive power source E is connected between the hole injection electrode 2 and the electron injection electrode 7.
【0087】また、上記発明の素子は、膜厚方向に多段
に重ねてもよい。このような素子構造により、発光色の
色調調整や多色化を行うこともできる。The elements of the present invention may be stacked in multiple layers in the film thickness direction. With such an element structure, it is also possible to adjust the color tone of the emitted light and to make it multicolored.
【0088】本発明の有機EL素子は、ディスプレイと
しての応用の他、例えばメモり読み出し/書き込み等に
利用される光ピックアップ、光通信の伝送路中における
中継装置、フォトカプラ等、種々の光応用デバイスに用
いることができる。The organic EL device of the present invention can be applied to various optical applications such as an optical pickup used for memory read / write, a relay device in a transmission line of optical communication, a photocoupler, etc. in addition to a display application. Can be used for devices.
【0089】[0089]
【実施例】<実施例1>ガラス基板としてコーニング社
製商品名7059基板を中性洗剤を用いてスクラブ洗浄
した。<Example 1> A 7059 substrate (trade name, manufactured by Corning Incorporated) as a glass substrate was scrub-cleaned using a neutral detergent.
【0090】この基板上にITO酸化物ターゲットを用
いRFマグネトロンスパッタリング法により、基板温度
250℃で、膜厚200nmのITOホール注入電極層を
形成した。An ITO hole injection electrode layer having a thickness of 200 nm was formed on this substrate at a substrate temperature of 250 ° C. by an RF magnetron sputtering method using an ITO oxide target.
【0091】ITO電極層等が形成された基板の表面を
UV/O3 洗浄した後、蒸着装置の基板ホルダーに固定
して、槽内を1×10-4Pa以下まで減圧した。After the surface of the substrate on which the ITO electrode layer and the like had been formed was washed with UV / O 3, it was fixed to a substrate holder of a vapor deposition apparatus, and the pressure in the tank was reduced to 1 × 10 −4 Pa or less.
【0092】m−MTDATAを蒸着速度0.2nm/se
c で40nmの厚さに蒸着してホール注入層とした。M-MTDATA was deposited at a deposition rate of 0.2 nm / se.
A hole injection layer was formed by evaporating to a thickness of 40 nm with c.
【0093】次いで、ターゲットにSiO2と、この上
に所定の大きさのAuのペレットを配置して用い、高抵
抗の無機ホール輸送層を2nmの膜厚に成膜した。このと
きのスパッタガスはAr:30sccm、O2:5sccmで、
室温(25℃)下、成膜レート1nm/min 、動作圧力
0.2〜2Pa、投入電力500Wとした。成膜した高抵
抗の無機ホール注入輸送層の組成は、SiO1.9にAu
を4 mol%含有するものであった。Next, a high-resistance inorganic hole transport layer was formed to a thickness of 2 nm using SiO 2 as a target and Au pellets of a predetermined size placed thereon. The sputtering gas at this time was Ar: 30 sccm, O 2 : 5 sccm,
At room temperature (25 ° C.), the deposition rate was 1 nm / min, the operating pressure was 0.2 to 2 Pa, and the input power was 500 W. The composition of the formed high-resistance inorganic hole injecting and transporting layer is such that Au 1.9
Was contained at 4 mol%.
【0094】さらに、減圧を保ったまま蒸着装置に移
し、N,N,N’,N’−テトラキス(m−ビフェニ
ル)−1,1’−ビフェニル−4,4’−ジアミン(T
PD)と、トリス(8−キノリノラト)アルミニウム
(Alq3 )と、ルブレンとを、全体の蒸着速度0.2
nm/secとして40nmの厚さに蒸着し、発光層とした。T
PD:Alq3 =1:1(重量比)、この混合物に対し
てルブレンを5体積%ドープした。Further, while maintaining the reduced pressure, it was transferred to a vapor deposition apparatus, and N, N, N ', N'-tetrakis (m-biphenyl) -1,1'-biphenyl-4,4'-diamine (T
PD), tris (8-quinolinolato) aluminum (Alq3) and rubrene at an overall deposition rate of 0.2
The film was deposited to a thickness of 40 nm at nm / sec to form a light emitting layer. T
PD: Alq3 = 1: 1 (weight ratio), and this mixture was doped with 5% by volume of rubrene.
