JP2000268632A - Insulating film and manufacture thereof and electronic device and manufacture thereof - Google Patents

Insulating film and manufacture thereof and electronic device and manufacture thereof

Info

Publication number
JP2000268632A
JP2000268632A JP11075948A JP7594899A JP2000268632A JP 2000268632 A JP2000268632 A JP 2000268632A JP 11075948 A JP11075948 A JP 11075948A JP 7594899 A JP7594899 A JP 7594899A JP 2000268632 A JP2000268632 A JP 2000268632A
Authority
JP
Japan
Prior art keywords
fullerene
molecules
film
insulating film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11075948A
Other languages
Japanese (ja)
Other versions
JP3531520B2 (en
Inventor
Shunichi Fukuyama
俊一 福山
Yoshihiro Nakada
義弘 中田
Jo Yamaguchi
城 山口
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP07594899A priority Critical patent/JP3531520B2/en
Publication of JP2000268632A publication Critical patent/JP2000268632A/en
Application granted granted Critical
Publication of JP3531520B2 publication Critical patent/JP3531520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulating Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Inorganic Insulating Materials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a factor hindering high speed performance of a device when fullerene is used for a copper wiring layer and to exhibit the benefit of lowering of resistance due to copper wiring to the maximum by performing vacuum deposition for fullerene, generating light-crosslinking reaction between fullerene molecules one another and making fullerene molecules into high molecules. SOLUTION: Fullerene molecules are molecules existing stably by a structure in which 60, 70 or 84 carbons are covalent bound with one another, for instance, and six-membered rings and five-membered rings are linked. Fine powder of C60 fullerene is set at a deposition source and a silicon substrate doped with ions and made to have lower resistance is set at a vacuum deposition device. Evacuation is performed till base vacuum becomes about 2×10-6 Torr or below. By determining a substrate temperature for a room temperature, films are made in thickness of about 250 nm at film making speed of about 0.5 nm/second. An ultraviolet light source of about 365 nm is selected for these fullerene films for about 30 to 60 seconds, these fullerene films are irradiated with ultraviolet ray for 30 minutes, carbon of C60 fullerene molecules and carbon of other C60 fullerenes are coupled one another across oxygen and fullerene molecules are made into high molecules.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁膜の形成技
術、およびこの絶縁膜を用いて半導体デバイス,表示デ
バイス、MCM(マルチチップモジュール)などの多層
回路基板等の電子装置を製造する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for forming an insulating film and a technique for manufacturing an electronic device such as a semiconductor device, a display device, and a multilayer circuit board such as an MCM (multi-chip module) using the insulating film. .

【0002】[0002]

【0003】[0003]

【従来の技術】周知のように、半導体デバイスや表示デ
バイスは、それらを用いる電子機器のいっそうの小型
化、高機能化の要求を背景に、いっそうの高集積化とい
っそうの微細化が今後も必要になっている。しかしなが
ら、例えばこれらのデバイスの高速度化についてみれ
ば、大別して二つの遅延要因を解決してゆくことが必要
である。 その1)デバイス能動領域そのものを高速動作化に相応
しく設計変更するなどのトランジスタ遅延問題の解決。 その2)配線層自体をより低抵抗化することや、配線層
相互間の所謂層間絶縁膜の誘電率を下げることで、配線
層相互間の容量を低減するなどの、配線遅延問題の解
決。
2. Description of the Related Art As is well known, semiconductor devices and display devices are expected to be further integrated and further miniaturized in the background of the demand for further miniaturization and higher functionality of electronic devices using them. Is needed. However, for example, in order to increase the speed of these devices, it is necessary to roughly resolve two delay factors. 1) Solving the transistor delay problem, such as changing the design of the device active area itself to be suitable for high-speed operation. 2) The solution of the wiring delay problem such as lowering the resistance of the wiring layers themselves or lowering the dielectric constant of a so-called interlayer insulating film between the wiring layers to reduce the capacitance between the wiring layers.

【0004】近年のデバイスの微細化の結果、トランジ
スタ遅延の問題はそれほど変化がない一方で、配線遅延
の問題は非常に深刻になってきている。その理由は、デ
バイスの微細化が配線層そのものの微細化をもたらし、
配線断面積が小さくなったことによる配線層自体の高抵
抗化、および配線層相互の距離が短くなったことに伴う
配線容量の増加が進んだからである。したがって、配線
遅延の問題を解決することが、今以上の微細化へのブレ
ークスルーとしては、極めて重要な課題となって浮上し
てきている。
[0004] As a result of recent miniaturization of devices, the problem of transistor delay has not changed much, while the problem of wiring delay has become very serious. The reason is that the miniaturization of devices has led to the miniaturization of the wiring layer itself,
This is because the resistance of the wiring layer itself increases due to the reduction in the wiring cross-sectional area, and the wiring capacitance increases as the distance between the wiring layers decreases. Therefore, solving the problem of wiring delay has emerged as a very important issue as a breakthrough to further miniaturization.

【0005】[0005]

【発明が解決しようとする課題】配線遅延の問題への対
処法として、配線層そのものの材料をもはやアルミニウ
ム系の材料ではなく、より低抵抗な銅や銀,金を模索す
る動きもあり、銅配線は既に実現化され、実地にデバイ
ス製品に適用されるに至った。
As a method of dealing with the problem of wiring delay, there is a movement to search for a lower resistance copper, silver, or gold instead of an aluminum-based material for the wiring layer itself. Wiring has already been realized and practically applied to device products.

【0006】ところが、配線材料を銅に切り換えたとし
ても、配線間距離は依然として短いわけで、つまり容量
の問題は解決されないままであり、配線遅延の根本的解
決としてはなお改善の余地が残されたままである。特
に、配線層の周囲にはシリコン酸化膜を用いて層間絶縁
膜とするのがアルミニウム配線層世代の旧来のデバイス
では常套的であったが、銅配線を用いた場合には、銅配
線層とシリコン酸化膜を直に接するような設計にできな
い。銅配線層とシリコン酸化膜との間にはシリコン窒化
膜を介在させて、両者の直の接触を避けているが、シリ
コン窒化膜は著しく誘電率の高い絶縁材料であり、銅配
線層を用いて配線素材そのものを低抵抗化したのに、配
線間容量を増大させて、配線遅延の問題を解消するうえ
での足かせになっている。今後電子デバイスの微細化が
いっそう進んだ世代では、シリコン窒化膜による配線間
容量増大の問題は、デバイス速度全体を律則する要因と
して大きくクローズアップされること必至である。
However, even if the wiring material is switched to copper, the distance between the wirings is still short, that is, the problem of the capacitance remains unsolved, and there is still room for improvement as a fundamental solution of the wiring delay. Remains intact. In particular, it has been customary to use a silicon oxide film as an interlayer insulating film around a wiring layer in a conventional device of the aluminum wiring layer generation, but when a copper wiring is used, a copper wiring layer is used. It cannot be designed to directly contact the silicon oxide film. A silicon nitride film is interposed between the copper wiring layer and the silicon oxide film to avoid direct contact between the two, but the silicon nitride film is an insulating material with a remarkably high dielectric constant. Although the resistance of the wiring material itself has been reduced, the capacitance between wirings has been increased, which is a hindrance in solving the problem of wiring delay. In a future generation of electronic devices with further miniaturization, the problem of an increase in inter-wiring capacitance due to a silicon nitride film will inevitably become a major factor as a factor that governs the overall device speed.

【0007】本発明が解決しようとする課題は、このよ
うな配線間の容量の低減である。特に、銅配線層を用い
た電子デバイスにおいては、デバイスの高速性能を阻害
する要因を解消し、銅配線による低抵抗化の利益を最大
限享受できることを目的とする。
[0007] The problem to be solved by the present invention is to reduce such capacitance between wirings. In particular, in an electronic device using a copper wiring layer, it is an object of the present invention to eliminate a factor that hinders the high-speed performance of the device and to maximize the benefit of reducing the resistance by the copper wiring.

【0008】[0008]

【課題を解決するための手段】上記の課題の解決のた
め、本発明では、以下を手段とする。
Means for Solving the Problems To solve the above problems, the present invention provides the following means.

【0009】第一には、フラーレン分子相互を結合させ
た高分子からなる絶縁膜。およびそれを絶縁膜として用
いた電子デバイス。より具体的には、例えば、フラーレ
ンを真空蒸着し、次いで該フラーレン分子相互間に光架
橋反応を生じさせ、高分子化した絶縁膜。およびそれを
絶縁膜として用いた電子デバイス。
First, an insulating film made of a polymer in which fullerene molecules are bonded to each other. And an electronic device using the same as an insulating film. More specifically, for example, an insulating film polymerized by vacuum deposition of fullerene and then causing a photocrosslinking reaction between the fullerene molecules. And an electronic device using the same as an insulating film.

【0010】第二には、フラーレンを真空蒸着し、次い
で該フラーレン分子相互間に光架橋反応を生じさせ、高
分子化した絶縁膜の製造方法。およびそのような製造方
法を一工程として有する電子デバイスの製造方法。
Second, a method for producing an insulating film polymerized by vacuum-depositing fullerene and then causing a photocrosslinking reaction between the fullerene molecules. And a method for manufacturing an electronic device having such a manufacturing method as one step.

【0011】上記二つの手段において、当該電子デバイ
スが銅配線を有するものの場合に、配線層間の絶縁膜と
して上記の手段を用いると、銅配線本来の高速性能を活
かすことができ、好適である。なお、上記の手段におい
て、光架橋反応としては、例えば紫外線を用いれば良
い。
In the above two means, when the electronic device has a copper wiring, it is preferable to use the above means as an insulating film between wiring layers, because the inherent high-speed performance of the copper wiring can be utilized. In the above means, for example, ultraviolet rays may be used as the photocrosslinking reaction.

【0012】次に、上記手段の作用について述べる。図
1参照。
Next, the operation of the above means will be described. See FIG.

【0013】本発明では、フラーレンを高分子化して膜
材料としている。フラーレン分子は、例えば炭素が60
個、あるいは70個、84個等が互いに共有結合し、サ
ッカーボールのように六員環と五員環とが連接した構造
をなして、全体として球形をして、非常に安定的に存在
できる分子として、近年注目されている。図1は、C6
0フラーレン分子の構造図(模式斜視図)である。図
中、小さな丸い粒が炭素原子を示し、棒状に炭素原子同
士をつなげているものが炭素〜炭素間の結合である。こ
のように、フラーレンを構成する各炭素原子は、図示さ
れる他の3つの炭素原子と各々結合しており、全体とし
て球形をなしている。フラーレン分子は、その球体の中
央に実質的に電子雲が殆ど存在しない空隙ができるた
め、空隙の中に別の原子を封じ込めて、導電体や半導体
としての利用がさかんに研究されてきたが、本発明で
は、むしろこの空隙に何も封じ込めないことでフラーレ
ン分子の誘電率を下げることが可能である点、およびフ
ラーレンは非常に安定に存在できる分子ではあるが、エ
ネルギー線を照射することで、互いに共有結合して高分
子を構成することから製膜が容易に行える点に着目し
た。フラーレン全体で膜を形成した場合には、安定な膜
であるにもかかわらず、分子レベルで空隙の存在率が高
まり、したがって誘電率を低くできる。さらには、銅配
線に直に接するように被膜したとしても、熱履歴が長く
ても銅が絶縁膜に向けて拡散することがない。フラーレ
ン分子自体は共有結合性が著しいため、イオンとして拡
散してくる銅を妨げる強い障壁になり得るのである。
In the present invention, fullerene is polymerized to form a film material. The fullerene molecule has, for example, 60 carbon atoms.
, Or 70, 84, etc. are covalently bonded to each other, and have a structure in which a six-membered ring and a five-membered ring are connected like a soccer ball, and have a spherical shape as a whole and can exist very stably. In recent years, it has attracted attention as a molecule. FIG. 1 shows C6
FIG. 2 is a structural diagram (a schematic perspective view) of a 0 fullerene molecule. In the figure, small round particles represent carbon atoms, and those connecting the carbon atoms in a bar shape are carbon-carbon bonds. As described above, each carbon atom constituting fullerene is bonded to each of the other three carbon atoms shown in the drawing, and has a spherical shape as a whole. Fullerene molecules have a void in which almost no electron cloud exists in the center of the sphere.Therefore, use of the fullerene molecule as a conductor or semiconductor has been actively studied by enclosing another atom in the void. In the present invention, it is rather possible to lower the dielectric constant of fullerene molecules by not enclosing anything in these voids, and fullerenes are molecules that can exist very stably, but by irradiating energy rays, We focused on the fact that a film can be easily formed by forming a polymer by covalent bonding with each other. When a film is formed of the fullerene as a whole, the existence ratio of voids is increased at the molecular level, even though the film is stable, so that the dielectric constant can be lowered. Furthermore, even if the coating is formed so as to be in direct contact with the copper wiring, even if the heat history is long, copper does not diffuse toward the insulating film. Because the fullerene molecule itself has a remarkable covalent bond, it can be a strong barrier to prevent copper from diffusing as ions.