【0095】次いで、減圧を保ったまま、スパッタ法に
て、AlLi(Li:6at%)を1nmの厚さに蒸着し、
続けてAlを200nmの厚さに蒸着し、電子注入電極お
よび補助電極とし、最後にガラス封止して有機EL素子
を得た。Next, while maintaining the reduced pressure, AlLi (Li: 6 at%) was deposited by sputtering to a thickness of 1 nm.
Subsequently, Al was vapor-deposited to a thickness of 200 nm to form an electron injection electrode and an auxiliary electrode. Finally, glass sealing was performed to obtain an organic EL device.
【0096】得られた有機EL素子に空気中で、電界を
印加したところ、ダイオード特性を示し、ITO側をプ
ラス、AlLi/Al電極側をマイナスにバイアスした
場合、電流は、電圧の増加とともに増加し、通常の室内
ではっきりとした発光が観察された。また、繰り返し発
光動作をさせても、輝度の低下はみられなかった。When an electric field was applied to the obtained organic EL device in air, diode characteristics were exhibited. When the ITO side was biased to the plus side and the AlLi / Al electrode side was biased to the minus side, the current increased as the voltage increased. However, clear light emission was observed in a normal room. Further, even when the light emitting operation was repeatedly performed, no decrease in luminance was observed.
【0097】また、4端子法により高抵抗の無機ホール
輸送層のシート抵抗を測定したところ、膜厚100nmで
のシート抵抗は300 kΩ/cm2 であり、抵抗率に換算
すると3×1010Ω・cmであった。When the sheet resistance of the high-resistance inorganic hole transport layer was measured by the four-terminal method, the sheet resistance at a film thickness of 100 nm was 300 kΩ / cm 2 , which was 3 × 10 10 Ω in terms of resistivity.・ It was cm.
【0098】<実施例2>実施例1において、発光層を
形成した後、さらにトリス(8−キノリノラト)アルミ
ニウム(Alq3 )とを、蒸着速度0.2nm/secとして
40nmの厚さに蒸着し、有機の電子注入輸送層を形成し
た。その他は実施例1と同様にして有機EL素子を作製
し、実施例1と同様にして評価したところ、定電流駆動
での発光輝度が向上し、輝度半減時間が延びていること
が確認できた。<Example 2> In Example 1, after forming the light emitting layer, tris (8-quinolinolato) aluminum (Alq3) was further evaporated to a thickness of 40 nm at an evaporation rate of 0.2 nm / sec. An organic electron injection transport layer was formed. Other than that, an organic EL element was manufactured in the same manner as in Example 1, and the evaluation was performed in the same manner as in Example 1. As a result, it was confirmed that the emission luminance under constant current driving was improved and the luminance half-life was extended. .
【0099】すなわち、得られた有機EL素子を空気中
で、10mA/cm2 の定電流密度で駆動したところ、初期
輝度は850cd/m2 、駆動電圧6.9V であった。That is, when the obtained organic EL device was driven in air at a constant current density of 10 mA / cm 2 , the initial luminance was 850 cd / m 2 and the driving voltage was 6.9 V.
【0100】<実施例3>実施例1において、高抵抗の
無機ホール輸送層を成膜する際、ターゲットにGeO2
と、このターゲット上に所定の大きさのAuのペレット
を配置し、高抵抗の無機ホール輸送層を20nmの膜厚に
成膜した。このときのスパッタガスはAr:30sccm、
O2:5sccmで、室温(25℃)下、成膜レート1nm/m
in 、動作圧力0.2〜2Pa、投入電力500Wとし
た。成膜した無機ホール輸送層の組成は、GeO2にA
uを2 mol%含有するものであった。Example 3 In Example 1, when forming a high-resistance inorganic hole transport layer, GeO 2 was used as a target.