【0014】[0014]

【0015】[0015]

【発明の実施の形態】それでは、図1乃至図8を引用し
つつ、本発明の一実施形態を以下説明する。再び図1参
照。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. See FIG. 1 again.

【0016】製膜に用いるC60フラーレンは、図1の
ようなFCC構造(面心最密構造)をしている。被着形
成後、重合過程を経たC60フラーレンポリマー薄膜の
構造は、図2に示されるようなものと推定される。図2
参照。
The C60 fullerene used for film formation has an FCC structure (face-center closest-packed structure) as shown in FIG. The structure of the C60 fullerene polymer thin film that has undergone the polymerization process after the deposition is assumed to be as shown in FIG. FIG.
reference.

【0017】図2は、C60フラーレンポリマーの構造
図(模式平面図)であり、(a)〜(c)はそれぞれ異
なるタイプの重合体を示す。(a)〜(c)の各々にお
いて、炭素原子は黒丸部分で示し、炭素〜炭素間の結合
は、黒丸部分同士を互いに結合する直線で表現してい
る。さて、(a)は片方のC60フラーレンの二つの炭
素原子と他方のC60フラーレンの二つの炭素原子とが
互いに共有結合してできる梯子状の重合体であり、
(b)は(a)に示される梯子状の重合体が複数集まっ
て、それぞれの重合体をなすC60フラーレン骨格の炭
素原子同士が互いに共有結合してできる平面状の重合体
であり、(c)はC60フラーレン同士が平面的に複数
箇所で他のC60フラーレンと互いに共有結合してでき
る重合体である。
FIG. 2 is a structural diagram (schematic plan view) of a C60 fullerene polymer, wherein (a) to (c) show different types of polymers. In each of (a) to (c), a carbon atom is indicated by a black circle, and a bond between carbon and carbon is expressed by a straight line connecting the black circles to each other. (A) is a ladder-shaped polymer formed by covalently bonding two carbon atoms of one C60 fullerene and two carbon atoms of the other C60 fullerene,
(B) is a planar polymer formed by gathering a plurality of ladder-like polymers shown in (a) and covalently bonding carbon atoms of a C60 fullerene skeleton forming each polymer to each other; ) Is a polymer formed by covalently bonding C60 fullerenes with other C60 fullerenes at a plurality of places in a plane.

【0018】C60フラーレンが図2に示されるように
重合しているとの推測は、IR吸収スペクトル(図3に
図示)とX線回折スペクトル(図4に図示)の結果によ
るものである。X線回折スペクトルの結果、結晶方位が
判断できるが、図4に示されるように、111面,31
1面にピークが観察された。一方、IR吸収スペクトル
によれば、527cm-1,577cm-1,1183cm
-1,1428cm-1のピーク強度が100:37:2
3:24になっていることが観察され、FCCの結晶と
なっていることが判った。また、同じC60フラーレン
薄膜上に直径1mmの金電極を形成し、容量測定結果か
ら算出した誘電率は3.0であった。
The presumption that C60 fullerene is polymerized as shown in FIG. 2 is based on the results of IR absorption spectrum (shown in FIG. 3) and X-ray diffraction spectrum (shown in FIG. 4). As a result of the X-ray diffraction spectrum, the crystal orientation can be determined, but as shown in FIG.
A peak was observed on one surface. On the other hand, according to the IR absorption spectrum, 527cm -1, 577cm -1, 1183cm
The peak intensity at -1 and 1428 cm -1 is 100: 37: 2.
It was observed that the ratio was 3:24, indicating that it was an FCC crystal. A gold electrode having a diameter of 1 mm was formed on the same C60 fullerene thin film, and the dielectric constant calculated from the capacitance measurement result was 3.0.

【0019】半導体基板の表面にトランジスタを形成
し、このトランジスタを覆うように、基板全面を層間絶
縁膜で覆う。層間絶縁膜としては、例えばBPSG膜を
選び、CVD(化学気相成長)法により厚さ800nm
被膜した後、この上面をCMP(化学機械的研磨)法で
平坦化したものを用いることができるが、他に、コーテ
ィング形成で平坦膜を形成できるSOG(スピン・オン
・グラス)膜を用いることでも良い。こうしてできた層
間絶縁膜の表面にレジストマスクを形成し、通常のフォ
トリソグラフィー工程を通して、トランジスタのゲート
上面を露出するようにコンタクト窓を設ける。レジスト
マスクを灰化処理した後、このコンタクト窓の中を埋め
さらに十分な厚さに、タングステン膜を全面CVD形成
する。他の高融点金属系材料や他の金属材料を用いるこ
ともできるが、タングステンが最も汎用されている。こ
の際の条件は、WF6(六フッ化タングステン)+H2
(水素)の混合ガスを用い、基板温度は約400℃,ガ
ス圧0.5Torr,パワー500Wとする。次いでC
MP(化学機械的研磨)法で前記コンタクト窓内にのみ
残し、それ以外を除去する。以上の工程でできた構造を
図5において「基板層」として説明する。以下で参照す
る図5〜図8は、いずれも本発明の一実施態様の説明図
(それぞれ、その1〜その4,各々が工程断面図)であ
る。図5参照。
A transistor is formed on the surface of a semiconductor substrate, and the entire substrate is covered with an interlayer insulating film so as to cover the transistor. As the interlayer insulating film, for example, a BPSG film is selected, and has a thickness of 800 nm by a CVD (chemical vapor deposition) method.
After coating, the top surface of which can be flattened by a CMP (chemical mechanical polishing) method can be used. Alternatively, an SOG (spin-on-glass) film that can form a flat film by coating is used. But it is good. A resist mask is formed on the surface of the interlayer insulating film thus formed, and a contact window is provided through a normal photolithography process so as to expose the upper surface of the gate of the transistor. After the resist mask is ashed, a tungsten film is formed by CVD over the entire surface so as to fill the contact window and have a sufficient thickness. Other refractory metal-based materials and other metal materials can be used, but tungsten is the most widely used. The condition at this time is WF6 (tungsten hexafluoride) + H2
The substrate temperature is about 400 ° C., the gas pressure is 0.5 Torr, and the power is 500 W using a mixed gas of (hydrogen). Then C
Only the contact windows are left by the MP (chemical mechanical polishing) method, and the other portions are removed. The structure formed by the above steps will be described as a “substrate layer” in FIG. FIGS. 5 to 8 referred to below are explanatory views of one embodiment of the present invention (parts 1 to 4, each of which is a process sectional view). See FIG.