Then, an Au pellet having a predetermined size was arranged on the target, and a high-resistance inorganic hole transport layer was formed to a thickness of 20 nm. The sputtering gas at this time is Ar: 30 sccm,
O 2 : 5 sccm, room temperature (25 ° C.), film formation rate 1 nm / m
in, the operating pressure was 0.2 to 2 Pa, and the input power was 500 W. The composition of the formed inorganic hole transport layer, A to GeO 2
u in an amount of 2 mol%.
【0101】その他は実施例1と同様にして有機EL素
子を得た。得られた有機EL素子を実施例1と同様にし
て駆動し評価したところ、ほぼ同様の結果が得られた。Otherwise, an organic EL device was obtained in the same manner as in Example 1. When the obtained organic EL device was driven and evaluated in the same manner as in Example 1, almost the same results were obtained.
【0102】<実施例4>実施例1,2において、高抵
抗の無機ホール輸送層を成膜する際にスパッタガスのO
2流量、および膜組成によりターゲットを変えてその主
成分の組成をSiO1.7、SiO1.95、GeO1.96、S
i0.5Ge0.5O1.92とした他は実施例1と同様にして有
機EL素子を作製し、発光輝度を評価したところほぼ同
等の結果が得られた。<Embodiment 4> In Embodiments 1 and 2, when a high-resistance inorganic hole transport layer is formed, O
2 The target was changed according to the flow rate and the film composition, and the composition of the main component was changed to SiO 1.7 , SiO 1.95 , GeO 1.96 , S
An organic EL device was prepared in the same manner as in Example 1 except that i 0.5 Ge 0.5 O 1.92 was used, and the luminance was evaluated. As a result, almost the same results were obtained.
【0103】<実施例5>実施例1,2において、高抵
抗の無機ホール輸送層の金属を、AuからCu、Fe、
Ni、Ru、Sn,Cr,Ir,Nb,Pt,W,M
o,Ta,PdおよびCoのいずれか1種以上、または
これらの酸化物、炭化物、窒化物、ケイ化物、硼化物に
代えても同等の結果が得られた。<Example 5> In Examples 1 and 2, the metal of the high-resistance inorganic hole transport layer was changed from Au to Cu, Fe,
Ni, Ru, Sn, Cr, Ir, Nb, Pt, W, M
Similar results were obtained by replacing any one or more of o, Ta, Pd and Co, or their oxides, carbides, nitrides, silicides and borides.
【0104】<比較例>実施例1において、ITOホー
ル注入電極を形成した後、蒸着法により、MTDATA
を蒸着速度0.1nm/secで10nmの厚さに蒸着してホ
ール注入層を形成し、TPDを蒸着速度0.1nm/sec
で20nmの厚さに蒸着してホール輸送層を形成した。ま
た、発光層を形成した後、さらにトリス(8−キノリノ
ラト)アルミニウム(Alq3 )とを、蒸着速度0.2
nm/secとして40nmの厚さに蒸着し、有機の電子注入輸
送層を形成した。その他は実施例1と同様にして有機E
L素子を作製し、実施例1と同様にして評価したとこ
ろ、10mA/cm2 の定電流密度で駆動した初期輝度は7
50cd/m2 であった。<Comparative Example> In Example 1, after an ITO hole injection electrode was formed, MTDATA was formed by vapor deposition.
Is deposited at a deposition rate of 0.1 nm / sec to a thickness of 10 nm to form a hole injection layer, and TPD is deposited at a deposition rate of 0.1 nm / sec.
To form a hole transport layer by evaporation to a thickness of 20 nm. After forming the light emitting layer, tris (8-quinolinolato) aluminum (Alq3) was further deposited at a deposition rate of 0.2.
Vapor deposition was performed at a thickness of 40 nm at a rate of nm / sec to form an organic electron injection / transport layer. Other than the above, organic E was used in the same manner as in Example 1.
An L element was prepared and evaluated in the same manner as in Example 1. As a result, the initial luminance at a constant current density of 10 mA / cm 2 was 7
It was 50 cd / m 2 .
【0105】[0105]
【発明の効果】以上のように本発明によれば、有機材料
と無機材料の有するメリットを併せ持ち、高効率、長寿
命で低コストな有機EL素子を提供することができる。As described above, according to the present invention, it is possible to provide an organic EL element having both the advantages of an organic material and an inorganic material, and having high efficiency, long life and low cost.
【図1】本発明の有機EL素子の第1の基本構成を示す
概略断面図である。FIG. 1 is a schematic sectional view showing a first basic configuration of an organic EL device of the present invention.
【図2】本発明の有機EL素子の第2の基本構成を示す
概略断面図である。FIG. 2 is a schematic sectional view showing a second basic configuration of the organic EL device of the present invention.
【図3】従来の有機EL素子の構成例を示した概略断面
図である。FIG. 3 is a schematic sectional view showing a configuration example of a conventional organic EL element.
【図4】従来の有機EL素子の他の構成例を示した概略
断面図である。FIG. 4 is a schematic sectional view showing another configuration example of a conventional organic EL element.
1 基板 2 ホール注入電極 3 ホール注入層 4 高抵抗の無機ホール輸送層 5 発光層 6 電子注入輸送層 7 電子注入電極 11 基板 12 ホール注入電極 13 電子注入電極 14 ホール輸送層 15 発光層 16 電子輸送層 REFERENCE SIGNS LIST 1 substrate 2 hole injection electrode 3 hole injection layer 4 high-resistance inorganic hole transport layer 5 light emitting layer 6 electron injection transport layer 7 electron injection electrode 11 substrate 12 hole injection electrode 13 electron injection electrode 14 hole transport layer 15 light emitting layer 16 electron transport layer
フロントページの続き (72)発明者 三橋 悦央 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 Fターム(参考) 3K007 AB00 AB03 AB04 AB06 AB17 AB18 BB01 BB06 CA00 CA01 CA02 CA04 CB01 DA00 DB03 EB00 EC00 FA01 FA02 FA03 4K029 AA04 AA06 AA08 AA09 BA43 BA46 BA50 BA52 BA53 BA55 BA58 BA62 BB02 BC03 BC07 BD01 CA01 CA05 DB14 Continuation of the front page (72) Inventor Etsuo Mitsuhashi 1-13-1, Nihonbashi, Chuo-ku, Tokyo FDC term in TDK Corporation (reference) 3K007 AB00 AB03 AB04 AB06 AB17 AB18 BB01 BB06 CA00 CA01 CA02 CA04 CB01 DA00 DB03 EB00 EC00 FA01 FA02 FA03 4K029 AA04 AA06 AA08 AA09 BA43 BA46 BA50 BA52 BA53 BA55 BA58 BA62 BB02 BC03 BC07 BD01 CA01 CA05 DB14
Claims (7)
らの電極間に少なくとも発光層を有する有機層とを有
し、 前記発光層とホール注入電極との間には電子をブロック
するとともにホールを搬送するための導通パスを有する
高抵抗の無機ホール輸送層を有し、 この高抵抗の無機ホール輸送層とホール注入電極との間
には有機のホール注入層を有する有機EL素子。The present invention has a hole injection electrode, an electron injection electrode, and an organic layer having at least a light-emitting layer between these electrodes, wherein between the light-emitting layer and the hole injection electrode, electrons are blocked and holes are formed. An organic EL device comprising: a high-resistance inorganic hole transport layer having a conduction path for transport; and an organic hole injection layer between the high-resistance inorganic hole transport layer and the hole injection electrode.
率が1〜1×1011Ω・cmである請求項1の有機EL素
子。2. The organic EL device according to claim 1, wherein the high-resistance inorganic hole transport layer has a resistivity of 1 to 1 × 10 11 Ω · cm.