【0020】図5は、本発明の一実施態様の説明図(そ
の1,工程断面図)である。
FIG. 5 is an explanatory view (part 1, process sectional view) of an embodiment of the present invention.

【0021】工程(a)では、上記のようにしてできた
基板層上に、C60フラーレンを真空蒸着する。蒸着源
にC60フラーレンの微粉末をセットし、イオンドープ
して低抵抗化したシリコン基板上を真空蒸着装置にセッ
トする。続いて、ベース真空が2×10-6Torr以下
になるまで真空引きした。
In the step (a), C60 fullerene is vacuum-deposited on the substrate layer formed as described above. A fine powder of C60 fullerene is set as an evaporation source, and a silicon substrate which has been ion-doped to have a low resistance is set in a vacuum evaporation apparatus. Subsequently, evacuation was performed until the base vacuum became 2 × 10 −6 Torr or less.

【0022】基板温度を室温として製膜速度0.5nm
/secで約250nm厚に製膜する。こうして工程
(b)に示すように積層したC60フラーレン膜に対し
て、続く工程(c)において、365nmの紫外線光源
(1000W程度)を選び30秒間乃至60秒間30分
間紫外線を照射し、C60フラーレン分子の炭素と他の
C60フラーレン分子の炭素とが酸素を挟んで互いに結
合し高分子化する。図6参照。
When the substrate temperature is room temperature, the film forming speed is 0.5 nm.
/ Sec to form a film with a thickness of about 250 nm. In the subsequent step (c), a UV light source of 365 nm (about 1000 W) is selected and irradiated with UV light for 30 seconds to 60 seconds for 30 minutes to the C60 fullerene molecule in the subsequent step (c) for the C60 fullerene film laminated as shown in the step (b). And the carbon of the other C60 fullerene molecule are bonded to each other with oxygen in between to form a polymer. See FIG.

【0023】図5に図示される工程(c)に引き続き、
工程(1)では、C60フラーレン重合膜に重ねてさら
にシリコン酸化膜を50nm形成した。プラズマCVD
法を用いてシリコン酸化膜を形成することが好ましい
が、通常の熱CVD法を用いることでも良い。プラズマ
CVD法を用いれば、先ず成膜速度が早く済むので量産
には向いている。続いて、工程(2)では、シリコン酸
化膜の表面にレジストを塗布形成し、さらに工程(3)
では、このレジストに通常のフォトリソグラフィー工程
を通してパターニングを施しマスクとし、続く工程
(4)では、このマスクを用いて下地基板層内のタング
ステン層の位置に合わせて窓を設ける。前記マスクパタ
ーンを用いて、シリコン酸化膜とC60フラーレン膜と
を順次開口するが、いずれもプラズマエッチングによる
のが好ましい。シリコン酸化膜はフッ素プラズマを用い
てエッチングする。図7参照。
Following the step (c) shown in FIG.
In step (1), a 50 nm silicon oxide film was further formed on the C60 fullerene polymer film. Plasma CVD
Although it is preferable to form the silicon oxide film using a method, a normal thermal CVD method may be used. When the plasma CVD method is used, first, the film forming speed is high, and thus it is suitable for mass production. Subsequently, in a step (2), a resist is applied and formed on the surface of the silicon oxide film.
Then, the resist is patterned through a normal photolithography process to form a mask, and in the subsequent step (4), a window is provided in accordance with the position of the tungsten layer in the base substrate layer using the mask. Using the mask pattern, the silicon oxide film and the C60 fullerene film are sequentially opened, and it is preferable that both are formed by plasma etching. The silicon oxide film is etched using fluorine plasma. See FIG.

【0024】シリコン酸化膜を除去した後、工程(5)
では、C60フラーレン膜を除去する。この際、エッチ
ングに用いるプラズマは、工程(4)で用いたフッ素プ
ラズマに代えて酸素プラズマを用いる。この後、マスク
に用いたレジストは酸素を含むプラズマによるダウンフ
ローアッシングによって灰化除去する。続く工程(6)
では、前記開口部内から外へ延在してかつ、開口部の底
でタングステン層と電気的にコンタクトするように、窒
化タンタル(TaN)をスパッタリングにて被着形成す
る。次に、厚さ10nmの窒化タンタル膜(TaN)で
内表面を覆われた開口部内に銅を埋め込む。銅の埋め込
みは、先ず工程(7)のように、開口部内外に全面的に
銅(Cu)シード層を約50nm程度の厚さスパッタリ
ングにて被着形成し、この後、工程(8)のように、電
界めっきを施して開口部内を含み十分厚く銅(Cu)め
っき層を被着形成する。図8参照。
After removing the silicon oxide film, step (5)
Then, the C60 fullerene film is removed. At this time, oxygen plasma is used for the etching instead of the fluorine plasma used in the step (4). Thereafter, the resist used for the mask is ashed and removed by down-flow ashing using plasma containing oxygen. Subsequent process (6)
Then, tantalum nitride (TaN) is deposited by sputtering so as to extend from the inside of the opening to the outside and make electrical contact with the tungsten layer at the bottom of the opening. Next, copper is embedded in the opening whose inner surface is covered with a 10 nm-thick tantalum nitride film (TaN). First, as shown in step (7), a copper (Cu) seed layer is deposited on the entire surface inside and outside of the opening by sputtering to a thickness of about 50 nm, and then the step (8) is performed. As described above, a sufficiently thick copper (Cu) plating layer including the inside of the opening is formed by electroplating. See FIG.

【0025】続いて、工程(9a)では、CMP(化学
機械的研磨)法により、開口部内を除き平坦面に残る窒
化タンタル(TaN)/銅(Cu)の二重層を一度に研
磨して除去する。この後、工程(10a)では、重ねて
C60フラーレン膜を厚さ約800nm形成する。この
際の形成手法は、前記したフラーレン膜の形成方法と同
一である。シリコン酸化膜(SiO2)を全面に形成す
る。CVD法により厚さ約5nm形成する。さらに、配
線層を約50nm形成するが、この際には必要に応じて
めっき法による膜形成とCMP(化学機械的研磨)法に
よるエッチバックとを併用して表面を平坦化してもよ
い。さらに、シリコン酸化膜(SiO2)を全面に形成
する。CVD法により50nmの厚さ形成する。
Subsequently, in a step (9a), the tantalum nitride (TaN) / copper (Cu) double layer remaining on the flat surface except for the inside of the opening is polished and removed at a time by a CMP (chemical mechanical polishing) method. I do. Thereafter, in step (10a), a C60 fullerene film is formed to a thickness of about 800 nm on top of another. The forming method at this time is the same as the above-described method of forming the fullerene film. A silicon oxide film (SiO2) is formed on the entire surface. It is formed to a thickness of about 5 nm by a CVD method. Further, the wiring layer is formed to have a thickness of about 50 nm. In this case, if necessary, the surface may be flattened by using both film formation by plating and etch back by CMP (chemical mechanical polishing). Further, a silicon oxide film (SiO2) is formed on the entire surface. It is formed to a thickness of 50 nm by the CVD method.

【0026】このシリコン酸化膜(SiO2)表面に、
レジストを塗布形成し、これに通常のフォトリソグラフ
ィー工程を通してパターンを形成する。この際、レジス
トパターンの開口部は、コンタクトすべき下地のタング
ステン層の位置に予め位置合わせしてパターニングされ
る。このようなレジストパターンを用いて、プラズマエ
ッチングによりタングステン層に達する深いコンタクト
窓を開口する。シリコン酸化膜に対してはフッ素プラズ
マを用い、C60フラーレン膜に対しては酸素プラズマ
を用いるように、適宜エッチャントを切り換えて用いて
開口する。この開口内外に窒化タンタル(TaN)を1
0nmスパッタリング形成し、次いで開口内外に銅を5
0nmスパッタリング形成する。続いて、電界めっきを
施して開口部に銅を埋め込む。
On the surface of this silicon oxide film (SiO 2)
A resist is applied and formed, and a pattern is formed on the resist through a normal photolithography process. At this time, the opening of the resist pattern is patterned by being previously aligned with the position of the underlying tungsten layer to be contacted. Using such a resist pattern, a deep contact window reaching the tungsten layer is opened by plasma etching. Opening is performed by appropriately switching the etchant so that fluorine plasma is used for the silicon oxide film and oxygen plasma is used for the C60 fullerene film. One tantalum nitride (TaN) is placed inside and outside the opening.
0 nm sputter-formed, then copper inside and outside the opening
0 nm is formed by sputtering. Subsequently, copper is buried in the openings by electrolytic plating.

【0027】なお、深いコンタクト窓と浅いコンタクト
窓を同じデバイス中に形成することも可能であるが、こ
のような場合には、以下の工程を追加することが必要に
なる。
It is possible to form a deep contact window and a shallow contact window in the same device, but in such a case, it is necessary to add the following steps.

【0028】CMPで配線溝以外のTaN/Cu膜(下
層から順に窒化タンタルと銅とを積層した積層膜)を除
去する。さらにキャップおよびエッチングストッパ層と
して窒化シリコン膜(SiN)50nmを化学気相成長
にて被着形成し、C60フラーレン膜800nm、配線
層エッチング時のエッチングストッパ層となるSiO 2
膜5nm、C60フラーレン膜50nm、およびマスク
層SiO2膜を50nm形成した。この積層膜に先ずビ
アパターンをそれぞれフッ素プラズマと酸素プラズマに
よりSiN膜の直上まで形成し、続いて二層目の配線パ
ターンを形成した。最後にSiN膜をフッ素プラズマに
より加工後、デュアルダマシン構造の溝に一層目配線と
同様、TaN、Cuの積層配線を埋め込んだ。この際、
ビアの黒ずみや導通不良などは全く観察されなかった。
C60フラーレン膜のエッチングには、例えば酸化膜を
フッ素系プラズマを用いたドライエッチングにて加工し
マスクとして用いるか、あるいはシリコンレジスト等の
無機レジストを用いて加工することができる。
The TaN / Cu film other than the wiring groove by CMP (below)
Layered layer of tantalum nitride and copper in order)
Leave. In addition, with cap and etching stopper layer
Chemical vapor deposition of silicon nitride (SiN) 50nm
C60 fullerene film 800nm, wiring
SiO serving as an etching stopper layer during layer etching Two
Film 5 nm, C60 fullerene film 50 nm, and mask
Layer SiOTwoA film was formed to a thickness of 50 nm. First, add
A-pattern into fluorine plasma and oxygen plasma respectively
And a second layer wiring pattern.
Formed a turn. Finally, convert the SiN film to fluorine plasma
After further processing, the first wiring in the groove of dual damascene structure
Similarly, a laminated wiring of TaN and Cu was embedded. On this occasion,
No darkening or poor conduction of the via was observed at all.
For etching the C60 fullerene film, for example, an oxide film is used.
Processed by dry etching using fluorine-based plasma
Use it as a mask or
Processing can be performed using an inorganic resist.

【0029】上記の一実施態様では、CMP(化学機械
的研磨)法を用いて銅配線層を開口窓内にのみ残して他
を除去した後、C60フラーレン膜をいきなり形成した
が、C60フラーレン膜を形成する前に、事前にCVD
法により全面にシリコン窒化膜(SiN)を厚さ約50
nm形成しても良い。このことについて図9を参照して
説明する。図9参照。
In the above-described embodiment, the C60 fullerene film is formed immediately after the copper wiring layer is left only in the opening window and the others are removed by using the CMP (chemical mechanical polishing) method. Prior to forming CVD
A silicon nitride film (SiN) with a thickness of about 50
nm. This will be described with reference to FIG. See FIG.

【0030】図9は、本発明の変形実施態様の説明図
(工程断面図)である。上記説明した工程(9a)相当
の工程(9b)を経て、開口窓内にのみ銅が残るように
表面がCMP(化学機械的研磨)法により平坦化された
後、工程(10b)では、窒化シリコン膜(SiN)が
化学気相成長法により全面形成され、続く工程(11
b)では、C60フラーレン膜が真空蒸着、紫外線照射
を経て、重合され、C60フラーレン重合膜をなる。引
き続いて、SiO2膜,C60フラーレン膜が順次被着
形成されるが、この際の形成要領は、上記(10a)工
程について説明したのと同様の方法を準用すれば良い。
FIG. 9 is an explanatory view (process sectional view) of a modified embodiment of the present invention. After the step (9b) corresponding to the above-described step (9a), the surface is planarized by a CMP (chemical mechanical polishing) method so that copper remains only in the opening window. A silicon film (SiN) is entirely formed by a chemical vapor deposition method.
In b), the C60 fullerene film is polymerized through vacuum deposition and ultraviolet irradiation to form a C60 fullerene polymer film. Subsequently, an SiO 2 film and a C60 fullerene film are sequentially deposited, and the formation method at this time may be the same as that described in the above step (10a).