および/または金属の酸化物、炭化物、窒化物、ケイ化
物および硼化物のいずれか1種以上を含有する請求項1
または2の有機EL素子。3. The high-resistance inorganic hole transporting layer contains at least one of a metal and / or an oxide, carbide, nitride, silicide, and boride of the metal.
Or 2 organic EL elements.
コンおよび/またはゲルマニウムの酸化物を主成分と
し、この主成分を(Si1-xGex)Oyと表したとき 0≦x≦1、 1.7≦y≦2.2 であり、 さらに、仕事関数4.5eV以上の金属および/または金
属の酸化物、炭化物、窒化物、ケイ化物および硼化物の
いずれか1種以上を含有する請求項1〜3のいずれかの
有機EL素子。4. The high-resistance inorganic hole transporting layer contains silicon and / or germanium oxide as a main component, and when this main component is expressed as (Si 1-x Ge x ) O y , 0 ≦ x ≦ 1, 1.7 ≦ y ≦ 2.2, and further contains any one or more of metals and / or oxides, carbides, nitrides, silicides, and borides of metals having a work function of 4.5 eV or more. The organic EL device according to claim 1, wherein:
Ru、Sn,Cr,Ir,Nb,Pt,W,Mo,T
a,PdおよびCoのいずれか1種以上である請求項4
の有機EL素子。5. The method according to claim 1, wherein the metal is Au, Cu, Fe, Ni,
Ru, Sn, Cr, Ir, Nb, Pt, W, Mo, T
5. The composition according to claim 4, which is at least one of a, Pd and Co.
Organic EL device.
炭化物、窒化物、ケイ化物および硼化物の含有量は、
0.2〜40 mol%である請求項4または5の有機EL
素子。6. The metal and / or an oxide of the metal,
The contents of carbides, nitrides, silicides and borides are:
6. The organic EL according to claim 4, which is 0.2 to 40 mol%.
element.
0.2〜100nmである請求項1〜6のいずれかの有機
EL素子。7. The film thickness of the high-resistance hole transport layer is:
7. The organic EL device according to claim 1, which has a thickness of 0.2 to 100 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069965A JP2000268970A (en) | 1999-03-16 | 1999-03-16 | Organic el element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069965A JP2000268970A (en) | 1999-03-16 | 1999-03-16 | Organic el element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000268970A true JP2000268970A (en) | 2000-09-29 |
Family
ID=13417887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11069965A Withdrawn JP2000268970A (en) | 1999-03-16 | 1999-03-16 | Organic el element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000268970A (en) |
-
1999
- 1999-03-16 JP JP11069965A patent/JP2000268970A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4142782B2 (en) | Organic EL device | |
JP3824798B2 (en) | Organic EL device | |
JP4543446B2 (en) | Organic EL device | |
JP2000040589A (en) | Organic el element | |
JP2000215985A (en) | Organic el element | |
JP2000208276A (en) | Organic electroluminescent element | |
JP4255041B2 (en) | Organic EL device | |
JP2000252074A (en) | Organic el element | |
JP2000223272A (en) | Organic el element | |
EP0975029A2 (en) | Organic electroluminescent device | |
JP2000123976A (en) | Organic el element | |
JP2000223273A (en) | Organic el element | |
JP2000268965A (en) | Organic el element | |
JP2000340364A (en) | Organic el element | |
JP2001068272A (en) | Organic el element | |
JP2001057286A (en) | Organic el element | |
JP2000012234A (en) | Organic el element | |
JP2000268967A (en) | Organic el element | |
JP2000268966A (en) | Organic electroluminescent element | |
JP2000030870A (en) | Organic el element | |
JP2000268971A (en) | Organic electroluminescent element | |
JP2000173776A (en) | Organic el element | |
JP2000208277A (en) | Organic electroluminescent element | |
JP2001060495A (en) | Organic el element | |
JP2000164360A (en) | Organic electroluminescent display device and method of driving organic el element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040601 |
|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060606 |