【0031】このように、窒化シリコン(SiN)を介
在させてC60フラーレン膜を形成することによる最大
のメリットは、絶縁膜相互の剥離が生じにくくなり、信
頼性が高まるという点にある。C60フラーレン膜を銅
表面に直付けした場合には、工程中の熱や機械的ストレ
スが原因で生じる予期しない応力によって剥離する可能
性が否めないが、これが解消できるという特徴がある。
しかし一方で、窒化シリコン(SiN)は既に従来技術
の問題点として指摘したとおり、誘電率が非常に高い絶
縁材料であるため、介在させる窒化シリコン(SiN)
の厚さがごくわずかであっても層間絶縁膜全体として誘
電率を高める大きい要因となり、ひいては配線間容量を
増加させ、多少なりともデバイスの高速化を阻害してし
まうというデメリットもあり、信頼性をいっそう高める
必要があるか、それとも高速性能を少しでも高める必要
があるか、いずれにプライオリティを置くか、状況次第
で使い分ける必要があるだろう。
As described above, the greatest merit of forming the C60 fullerene film with silicon nitride (SiN) interposed therebetween is that the insulating films are less likely to be separated from each other and the reliability is increased. When the C60 fullerene film is directly attached to the copper surface, the possibility of peeling due to unexpected stress caused by heat or mechanical stress during the process cannot be denied, but it is characterized in that it can be eliminated.
However, on the other hand, as already pointed out as a problem of the prior art, silicon nitride (SiN) is an insulating material having a very high dielectric constant.
Even if the thickness is very small, it can be a major factor in increasing the dielectric constant of the entire interlayer insulating film, which in turn increases the inter-wiring capacitance and hinders the speeding up of the device to some extent. Will need to be further increased, or the speed performance needs to be slightly increased, and depending on the situation, the priority will need to be used depending on the situation.

【0032】以上が、実施態様に基づいた本発明の説明
であるが、次に、本発明を通して高速性能が従来比どの
程度上がるのか効果を確認したので、このことについて
説明する。図10参照。
The above is an explanation of the present invention based on the embodiment. Next, the effect of how much the high-speed performance is improved through the present invention as compared with the conventional art has been confirmed, and this will be described. See FIG.

【0033】図10は、評価回路の説明図であって、図
中具体的には、A,Bとも所謂リングオシレータ回路を
示す。Aはインバータ2個を1組にして100段を直列
接続したリングオシレータであり、Bは一つのインバー
タと他のインバータとの間の配線を故意に長くしたもの
を1組にして100段を直列接続したリングオシレータ
である。これらのリングオシレータでは、配線厚0.5
μm,配線ピッチ0.4μm,配線が長いリングオシレ
ータでは、特に配線の長さを50μm分長くした。層間
絶縁膜の種類を違えたことによって生じる信号遅延時間
がどの程度であるかは、このようなリングオシレータ回
路を、層間絶縁膜にC60フラーレン膜を採用したもの
と、従来のようにSiO2膜を採用したものと、二種類
作成し、これらのリングオシレータ回路が動作した際の
発振周波数から換算して評価した。Bで求めるインバー
タ1段当たりの信号遅延時間は、出力に長配線の付いた
インバータの入力から次のインバータの入力までとす
る。このようにして得た結果からは、上記した本発明の
一実施態様の例とSiO2膜を用いた従来技術の例とで
応答速度を比較した結果、銅配線とC60フラーレン膜
との間に窒化シリコン(SiN)膜を介在させない場合
には、約30%の速度向上が見られ、また銅配線とC6
0フラーレン膜との間に窒化シリコン(SiN)膜が介
在する場合には、約20%の速度向上が見られた。
FIG. 10 is an explanatory diagram of the evaluation circuit. Specifically, FIG. 10 shows a so-called ring oscillator circuit for both A and B. A is a ring oscillator in which 100 inverters are connected in series with two inverters as one set, and B is a ring oscillator in which a wiring between one inverter and another inverter is intentionally lengthened as one set and 100 stages are connected in series. The connected ring oscillator. In these ring oscillators, a wiring thickness of 0.5
In the case of a ring oscillator having a long wiring with a wiring pitch of 0.4 μm and a wiring pitch of 0.4 μm, the length of the wiring is particularly increased by 50 μm. The signal delay time caused by different types of the interlayer insulating film is determined by determining whether such a ring oscillator circuit employs a C60 fullerene film as the interlayer insulating film or an SiO 2 film as in the related art. And two types were prepared and converted from the oscillation frequency when these ring oscillator circuits operated, and evaluated. The signal delay time per inverter obtained in B is from the input of an inverter having a long wiring to the input of the next inverter. From the results obtained in this way, as a result of comparing the response speed between the above-described example of the embodiment of the present invention and the example of the related art using the SiO 2 film, it was found that the response speed between the copper wiring and the C60 fullerene film was large. When the silicon nitride (SiN) film is not interposed, the speed is improved by about 30%, and the copper wiring and C6
When a silicon nitride (SiN) film is interposed between the 0 fullerene film and the fullerene film, the speed is improved by about 20%.

【0034】以上の各実施態様では、フラーレンの例と
してC60をとりあげて説明したが、本発明の効果はC
60に限って生じるものではなく、例えばC70,C7
6,C78,C82,C96,C100,C102,C
120のようないずれのフラーレンにも分子中に電子雲
が殆ど存在しない中空の領域が広く、例えばC70の誘
電率は2.7に下がる。また紫外線等エネルギー線の照
射によって比較的容易に互いが結合して被膜となるの
で、同様の効果が期待できるものである。高次フラーレ
ンの中でもC120については、C60薄膜に紫外・可
視光を照射してC60分子同士を互いに融合させて生成
することができる。
In each of the above embodiments, C60 has been described as an example of fullerene.
It does not occur only in 60, for example, C70, C7
6, C78, C82, C96, C100, C102, C
In any fullerene such as 120, the hollow region where almost no electron cloud exists in the molecule is wide, and for example, the dielectric constant of C70 is reduced to 2.7. In addition, the same effect can be expected since the two are relatively easily bonded to each other to form a coating film by irradiation with energy rays such as ultraviolet rays. Among higher order fullerenes, C120 can be generated by irradiating a C60 thin film with ultraviolet / visible light to fuse C60 molecules with each other.

【0035】[0035]

【発明の効果】以上のように、フラーレン全体で膜を形
成した場合には、安定な膜であるにもかかわらず、分子
レベルで空隙の存在率が高まり、したがって誘電率を低
くできる。さらには、銅配線に直に接するように被膜し
たとしても、熱履歴が長くても銅が絶縁膜に向けて拡散
することがない。フラーレン分子自体は共有結合性が著
しいため、イオンとして拡散してくる銅を妨げうるので
ある。
As described above, when the film is formed of the fullerene as a whole, the existence ratio of voids is increased at the molecular level, even though the film is stable, so that the dielectric constant can be lowered. Furthermore, even if the coating is formed so as to be in direct contact with the copper wiring, even if the heat history is long, copper does not diffuse toward the insulating film. Since the fullerene molecule itself has a remarkable covalent bond, it can prevent copper from diffusing as ions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 C60フラーレン分子の構造図(模式斜視
図)
FIG. 1 is a structural diagram of a C60 fullerene molecule (schematic perspective view).

【図2】 C60フラーレンポリマーの構造図(模式平
面図)
FIG. 2 is a structural diagram of a C60 fullerene polymer (schematic plan view).

【図3】 IR吸収スペクトル検査結果FIG. 3 Results of IR absorption spectrum inspection

【図4】 X線回折検査結果FIG. 4 X-ray diffraction test results

【図5】 本発明の一実施態様の説明図(その1,工程
断面図)
FIG. 5 is an explanatory view of one embodiment of the present invention (part 1, process sectional view).

【図6】 本発明の一実施態様の説明図(その2,工程
断面図)
FIG. 6 is an explanatory view of one embodiment of the present invention (part 2, process cross-sectional view).

【図7】 本発明の一実施態様の説明図(その3,工程
断面図)
FIG. 7 is an explanatory view of one embodiment of the present invention (part 3, process cross-sectional view).

【図8】 本発明の一実施態様の説明図(その4,工程
断面図)
FIG. 8 is an explanatory view of one embodiment of the present invention (part 4, process cross-sectional view).

【図9】 本発明の変形実施態様の説明図(工程断面
図)
FIG. 9 is an explanatory view (process sectional view) of a modified embodiment of the present invention.

【図10】 評価回路の説明図FIG. 10 is an explanatory diagram of an evaluation circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/314 H01L 21/314 A 5F058 21/768 C08J 5/18 CFA 5G303 // C08J 5/18 CFA H01L 21/90 A 5G333 P (72)発明者 山口 城 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 鈴木 克己 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 4F071 AA69 BB11 BC01 4G046 CB03 CC01 CC06 4J032 CA32 CA45 CB01 CE12 CG08 4K029 BA08 BA34 BB02 BC00 BD01 GA01 5F033 HH11 HH32 JJ01 JJ11 JJ32 KK11 KK19 MM01 MM02 MM12 MM13 NN06 NN07 PP09 PP15 PP27 QQ09 QQ10 QQ12 QQ37 QQ48 QQ74 QQ81 RR04 RR06 RR09 RR15 RR21 SS10 SS12 SS15 SS22 TT04 XX12 XX25 XX27 5F058 AA10 AC10 AF10 AG09 AH02 BA05 BA20 BD01 BD04 BD19 BF03 BF07 BF32 BF33 BH20 BJ02 5G303 AA07 AB07 BA03 CA11 5G333 AA03 AB13 AB21 BA01 CA03 DA21 DB02 FB02 FB21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/314 H01L 21/314 A 5F058 21/768 C08J 5/18 CFA 5G303 // C08J 5/18 CFA H01L 21/90 A 5G333 P (72) Inventor Shiro Yamaguchi 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Fujitsu Limited (72) Katsumi Suzuki 4-1-1, Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture No.1 F-term in Fujitsu Limited (reference) 4F071 AA69 BB11 BC01 4G046 CB03 CC01 CC06 4J032 CA32 CA45 CB01 CE12 CG08 4K029 BA08 BA34 BB02 BC00 BD01 GA01 5F033 HH11 HH32 JJ01 JJ11 JJ32 KK11 MM13 NN11 QQ10 QQ12 QQ37 QQ48 QQ74 QQ81 RR04 RR06 RR09 RR15 RR21 SS10 SS12 SS15 SS22 TT04 XX12 XX25 XX27 5F058 AA 10 AC10 AF10 AG09 AH02 BA05 BA20 BD01 BD04 BD19 BF03 BF07 BF32 BF33 BH20 BJ02 5G303 AA07 AB07 BA03 CA11 5G333 AA03 AB13 AB21 BA01 CA03 DA21 DB02 FB02 FB21

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 フラーレン分子相互を結合させた高分子
からなる絶縁膜。
An insulating film made of a polymer in which fullerene molecules are bonded to each other.
【請求項2】 フラーレンを真空蒸着し、次いで該フラ
ーレン分子相互間に光架橋反応を生じさせ、高分子化し
た絶縁膜。
2. An insulating film polymerized by vacuum-depositing fullerene and then causing a photocrosslinking reaction between the fullerene molecules.
【請求項3】 フラーレン分子相互を結合させた高分子
からなる絶縁膜を用いた電子装置。
3. An electronic device using an insulating film made of a polymer in which fullerene molecules are bonded to each other.
【請求項4】 フラーレンを真空蒸着し、次いで該フラ
ーレン分子相互間に光架橋反応を生じさせ、高分子化し
た絶縁膜の製造方法。
4. A method for producing an insulating film polymerized by vacuum-depositing fullerene and then causing a photocrosslinking reaction between the fullerene molecules.
【請求項5】 フラーレン分子相互を結合させた高分子
からなる絶縁膜を有する電子装置。
5. An electronic device having an insulating film made of a polymer in which fullerene molecules are bonded to each other.
【請求項6】 フラーレンを真空蒸着し、次いで該フラ
ーレン分子相互間に光架橋反応を生じさせ、高分子化し
た絶縁膜を有する電子装置。
6. An electronic device having an insulating film polymerized by vacuum deposition of fullerene and then causing a photocrosslinking reaction between the fullerene molecules.
【請求項7】 フラーレンを真空蒸着し、次いで該フラ
ーレン分子相互間に光架橋反応を生じさせ、高分子化し
て絶縁膜を形成する工程を有する電子装置の製造方法。
7. A method for manufacturing an electronic device, comprising the steps of vacuum-depositing fullerene, and then causing a photocrosslinking reaction between the fullerene molecules to polymerize to form an insulating film.
【請求項8】 前記光架橋反応時の照射光として、紫外
線を選んだ請求項4記載の絶縁膜の製造方法。
8. The method for manufacturing an insulating film according to claim 4, wherein ultraviolet light is selected as irradiation light at the time of the photocrosslinking reaction.
【請求項9】 前記光架橋反応時の照射光として、紫外
線を選んだ請求項7記載の電子装置の製造方法。
9. The method of manufacturing an electronic device according to claim 7, wherein ultraviolet light is selected as irradiation light at the time of the photocrosslinking reaction.
【請求項10】 銅を含む配線層に接するように前記絶
縁膜が形成される請求項5乃至6記載の電子装置。
10. The electronic device according to claim 5, wherein the insulating film is formed so as to be in contact with a wiring layer containing copper.
【請求項11】 銅を含む配線層を形成する工程と、該
配線層に接するように前記絶縁膜を形成する工程とを有
する請求項7あるいは9記載の電子装置の製造方法。
11. The method according to claim 7, further comprising the steps of: forming a wiring layer containing copper; and forming the insulating film so as to be in contact with the wiring layer.
JP07594899A 1999-03-19 1999-03-19 Insulating film, method of manufacturing the same, and electronic device Expired - Fee Related JP3531520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07594899A JP3531520B2 (en) 1999-03-19 1999-03-19 Insulating film, method of manufacturing the same, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07594899A JP3531520B2 (en) 1999-03-19 1999-03-19 Insulating film, method of manufacturing the same, and electronic device

Publications (2)

Publication Number Publication Date
JP2000268632A true JP2000268632A (en) 2000-09-29
JP3531520B2 JP3531520B2 (en) 2004-05-31

Family

ID=13590964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07594899A Expired - Fee Related JP3531520B2 (en) 1999-03-19 1999-03-19 Insulating film, method of manufacturing the same, and electronic device

Country Status (1)

Country Link
JP (1) JP3531520B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068733A (en) * 2001-08-30 2003-03-07 Tokyo Electron Ltd Method of forming porous film and forming apparatus of the same
EP1473770A1 (en) * 2002-12-18 2004-11-03 Texas Instruments Incorporated Low dielectric constant interconnect insulator having fullerene additive
JP2004356094A (en) * 2003-05-08 2004-12-16 Mitsubishi Chemicals Corp Laminate and method of manufacturing laminate
JP2005132719A (en) * 2003-10-27 2005-05-26 Itt Manufacturing Enterprises Inc Secondary battery electrode based on fullerene
JP2007145905A (en) * 2005-11-24 2007-06-14 Univ Nihon Method for producing fullerene polymer
US7531209B2 (en) 2005-02-24 2009-05-12 Michael Raymond Ayers Porous films and bodies with enhanced mechanical strength
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters
US7875315B2 (en) 2006-05-31 2011-01-25 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
US7883742B2 (en) 2006-05-31 2011-02-08 Roskilde Semiconductor Llc Porous materials derived from polymer composites
US7919188B2 (en) 2006-05-31 2011-04-05 Roskilde Semiconductor Llc Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials
JP4923311B2 (en) * 2003-09-30 2012-04-25 マサチューセッツ インスティテュート オブ テクノロジー Fullerene structures and such structures connected to carbon materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526216B2 (en) * 2001-08-30 2010-08-18 東京エレクトロン株式会社 Method and apparatus for forming porous film
JP2003068733A (en) * 2001-08-30 2003-03-07 Tokyo Electron Ltd Method of forming porous film and forming apparatus of the same
EP1473770A1 (en) * 2002-12-18 2004-11-03 Texas Instruments Incorporated Low dielectric constant interconnect insulator having fullerene additive
JP2004356094A (en) * 2003-05-08 2004-12-16 Mitsubishi Chemicals Corp Laminate and method of manufacturing laminate
JP4742517B2 (en) * 2003-05-08 2011-08-10 三菱化学株式会社 LAMINATE AND METHOD FOR PRODUCING LAMINATE
JP4923311B2 (en) * 2003-09-30 2012-04-25 マサチューセッツ インスティテュート オブ テクノロジー Fullerene structures and such structures connected to carbon materials
JP2005132719A (en) * 2003-10-27 2005-05-26 Itt Manufacturing Enterprises Inc Secondary battery electrode based on fullerene
US7531209B2 (en) 2005-02-24 2009-05-12 Michael Raymond Ayers Porous films and bodies with enhanced mechanical strength
US8034890B2 (en) 2005-02-24 2011-10-11 Roskilde Semiconductor Llc Porous films and bodies with enhanced mechanical strength
JP2007145905A (en) * 2005-11-24 2007-06-14 Univ Nihon Method for producing fullerene polymer
US7790234B2 (en) 2006-05-31 2010-09-07 Michael Raymond Ayers Low dielectric constant materials prepared from soluble fullerene clusters
US7875315B2 (en) 2006-05-31 2011-01-25 Roskilde Semiconductor Llc Porous inorganic solids for use as low dielectric constant materials
US7883742B2 (en) 2006-05-31 2011-02-08 Roskilde Semiconductor Llc Porous materials derived from polymer composites
US7919188B2 (en) 2006-05-31 2011-04-05 Roskilde Semiconductor Llc Linked periodic networks of alternating carbon and inorganic clusters for use as low dielectric constant materials

Also Published As

Publication number Publication date
JP3531520B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
JP4776618B2 (en) Back-end process transmission line structure for semiconductor devices (Method of forming a suspended transmission line structure in back-end process)
US7358597B2 (en) UV-activated dielectric layer
US6495445B2 (en) Semi-sacrificial diamond for air dielectric formation
US7589014B2 (en) Semiconductor device having multiple wiring layers and method of producing the same
US6486557B1 (en) Hybrid dielectric structure for improving the stiffness of back end of the line structures
US7781892B2 (en) Interconnect structure and method of fabricating same
JP3449614B2 (en) Integrated circuit chip structure and method of manufacturing the same
US20060192286A1 (en) Semiconductor device
JPH10242278A (en) Manufacture of semiconductor device, and semiconductor device
JP2000268632A (en) Insulating film and manufacture thereof and electronic device and manufacture thereof
US6191031B1 (en) Process for producing multi-layer wiring structure
KR20030027741A (en) Semiconductor device of mutilayer wiring structure and fabrication method thereof
JP2004165635A (en) Microelectronics method and structure
US7410896B2 (en) Semiconductor device having low-k dielectric film in pad region and method for manufacture thereof
US7015110B2 (en) Method and structure of manufacturing high capacitance metal on insulator capacitors in copper
JPH10150105A (en) Semiconductor device and its manufacture
JPH11330234A (en) Multilayer interconnection semiconductor device and its manufacture
KR20010030170A (en) A process for manufacturing an integrated circuit including a dual- damascene structure and an integrated circuit
JP2000183158A (en) Semiconductor integrated circuit device and its manufacture
KR20030071026A (en) Semiconductor device having multilevel interconnections and method for manufacturing the same
US20060014374A1 (en) Layer assembly and method for producing a layer assembly
US20050236716A1 (en) Heat dissipation structure and method thereof
TW200415797A (en) Capacitor in an interconnect system and method of manufacturing thereof
TW413917B (en) Semiconductor device and method of manufacturing the same
JP2000306998A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees