JP2000266907A - Resin joint type optical element - Google Patents

Resin joint type optical element

Info

Publication number
JP2000266907A
JP2000266907A JP11074717A JP7471799A JP2000266907A JP 2000266907 A JP2000266907 A JP 2000266907A JP 11074717 A JP11074717 A JP 11074717A JP 7471799 A JP7471799 A JP 7471799A JP 2000266907 A JP2000266907 A JP 2000266907A
Authority
JP
Japan
Prior art keywords
optical element
lens
resin
substrate
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11074717A
Other languages
Japanese (ja)
Other versions
JP4281146B2 (en
Inventor
Koji Nakada
耕司 中田
Haruhiko Tsunoda
治彦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP07471799A priority Critical patent/JP4281146B2/en
Publication of JP2000266907A publication Critical patent/JP2000266907A/en
Application granted granted Critical
Publication of JP4281146B2 publication Critical patent/JP4281146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain necessary optical performance without laergely deviating from a desired optical surface shape by providing a hard resin layer on one surface, and providing a reflection preventing film on the other surface of a base material. SOLUTION: A lens of a composite type optical component (resin joint type optical element), is provided with a hard resin layer 4 on one surface A of a base material 1, and a reflection preventing film 3 with reflectance <1% against light of wavelength 365 nm on the other surface B of the base material 1. Namely, the lense base material 1 is prepared, and one surface (a lens surface B on the opposite side to the lens surface A forming a hard resin layer) of the lens base material 1 is coated with a reflection preventing film 3. On the other surface of the lens base material 1 (the lens surface A not coated with the reflection preventing film 3) is formed with a hard resin layer 2 to generate a non-spherical shape. Such composite type optical component (lens) is only a little deviated from the desired shape (non-spherical shape) in the optical surface shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基材上に硬化樹脂
層を設けてなる樹脂接合型光学素子(例えば、ガラス基
材と樹脂とが接合されて構成された複合型光学部品)に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-bonded optical element having a cured resin layer provided on a substrate (for example, a composite optical component formed by bonding a glass substrate and a resin). It is.

【0002】[0002]

【従来の技術】光学素子であるレンズには、表面形状が
非球面の非球面レンズがある。この非球面レンズは、球
面レンズによる球面収差や広角レンズによるディストー
ションを除去出来る等、球面レンズ等では得られない優
れた性能を有することから重用されている。
2. Description of the Related Art A lens which is an optical element includes an aspherical lens having an aspherical surface. This aspherical lens is widely used because it has excellent performance that cannot be obtained with a spherical lens or the like, such as removal of spherical aberration by a spherical lens and distortion by a wide-angle lens.

【0003】このような非球面形状を有する光学部品と
しては、例えば、特開昭59−12412号公報(ミノ
ルタ)に開示されるように、ガラス基材上に樹脂層を形
成した樹脂接合型光学素子である複合型光学部品が提案
されている。かかる複合型非球面レンズ(樹脂接合型光
学素子)では一般に、例えば図1に示す様に硬化樹脂層
が設けられたレンズ面とは反対側のレンズ面に、単層膜
または多層膜の反射防止用薄膜(反射防止膜)3が形成
されている。
As an optical part having such an aspherical shape, for example, as disclosed in Japanese Patent Application Laid-Open No. Sho 59-12412 (Minolta), a resin-bonded optical element having a resin layer formed on a glass substrate is disclosed. A composite optical component as an element has been proposed. In such a composite aspherical lens (resin-bonded optical element), a single-layer film or a multi-layer film is generally provided on a lens surface opposite to a lens surface provided with a cured resin layer as shown in FIG. A thin film for use (anti-reflection film) 3 is formed.

【0004】ここで、反射防止膜としては、カメラ等の
光学部品に用いられる広帯域な多層膜が形成される場合
が多く、その反射率特性を図3に示す。この広帯域な多
層膜の性能には、カメラ等の光学部品におけるカラーバ
ランス等の要求品質より、可視域(400nm〜700n
m)に於いて1%以下の反射率が求められる。
Here, as the antireflection film, a multilayer film having a wide band used for an optical component such as a camera is often formed, and the reflectance characteristic is shown in FIG. The performance of the broadband multi-layer film depends on the required quality, such as color balance, of optical components such as cameras, in the visible region (400 nm to 700 nm).
In m), a reflectance of 1% or less is required.

【0005】また、この反射防止膜は一般的には、真空
蒸着法により形成されるので、薄膜形成時にレンズ面は
250℃程度の高温になる。そのため、レンズ面に硬化
樹脂層を形成する前に反射防止膜が蒸着される。という
のは、前記硬化樹脂層を構成する紫外線硬化型樹脂は一
般に、前記の様な高温環境下に放置すると劣化して、光
学部品としての品質(外観、非球面形状、屈折率)を低
下させるからである。
[0005] Further, since this antireflection film is generally formed by a vacuum evaporation method, the temperature of the lens surface becomes high at about 250 ° C when a thin film is formed. Therefore, an antireflection film is deposited before forming a cured resin layer on the lens surface. This is because the ultraviolet curable resin constituting the cured resin layer generally deteriorates when left in the high temperature environment as described above, and deteriorates the quality (appearance, aspherical shape, refractive index) as an optical component. Because.

【0006】図2に複合型非球面レンズ(樹脂接合型光
学素子)の一般的な製造工程を示す。図2の第1工程で
は、先ずガラスレンズ(基材)1を用意する。次に、第
2工程では、ガラスレンズ1の一方の表面(硬化樹脂層
を形成するレンズ面Aとは反対側のレンズ面B)に反射
防止膜3をコーティングする。
FIG. 2 shows a general manufacturing process of a composite aspherical lens (resin-bonded optical element). In the first step of FIG. 2, first, a glass lens (base material) 1 is prepared. Next, in the second step, one surface of the glass lens 1 (the lens surface B opposite to the lens surface A on which the cured resin layer is formed) is coated with the antireflection film 3.

【0007】そして、第3工程では、ガラスレンズ1の
他方の表面(反射防止膜3をコーティングしていないレンズ
面A)に硬化樹脂層2を形成して非球面形状を創生す
る。ここで、硬化樹脂層2の形成は例えば以下のように
行う(図11参照)。 先ず、レンズ基材51の表面Aと、金型53の所定形状を
有する金型面との間に紫外線硬化型樹脂液52aを挟む。
In the third step, the cured resin layer 2 is formed on the other surface of the glass lens 1 (the lens surface A not coated with the antireflection film 3) to create an aspherical shape. Here, the formation of the cured resin layer 2 is performed, for example, as follows (see FIG. 11). First, the ultraviolet curable resin liquid 52a is sandwiched between the surface A of the lens substrate 51 and the mold surface of the mold 53 having a predetermined shape.

【0008】次に、前記樹脂液52aを押し広げなが
ら、前記レンズ基材51と前記金型53との間隔が所定値ま
たは所定範囲となる位置まで両者を接近させる。 前記レンズ基材51及び金型53の位置を保持した状態
で、レンズ基材51の反射防止膜を形成した表面B側から
前記樹脂液52aに光(紫外線)54を照射することにより
樹脂液を硬化させ、硬化樹脂層52を形成して前記レンズ
基材51と一体化させるとともに、該硬化樹脂層52の表面
に前記金型面の形状を転写させて非球面形状を創生す
る。
Next, while pushing and spreading the resin liquid 52a, both are brought close to a position where the distance between the lens base material 51 and the mold 53 becomes a predetermined value or a predetermined range. With the positions of the lens substrate 51 and the mold 53 held, the resin liquid 52a is irradiated with light (ultraviolet rays) 54 from the front surface B side of the lens substrate 51 on which the antireflection film is formed, thereby forming the resin liquid. After curing, the cured resin layer 52 is formed and integrated with the lens substrate 51, and the shape of the mold surface is transferred to the surface of the cured resin layer 52 to create an aspherical shape.

【0009】前記硬化樹脂層52が一体に形成されたレ
ンズ基材51を前記金型面から剥離する。最後に第4工程
では、前記硬化樹脂層2の上に反射防止膜4をコーティ
ングする(図2)。以上のような工程(一例)により、
従来の複合型非球面レンズ(樹脂接合型光学素子)が得
られる。
The lens substrate 51 on which the cured resin layer 52 is integrally formed is peeled off from the mold surface. Finally, in a fourth step, an antireflection film 4 is coated on the cured resin layer 2 (FIG. 2). By the above steps (an example),
A conventional composite aspheric lens (resin-joined optical element) can be obtained.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
樹脂接合型光学素子(例えば複合型非球面レンズ)は、
所望の光学面形状(例えば非球面形状)から大きく外れ
た形状を有することが多く、必要な光学性能を充分に果
たす樹脂接合型光学素子(例えば複合型非球面レンズ)
を得がたいという問題点があった。
However, the conventional resin-bonded optical element (for example, a composite aspherical lens) is
A resin-bonded optical element (for example, a composite aspherical lens) that often has a shape largely deviating from a desired optical surface shape (for example, an aspherical shape) and sufficiently achieves necessary optical performance.
There was a problem that it was difficult to obtain.

【0011】本発明は、かかる問題点に鑑みてなされた
ものであり、所望の光学面形状(例えば非球面形状)か
ら大きく外れることなく、必要な光学性能を充分に果た
すことができる樹脂接合型光学素子(例えば複合型非球
面レンズ)を提供することを目的とする。
The present invention has been made in view of the above problems, and has been made in view of the above circumstances, and has been made in view of a resin-bonded mold capable of sufficiently achieving required optical performance without largely deviating from a desired optical surface shape (for example, an aspherical shape). An object of the present invention is to provide an optical element (for example, a composite aspherical lens).

【0012】[0012]

【課題を解決するための手段】そのため、本発明は第一
に「基材上に硬化樹脂層を設けてなる樹脂接合型光学素
子において、前記硬化樹脂層は前記基材の一方の表面に
設けられ、該基材の他方の表面には波長365nmの光に
対する反射率が1%以下の反射防止膜が設けられている
ことを特徴とする樹脂接合型光学素子(請求項1)」を
提供する。
Therefore, the present invention firstly provides a resin-bonded optical element having a cured resin layer provided on a substrate, wherein the cured resin layer is provided on one surface of the substrate. And a resin-bonded optical element (Claim 1) characterized in that an antireflection film having a reflectance of 1% or less for light having a wavelength of 365 nm is provided on the other surface of the substrate. .

【0013】また、本発明は第二に「前記反射防止膜
は、蒸着角度条件等の製造誤差による設定分光特性から
の波長シフトが±10nm生じても、波長365nmの光に
対する実測反射率が安定して1%以下となるような分光
特性を有することを特徴とする請求項1記載の樹脂接合
型光学素子(請求項2)」を提供する。また、本発明は
第三に「前記反射防止膜は、前記基材側に位置する高屈
折率物質と中屈折率物質との交互多層膜と、該交互多層
膜上に形成された低屈折率物質の最外層により、多層に
積層して構成されていることを特徴とする請求項1また
は2記載の樹脂接合型光学素子(請求項3)」を提供す
る。
[0013] The present invention also provides a second method. "The antireflection film has a stable measured reflectance for light having a wavelength of 365 nm even when a wavelength shift of ± 10 nm from a set spectral characteristic due to a manufacturing error such as a deposition angle condition occurs. The resin-bonded optical element according to claim 1, wherein the optical element has a spectral characteristic of 1% or less. Further, the present invention provides a third aspect, wherein the antireflection film is an alternating multilayer film of a high refractive index material and a medium refractive index material located on the substrate side, and a low refractive index formed on the alternating multilayer film. A resin-bonded optical element (Claim 3) according to claim 1 or 2, wherein the resin-bonded optical element is formed by laminating a plurality of layers with an outermost layer of a substance.

【0014】また、本発明は第四に「前記反射防止膜
は、可視域(400〜700nm)の光に対する反射率も
1%以下であることを特徴とする請求項1〜3のいずれ
かに記載の樹脂接合型光学素子(請求項4)」を提供す
る。また、本発明は第五に「前記硬化樹脂層の上に可視
域(400〜700nm)の光に対する反射率が1%以下
の反射防止膜が設けられていることを特徴とする請求項
1〜4のいずれかに記載の樹脂接合型光学素子(請求項
5)」を提供する。
[0014] The present invention is also directed to a fourth aspect, wherein the antireflection film has a reflectance of 1% or less with respect to light in a visible region (400 to 700 nm). The present invention provides a resin-bonded optical element according to claim 4. Further, the present invention fifthly provides "an anti-reflection film having a reflectance of 1% or less for light in a visible region (400 to 700 nm) is provided on the cured resin layer. 4. A resin-bonded optical element according to any one of (4) to (5).

【0015】また、本発明は第六に「前記硬化樹脂層を
設けた基材表面(第1面)の光学的有効径が前記反射防
止膜を設けた基材表面(第2面)の光学的有効径に比べ
て大きく、前記第2面の光学的有効径部分の周辺部は、
反射防止膜が設けられていないアラズリ部であることを
特徴とする請求項1〜5のいずれかに記載の樹脂接合型
光学素子(請求項6)」を提供する。
The present invention is also directed to a sixth aspect of the present invention wherein the optically effective diameter of the substrate surface (first surface) provided with the cured resin layer is the optical effective diameter of the substrate surface (second surface) provided with the antireflection film. Larger than the effective diameter, the periphery of the optically effective diameter portion of the second surface,
A resin-bonded optical element according to any one of claims 1 to 5, wherein the anti-reflection film is not provided with an arazuri portion.

【0016】また、本発明は第七に「前記基材の材料が
光学ガラスまたは結晶性光学材料であることを特徴とす
る請求項1〜6のいずれかに記載の樹脂接合型光学素子
(請求項7)」を提供する。また、本発明は第八に「少
なくとも一つの非球面形状光学面を有することを特徴と
する請求項1〜7のいずれかに記載の樹脂接合型光学素
子(請求項8)」を提供する。
The present invention provides a resin-bonded optical element according to any one of claims 1 to 6, wherein the material of the base material is an optical glass or a crystalline optical material. Item 7) is provided. Eighth, the present invention provides a “resin-bonded optical element according to any one of claims 1 to 7 having at least one aspherical optical surface (claim 8)”.

【0017】[0017]

【発明の実施の形態】本発明者らは、従来の樹脂接合型
光学素子(例えば複合型非球面レンズ)が所望の光学面
形状(例えば非球面形状)から大きく外れた形状を有す
ることが多い原因を見出し、これに基づいて本発明をな
すに至ったので、これについて先ず説明を行う。
DETAILED DESCRIPTION OF THE INVENTION The present inventors often find that a conventional resin-bonded optical element (for example, a complex aspherical lens) has a shape largely deviating from a desired optical surface shape (for example, an aspherical shape). The present inventors have found out the cause and made the present invention based on the cause. This will be described first.

【0018】基材(例えばレンズ基材)の一つの光学面
に硬化樹脂層を形成する場合に、その材料には紫外線等
の比較的短波長の光により硬化する光硬化型樹脂液(例
えば、紫外線硬化型樹脂液)が多く用いられる。そし
て、前記紫外線としては、i線と呼ばれる波長365nm
の光が一般的であり、市販の紫外線照射装置の多くはこ
の波長光を採用している。
When a curable resin layer is formed on one optical surface of a substrate (for example, a lens substrate), the material may be a photo-curable resin liquid (for example, UV-curable resin liquid) is often used. The ultraviolet light has a wavelength of 365 nm called i-line.
Is generally used, and many commercially available ultraviolet irradiation devices employ this wavelength light.

【0019】ここで、硬化樹脂層を形成する際の紫外線
量は、非常に精密に管理する必要がある。これは、紫外
線硬化型樹脂液は、紫外線照射による硬化反応が急激で
あり(紫外線を照射すると、数秒で硬化が始まり、10
数秒で硬化が完了する)、照射する紫外線量が基材毎に
同一となるように管理しないと、形成される硬化樹脂層
の表面形状(例えば非球面形状)が基材毎に大きくばら
つく原因となるからである。
Here, the amount of ultraviolet rays when forming the cured resin layer needs to be controlled very precisely. This is because the UV-curable resin liquid undergoes a rapid curing reaction by UV irradiation (curing starts in a few seconds when irradiated with UV light).
If the amount of ultraviolet rays to be irradiated is not controlled to be the same for each substrate, the surface shape (for example, aspherical shape) of the formed cured resin layer may vary widely for each substrate. Because it becomes.

【0020】ところで、従来の反射防止膜は、光学部品
(例えばカメラ等の鏡玉)における要求品質を可視域
(400nm〜700nm)についてのみ規格設定している
が、樹脂層を形成する際に使用する紫外線(i線:波長
365nm)に対しては、規定設定等の注意を特に払って
いなかった。そのため、紫外線(i線:波長365nm)
に対する前記従来の反射防止膜の反射率(逆に言うと透
過率)は、成膜誤差によりその値が大きくばらついてい
た。
The conventional antireflection film sets the required quality of an optical component (for example, a mirror ball of a camera or the like) only in the visible region (400 nm to 700 nm), but is used when forming a resin layer. No particular attention was paid to prescribed settings for ultraviolet rays (i-line: wavelength 365 nm). Therefore, ultraviolet rays (i-line: wavelength 365 nm)
The reflectance (conversely, the transmittance) of the conventional anti-reflection film varied greatly due to film formation errors.

【0021】即ち、反射防止膜を例えば蒸着法により成
膜する際に、成膜物質(ターゲット)と被成膜基材の距離誤
差と角度誤差により製造(成膜)誤差が製造ロット毎に
発生し、得られた反射防止膜の分光特性全体がシフト
(波長シフト)して、その結果、紫外線(i線:波長3
65nm)に対する従来の反射防止膜の反射率は、成膜誤
差によりその値が大きくばらついていた。
That is, when an anti-reflection film is formed by, for example, a vapor deposition method, a manufacturing (film forming) error occurs for each manufacturing lot due to a distance error and an angle error between a film forming substance (target) and a substrate to be formed. Then, the entire spectral characteristic of the obtained antireflection film shifts (wavelength shift). As a result, ultraviolet rays (i-line: wavelength 3
The value of the reflectance of the conventional antireflection film with respect to 65 nm) greatly fluctuated due to a film formation error.

【0022】ところで、前述したように、基材の光学面
に硬化樹脂層を形成する際には、基材の反射防止膜を形
成した光学面側から樹脂液に紫外線(波長365nm)を
照射するが(図11参照)、紫外線に対する反射防止膜の
反射率が製造ロット毎に大きくばらつくと、紫外線の透
過率が大きく変化して、樹脂液に到達する単位時間当た
りの紫外線透過量も無視できない程度に変動することと
なる。
As described above, when forming a cured resin layer on the optical surface of the substrate, the resin liquid is irradiated with ultraviolet rays (wavelength 365 nm) from the optical surface side of the substrate on which the antireflection film is formed. However, if the reflectance of the anti-reflection film for ultraviolet rays varies greatly among manufacturing lots, the transmittance of ultraviolet rays changes greatly, and the amount of ultraviolet rays per unit time reaching the resin solution is not negligible (see FIG. 11). To fluctuate.

【0023】即ち、従来の樹脂接合型光学素子(例えば
複合型非球面レンズ)が所望の光学面形状(例えば非球
面形状)から大きく外れた形状を有することが多い原因
は、光学素子の基材に形成された反射防止膜の紫外線
(波長365nm)に対する反射率の大きなばらつきによ
り、樹脂液に到達する単位時間当たりの紫外線透過量が
大きく変動して、形成される硬化樹脂層の表面形状が製
造ロット毎に無視できない程度にばらつくためである。
That is, the reason that a conventional resin-bonded optical element (for example, a complex type aspherical lens) often has a shape largely deviating from a desired optical surface shape (for example, an aspherical shape) is that the base material of the optical element is used. Due to the large variation in the reflectance of the anti-reflection film formed on the substrate to ultraviolet rays (wavelength 365 nm), the amount of transmitted ultraviolet light per unit time reaching the resin liquid varies greatly, and the surface shape of the formed cured resin layer is manufactured. This is because the variation varies from lot to lot.

【0024】例えば図4に示すようなレンズ形状の場合
には、硬化樹脂層を形成するために照射する紫外線は、
レンズ面Bに施された反射防止膜の部分Dを透過する紫
外線5とレンズ外周部のアラズリ部Cを透過する紫外線
6に分けられる。一般にアラズリ部Cには反射防止膜を
施さないので、アラズリ部Cを透過する紫外線6の量
は、レンズ毎にみても一定であるが、反射防止膜部分D
を透過する紫外線5の量は、前述した理由(反射率のば
らつき)によりレンズ毎に変動する。
For example, in the case of a lens shape as shown in FIG. 4, the ultraviolet light applied to form the cured resin layer is
Ultraviolet rays 5 are transmitted through a portion D of the anti-reflection film provided on the lens surface B, and ultraviolet rays 6 are transmitted through an arazuri portion C on the outer periphery of the lens. Generally, since the anti-reflection film is not applied to the arazuri portion C, the amount of the ultraviolet rays 6 transmitted through the arazuri portion C is constant even for each lens.
The amount of the ultraviolet light 5 passing through the lens varies for each lens for the above-mentioned reason (variation in reflectance).

【0025】即ち、図4に示すようなレンズ形状の場合
には、アラズリ部Cと反射防止膜部分Dを透過する各紫
外線の量のバランスはレンズ毎に大きく異なるので、硬
化樹脂層における非球面形状のばらつき量は、アラズリ
部のないレンズ形状の場合と比較して一層大きくなり、
所望の非球面形状を有する複合型非球面レンズ(樹脂接
合型光学素子)は更に得難くなる。
That is, in the case of a lens shape as shown in FIG. 4, since the balance of the amount of each ultraviolet ray transmitted through the arazuri portion C and the antireflection film portion D is greatly different for each lens, the aspherical surface of the cured resin layer The amount of variation in the shape is larger than in the case of a lens shape without an arazuri part,
It is more difficult to obtain a composite aspherical lens (resin-bonded optical element) having a desired aspherical shape.

【0026】そこで、本発明においては、従来の樹脂接
合型光学素子(例えば複合型非球面レンズ)が所望の光
学面形状(例えば非球面形状)から大きく外れた形状を
有することが多い原因となる、光学素子の基材に形成さ
れた反射防止膜の紫外線(波長365nm)に対する反射
率のばらつきを、形成される硬化樹脂層の表面形状のば
らつきが無視できる程度となるように低減することとし
た。
Therefore, in the present invention, a conventional resin-bonded optical element (for example, a compound aspherical lens) often has a shape largely deviating from a desired optical surface shape (for example, an aspherical shape). The variation in the reflectance of the antireflection film formed on the substrate of the optical element with respect to ultraviolet rays (wavelength: 365 nm) is reduced so that the variation in the surface shape of the formed cured resin layer becomes negligible. .

【0027】即ち、基材の一方の表面に硬化樹脂層を設
けてなる本発明(請求項1〜8)にかかる樹脂接合型光
学素子では、基材の他方の表面(硬化樹脂層を形成しな
い光学面)に設けた反射防止膜の波長365nmの光に対
する反射率を1%以下に設定した。かかる構成を採用し
た本発明(請求項1〜8)の樹脂接合型光学素子は、そ
の光学面形状が所望形状(例えば非球面形状)から僅か
に外れるだけなので、必要な光学性能を充分に果たすこ
とができる。
That is, in the resin-bonded optical element according to the present invention in which a cured resin layer is provided on one surface of the substrate (claims 1 to 8), the other surface of the substrate (the cured resin layer is not formed) The reflectance of the antireflection film provided on the optical surface) to light having a wavelength of 365 nm was set to 1% or less. The resin-bonded optical element according to the present invention (claims 1 to 8) adopting such a configuration has an optical surface shape slightly deviating from a desired shape (for example, an aspherical shape), and thus sufficiently achieves necessary optical performance. be able to.

【0028】本発明にかかる反射防止膜は、所望の光学
面形状(例えば非球面形状)を有する樹脂接合型光学素
子が安定して得られるように、蒸着角度条件等の製造誤
差による設定分光特性からの波長シフトが±10nm生じ
ても、波長365nmの光に対する実測反射率が安定して
1%以下となるような分光特性を有するようにすること
が好ましい(請求項2)。
The antireflection film according to the present invention has a spectral characteristic set by a manufacturing error such as a deposition angle condition so that a resin bonded optical element having a desired optical surface shape (for example, an aspherical shape) can be stably obtained. Even if a wavelength shift of ± 10 nm occurs, it is preferable to have a spectral characteristic such that the measured reflectance for light having a wavelength of 365 nm is stably 1% or less (Claim 2).

【0029】本発明にかかる反射防止膜としては、例え
ば、基材側に位置する高屈折率物質と中屈折率物質との
交互多層膜と、該交互多層膜上に形成された低屈折率物
質の最外層により、多層に積層して構成されたものを使
用することができる(請求項3)。以下にその具体例を
示す。 基材/M/H/M/H/M/H/M/H/L(基材上に設けた9層構成の反
射防止膜) ここで、H:高屈折率(2.0〜2.2)の物質層(例:TiO2
層またはZr02層) M:中屈折率(1.6〜1.7)の物質層(例:Al2O3層) L:低屈折率(1.38〜1.4)の物質層(例:MgF2層) また、本発明にかかる反射防止膜は、可視域(400〜
700nm)の光に対する反射率も1%以下となるように
構成して、かかる特性が要求されるカメラ等の光学部品
に適用できるようにしてもよい(請求項4)。
Examples of the antireflection film according to the present invention include, for example, an alternating multilayer film of a high refractive index material and a medium refractive index material located on the substrate side, and a low refractive index material formed on the alternating multilayer film. By using the outermost layer of (1), a layer formed by laminating multiple layers can be used (claim 3). Specific examples are shown below. Substrate / M / H / M / H / M / H / M / H / L (Anti-reflective coating of 9 layers provided on the substrate) where H: High refractive index (2.0 to 2.2) substance Layer (eg TiO 2
Layer or Zr0 2 layer) M: material layer of medium refractive index (1.6-1.7) (Example: Al 2 O 3 layer) L: The MgF 2 layer): material layer of low refractive index (1.38 to 1.4) (Example The antireflection film according to the present invention has a visible range (400 to 400).
The reflectivity for light having a wavelength of 700 nm) may be 1% or less, so that the present invention can be applied to optical parts such as cameras that require such characteristics.

【0030】また、本発明においては、硬化樹脂層の上
に可視域(400〜700nm)の光に対する反射率が1
%以下の反射防止膜を更に設けてもよい(請求項5)。
また、本発明は、硬化樹脂層を設けた基材表面(第1
面)の光学的有効径が反射防止膜を設けた基材表面(第
2面)の光学的有効径に比べて大きく、前記第2面の光
学的有効径部分の周辺部が反射防止膜が設けられていな
いアラズリ部である樹脂接合型光学素子に適用すると、
より効果的である(請求項6)。
In the present invention, the reflectance of light in the visible region (400 to 700 nm) is 1 on the cured resin layer.
% Of an anti-reflection film may be further provided.
In addition, the present invention relates to a substrate surface provided with a cured resin layer (first surface).
The optical effective diameter of the surface (surface) is larger than the optical effective diameter of the substrate surface (second surface) on which the antireflection film is provided. When applied to a resin-bonded optical element that is an arazuri part that is not provided,
It is more effective (claim 6).

【0031】本発明にかかる樹脂接合型光学素子の基材
材料としては、例えば光学ガラスや結晶性光学材料を使
用することができる(請求項7)。また、本発明は、少
なくとも一つの非球面形状光学面を有する樹脂接合型光
学素子に用いて好適である(請求項8)。以下、本発明
を実施例により具体的に説明するが、本発明はこれらの
例に限定されるものではない。
As the base material of the resin-bonded optical element according to the present invention, for example, an optical glass or a crystalline optical material can be used. Further, the present invention is suitable for use in a resin-bonded optical element having at least one aspherical optical surface (claim 8). Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

【0032】[0032]

【実施例1】基材上に硬化樹脂層を設けてなる本実施例
の複合型光学部品(樹脂接合型光学素子)であるレンズ
は、硬化樹脂層4が基材1の一方の表面Aに設けられ、
該基材1の他方の表面Bには波長365nmの光に対する
反射率が1%以下の反射防止膜3が設けられている。
Embodiment 1 In a lens which is a composite optical component (resin-bonded optical element) of this embodiment having a cured resin layer provided on a substrate, a cured resin layer 4 is provided on one surface A of the substrate 1. Provided,
On the other surface B of the substrate 1, an antireflection film 3 having a reflectance of 1% or less for light having a wavelength of 365 nm is provided.

【0033】本実施例にかかる複合型光学部品(レン
ズ)を図1に示す。また、前記反射防止膜の反射分光特
性を図5に示す。レンズ基材1は、S−LAH55(オ
ハラ硝材)により構成され、そのレンズ面Bには図5に
示す特性を有する反射防止膜3が形成されている。この
反射防止膜3の波長365nmの光に対する反射率は0.
1%以下であり、また波長400nm〜700nmの光に対
する反射率は1%以下である。
FIG. 1 shows a composite optical component (lens) according to this embodiment. FIG. 5 shows the reflection spectral characteristics of the antireflection film. The lens substrate 1 is made of S-LAH55 (Ohara glass material), and an antireflection film 3 having the characteristics shown in FIG. The reflectance of the antireflection film 3 with respect to light having a wavelength of 365 nm is 0.1.
The reflectance is 1% or less, and the reflectance for light having a wavelength of 400 nm to 700 nm is 1% or less.

【0034】また、レンズ基材1のレンズ面Aには硬化
樹脂層4が形成されている。本実施例の複合型光学部品
(レンズ)は、図2に示す工程により製造される。先ず
第1工程では、レンズ基材1を用意する。次に、第2工
程では、レンズ基材1の一方の表面(硬化樹脂層を形成
するレンズ面Aとは反対側のレンズ面B)に反射防止膜
3をコーティングする。
A cured resin layer 4 is formed on the lens surface A of the lens substrate 1. The composite optical component (lens) of this embodiment is manufactured by the steps shown in FIG. First, in a first step, a lens substrate 1 is prepared. Next, in the second step, one surface of the lens substrate 1 (the lens surface B opposite to the lens surface A on which the cured resin layer is formed) is coated with the antireflection film 3.

【0035】そして、第3工程では、レンズ基材1の他
方の表面(反射防止膜3をコーティングしていないレンズ面
A)に硬化樹脂層2を形成して非球面形状を創生する。
ここで、硬化樹脂層2の形成は例えば図11に示す工程に
より行う。図7は、以上のようにして製造した本実施例
の複合型光学部品(レンズ)の非球面形状を測定した結
果である。横軸(X軸)は半径位置を表し、縦軸(Y
軸)は設計値からのズレ量を表している。
In the third step, the cured resin layer 2 is formed on the other surface of the lens substrate 1 (the lens surface A not coated with the antireflection film 3) to create an aspherical shape.
Here, the formation of the cured resin layer 2 is performed, for example, by the process shown in FIG. FIG. 7 shows the results of measuring the aspherical shape of the composite optical component (lens) of the present example manufactured as described above. The horizontal axis (X axis) represents the radial position, and the vertical axis (Y
The axis indicates the deviation from the design value.

【0036】なお、非球面形状を測定した本実施例にか
かるレンズは10枚あり、各レンズ面Bの反射防止膜3
はそれぞれ異なるバッチにて処理したものである。図7
の測定結果よりレンズの非球面形状のバラツキは0.3
μm以下であり非常に小さいことが判る。また、図8に
は10枚のレンズについて、各レンズ面Bにコーティン
グした反射防止膜の反射特性のバラツキを示した。これ
によれば、波長365nmの光に対する反射率のバラツキ
は0.05%〜0.3%であり十分に小さいことが判
る。
Incidentally, there are ten lenses according to the present embodiment whose aspherical shape was measured, and the antireflection film 3 on each lens surface B was used.
Are processed in different batches. FIG.
According to the measurement result, the variation of the aspherical shape of the lens is 0.3.
It can be seen that it is less than μm and very small. FIG. 8 shows the dispersion of the reflection characteristics of the anti-reflection film coated on each lens surface B for ten lenses. According to this, it can be seen that the variation in the reflectance with respect to the light having a wavelength of 365 nm is 0.05% to 0.3%, which is sufficiently small.

【0037】このように、本実施例の複合型光学部品
(レンズ)は、その光学面形状が所望形状(非球面形
状)から僅かに外れるだけなので、必要な光学性能を充
分に果たすことができる。
As described above, the composite optical component (lens) of the present embodiment has an optical surface shape slightly deviating from a desired shape (aspherical shape), and thus can sufficiently achieve necessary optical performance. .

【0038】[0038]

【実施例2】基材上に硬化樹脂層を設けてなる本実施例
の複合型光学部品(樹脂接合型光学素子)であるレンズ
は、硬化樹脂層4が基材11の一方の表面Aに設けら
れ、該基材11の他方の表面Bには波長365nmの光に
対する反射率が1%以下の反射防止膜3が設けられてい
る。
Embodiment 2 In a lens which is a composite optical component (resin-bonded optical element) of this embodiment having a cured resin layer provided on a substrate, a cured resin layer 4 is formed on one surface A of a substrate 11. The other surface B of the base material 11 is provided with an antireflection film 3 having a reflectance of 1% or less for light having a wavelength of 365 nm.

【0039】本実施例にかかる複合型光学部品(レン
ズ)を図6に示す。また、前記反射防止膜の反射分光特
性を図5に示す。レンズ基材11は、S−LAH55
(オハラ硝材)により構成され、そのレンズ面Bには図5
に示す特性を有する反射防止膜3が形成されている。こ
の反射防止膜3の波長365nmの光に対する反射率は
0.1%以下であり、また波長400nm〜700nmの光
に対する反射率は1%以下である。
FIG. 6 shows a composite optical component (lens) according to this embodiment. FIG. 5 shows the reflection spectral characteristics of the antireflection film. The lens substrate 11 is made of S-LAH55
(Ohara glass material) and its lens surface B
The antireflection film 3 having the characteristics shown in FIG. The reflectance of the antireflection film 3 for light having a wavelength of 365 nm is 0.1% or less, and the reflectance for light having a wavelength of 400 nm to 700 nm is 1% or less.

【0040】また、レンズ基材11のレンズ面Aには硬
化樹脂層4が形成されている。本実施例の複合型光学部
品(レンズ)は、図2に示す工程により製造される。本
実施例の複合型光学部品(レンズ)の10枚について、
その非球面形状をそれぞれ測定したところ、非球面形状
のバラツキは0.3μm以下であり非常に小さいことが
判った。
The cured resin layer 4 is formed on the lens surface A of the lens substrate 11. The composite optical component (lens) of this embodiment is manufactured by the steps shown in FIG. For ten composite optical components (lenses) of the present embodiment,
When the aspherical shapes were measured, it was found that the variation of the aspherical shape was 0.3 μm or less and was very small.

【0041】また、10枚のレンズについて、各レンズ
面Bに形成した反射防止膜3の波長365nmの光に対す
る反射率のバラツキは0.05%〜0.3%であり十分
に小さいことが判った。このように、本実施例の複合型
光学部品(レンズ)は、その光学面形状が所望形状(非
球面形状)から僅かに外れるだけなので、必要な光学性
能を充分に果たすことができる。
Further, for the ten lenses, the variation of the reflectance of the antireflection film 3 formed on each lens surface B with respect to light having a wavelength of 365 nm is 0.05% to 0.3%, which is sufficiently small. Was. As described above, since the composite optical component (lens) of the present embodiment has an optical surface shape slightly deviating from a desired shape (aspherical shape), it is possible to sufficiently achieve necessary optical performance.

【0042】[0042]

【比較例】基材上に硬化樹脂層を設けてなる本比較例の
複合型光学部品(樹脂接合型光学素子)であるレンズ
は、硬化樹脂層が基材(実施例2と同一)の一方の表面
に設けられ、該基材の他方の表面には波長365nmの光
に対する反射率が1%を越える反射防止膜(図3の分光
特性を有する)が設けられている。
[Comparative Example] A lens, which is a composite optical component (resin-bonded optical element) of this comparative example in which a cured resin layer is provided on a base material, has a cured resin layer formed on one side of the base material (same as in Example 2). And an antireflection film (having a spectral characteristic shown in FIG. 3) having a reflectance of more than 1% for light having a wavelength of 365 nm is provided on the other surface of the substrate.

【0043】本比較例の複合型光学部品(レンズ)の1
0枚について、その非球面形状をそれぞれ測定したとこ
ろ、非球面形状のバラツキは2μm程度あり、前記各実
施例と比較すると非常に大きいことが判った。本比較例
の複合型光学部品(レンズ)は、その光学面形状が所望
形状(非球面形状)から大きく外れるので、必要な光学
性能を充分に果たすことができない。
The composite optical component (lens) 1 of this comparative example
When the aspherical shape of each of the 0 sheets was measured, it was found that the variation of the aspherical shape was about 2 μm, which was extremely large as compared with the above examples. Since the optical surface shape of the composite optical component (lens) of this comparative example largely deviates from the desired shape (aspherical shape), the required optical performance cannot be sufficiently achieved.

【0044】なお、10枚のレンズについて、各レンズ
面の反射防止膜の波長365nmの光に対する反射率のバ
ラツキは6%〜16%であり、非常に大きいことが判っ
た。
It was found that the reflectance of the antireflection film on each lens surface with respect to light having a wavelength of 365 nm was very large, from 6% to 16%, for the ten lenses.

【0045】[0045]

【発明の効果】以上説明したように、本発明(請求項1
〜8)の樹脂接合型光学素子は、その光学面形状が所望
形状(例えば非球面形状)から僅かに外れるだけなの
で、必要な光学性能を充分に果たすことができる。例え
ば、本発明によれば、硬化樹脂層の形成時に、レンズ基
材面を透過する紫外線量を従来よりも安定化できるの
で、硬化樹脂層表面の非球面形状を安定して創生でき
る。
As described above, the present invention (Claim 1)
In the resin-bonded optical elements of (8) to (9), the optical surface shape only slightly deviates from a desired shape (for example, an aspherical shape), so that the required optical performance can be sufficiently achieved. For example, according to the present invention, at the time of forming the cured resin layer, the amount of ultraviolet light transmitted through the lens substrate surface can be stabilized more than before, so that the aspherical shape of the cured resin layer surface can be stably created.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、実施例1の複合型光学部品(樹脂接合型光
学素子、レンズ)を示す構成説明図である。
FIG. 1 is an explanatory diagram illustrating a configuration of a composite optical component (a resin-joined optical element and a lens) according to a first embodiment.

【図2】は、実施例1の複合型光学部品(樹脂接合型光
学素子、レンズ)の製造工程図である。
FIG. 2 is a manufacturing process diagram of the composite optical component (resin-joined optical element, lens) of Example 1.

【図3】は、従来(例えば比較例)の反射防止膜の反射
特性図である。
FIG. 3 is a reflection characteristic diagram of a conventional (for example, a comparative example) antireflection film.

【図4】は、硬化樹脂層を形成するために照射する紫外
線がレンズ面Bに施された反射防止膜の部分Dを透過す
る紫外線5とレンズ外周部のアラズリ部(反射防止膜な
し)Cを透過する紫外線6に分けられる様子を示す説明
図である。
FIG. 4 shows ultraviolet rays 5 radiated to form a cured resin layer through a portion D of an antireflection film applied to a lens surface B and an arazuri portion (without an antireflection film) C on the outer periphery of the lens. FIG. 4 is an explanatory diagram showing a state of being divided into ultraviolet rays 6 that pass through.

【図5】は、本発明にかかる反射防止膜(一例)の分光
反射特性図である。
FIG. 5 is a spectral reflection characteristic diagram of an antireflection film (one example) according to the present invention.

【図6】は、実施例2の複合型光学部品(樹脂接合型光
学素子、レンズ)を示す構成説明図である。
FIG. 6 is a configuration explanatory view showing a composite optical component (resin-joined optical element, lens) of Example 2.

【図7】は、実施例1の複合型光学部品(レンズ)10
枚の非球面形状を測定したデータ図である。
FIG. 7 is a composite optical component (lens) 10 according to the first embodiment.
It is the data figure which measured the aspherical shape of one sheet.

【図8】は、実施例1の10枚のレンズについて、各レ
ンズ面の反射防止膜の分光反射特性のバラツキを示した
データ図である。
FIG. 8 is a data diagram showing variations in the spectral reflection characteristics of the antireflection film on each lens surface of the ten lenses of Example 1.

【図9】は、従来(比較例)の複合型光学部品(レン
ズ)10枚の非球面形状を測定したデータ図である。
FIG. 9 is a data diagram obtained by measuring the aspherical shapes of ten conventional composite optical components (lenses) (comparative examples).

【図10】は、比較例の10枚のレンズについて、各レ
ンズ面の反射防止膜の分光反射特性のバラツキを示した
データ図である。
FIG. 10 is a data diagram showing variations in spectral reflection characteristics of antireflection films on each lens surface of ten lenses of a comparative example.

【図11】は、基材上に硬化樹脂層を形成する方法を示
す工程図である。
FIG. 11 is a process chart showing a method of forming a cured resin layer on a base material.

【符号の説明】[Explanation of symbols]

1、11、51・・・光学素子の基材 2・・・硬化樹脂層 3・・・反射防止膜(基材面上)、 4・・・反射防止膜(硬化樹脂層上) 5・・・紫外線(反射防止膜部分Dを透過する紫外
線)、 6・・・紫外線(アラズリ部Cを透過する紫外線) 52・・・硬化樹脂層 52a・・・光硬化型樹脂液 53・・・金型 54・・・光(紫外線) A・・・基材の硬化樹脂層形成面 B・・・基材面Aとは反対側の基材面 C・・・基材面Bのあらずり部 D・・・基材面Bの反射防止膜形成部分 以上
Reference numerals 1, 11, 51: substrate of optical element 2: cured resin layer 3: anti-reflection film (on substrate surface), 4: anti-reflection film (on cured resin layer) 5.・ Ultraviolet rays (ultraviolet rays transmitted through the antireflection film portion D), 6 ... ultraviolet rays (ultraviolet rays transmitted through the arazuri portion C) 52 ... cured resin layer 52a ... photocurable resin liquid 53 ... mold 54: Light (ultraviolet light) A: Surface on which the cured resin layer of the substrate is formed B: Surface of the substrate opposite to the surface A of the substrate C: Deflected portion of the substrate surface B ..Anti-reflection film forming portion on substrate surface B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基材上に硬化樹脂層を設けてなる樹脂接
合型光学素子において、 前記硬化樹脂層は前記基材の一方の表面に設けられ、該
基材の他方の表面には波長365nmの光に対する反射率
が1%以下の反射防止膜が設けられていることを特徴と
する樹脂接合型光学素子。
1. A resin-bonded optical element having a cured resin layer provided on a substrate, wherein the cured resin layer is provided on one surface of the substrate, and a wavelength of 365 nm is provided on the other surface of the substrate. A resin-bonded optical element, provided with an antireflection film having a reflectance of 1% or less with respect to the light.
【請求項2】 前記反射防止膜は、蒸着角度条件等の製
造誤差による設定分光特性からの波長シフトが±10nm
生じても、波長365nmの光に対する実測反射率が安定
して1%以下となるような分光特性を有することを特徴
とする請求項1記載の樹脂接合型光学素子。
2. The antireflection film has a wavelength shift of ± 10 nm from a set spectral characteristic due to a manufacturing error such as a deposition angle condition.
2. The resin-bonded optical element according to claim 1, wherein the resin-bonded optical element has a spectral characteristic such that the measured reflectance for light having a wavelength of 365 nm stably becomes 1% or less even if it occurs.
【請求項3】 前記反射防止膜は、前記基材側に位置す
る高屈折率物質と中屈折率物質との交互多層膜と、該交
互多層膜上に形成された低屈折率物質の最外層により、
多層に積層して構成されていることを特徴とする請求項
1または2記載の樹脂接合型光学素子。
3. The anti-reflection film includes an alternating multilayer film of a high-refractive index material and a medium-refractive index material located on the substrate side, and an outermost layer of a low-refractive index material formed on the alternating multilayer film. By
The resin-bonded optical element according to claim 1, wherein the optical element is formed by laminating a plurality of layers.
【請求項4】 前記反射防止膜は、可視域(400〜7
00nm)の光に対する反射率も1%以下であることを特
徴とする請求項1〜3のいずれかに記載の樹脂接合型光
学素子。
4. The anti-reflection film has a visible region (400 to 7).
The resin-bonded optical element according to any one of claims 1 to 3, wherein the reflectance for light having a wavelength of (00 nm) is 1% or less.
【請求項5】 前記硬化樹脂層の上に可視域(400〜
700nm)の光に対する反射率が1%以下の反射防止膜
が設けられていることを特徴とする請求項1〜4のいず
れかに記載の樹脂接合型光学素子。
5. A visible region (400 to 400) on the cured resin layer.
The resin-bonded optical element according to any one of claims 1 to 4, further comprising an antireflection film having a reflectance of 1% or less for light having a wavelength of 700 nm).
【請求項6】 前記硬化樹脂層を設けた基材表面(第1
面)の光学的有効径が前記反射防止膜を設けた基材表面
(第2面)の光学的有効径に比べて大きく、前記第2面
の光学的有効径部分の周辺部は、反射防止膜が設けられ
ていないアラズリ部であることを特徴とする請求項1〜
5のいずれかに記載の樹脂接合型光学素子。
6. The surface of a substrate provided with the cured resin layer (first surface).
The optical effective diameter of the surface (second surface) is larger than the optical effective diameter of the substrate surface (second surface) on which the antireflection film is provided. An arazuri part without a film, characterized by the above-mentioned.
6. The resin-bonded optical element according to any one of 5.
【請求項7】 前記基材の材料が光学ガラスまたは結晶
性光学材料であることを特徴とする請求項1〜6のいず
れかに記載の樹脂接合型光学素子。
7. The resin-bonded optical element according to claim 1, wherein the base material is an optical glass or a crystalline optical material.
【請求項8】 少なくとも一つの非球面形状光学面を有
することを特徴とする請求項1〜7のいずれかに記載の
樹脂接合型光学素子。
8. The resin bonded optical element according to claim 1, which has at least one aspherical optical surface.
JP07471799A 1999-03-19 1999-03-19 Resin bonded optical element Expired - Lifetime JP4281146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07471799A JP4281146B2 (en) 1999-03-19 1999-03-19 Resin bonded optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07471799A JP4281146B2 (en) 1999-03-19 1999-03-19 Resin bonded optical element

Publications (2)

Publication Number Publication Date
JP2000266907A true JP2000266907A (en) 2000-09-29
JP4281146B2 JP4281146B2 (en) 2009-06-17

Family

ID=13555265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07471799A Expired - Lifetime JP4281146B2 (en) 1999-03-19 1999-03-19 Resin bonded optical element

Country Status (1)

Country Link
JP (1) JP4281146B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031701A (en) * 2000-07-17 2002-01-31 Konica Corp Optical element and ophthalmic lens
JP2006220739A (en) * 2005-02-08 2006-08-24 Casio Comput Co Ltd Ceramic hybrid lens
WO2009038134A1 (en) * 2007-09-19 2009-03-26 Nikon Corporation Resin composite-type optical element and process for rpoducing the resin composite-type optical element
JP2015014631A (en) * 2013-07-03 2015-01-22 キヤノン株式会社 Antireflection film and optical element having the same
WO2022138683A1 (en) * 2020-12-22 2022-06-30 Agc株式会社 Optical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031701A (en) * 2000-07-17 2002-01-31 Konica Corp Optical element and ophthalmic lens
JP4524877B2 (en) * 2000-07-17 2010-08-18 コニカミノルタホールディングス株式会社 Eyeglass lenses
JP2006220739A (en) * 2005-02-08 2006-08-24 Casio Comput Co Ltd Ceramic hybrid lens
WO2009038134A1 (en) * 2007-09-19 2009-03-26 Nikon Corporation Resin composite-type optical element and process for rpoducing the resin composite-type optical element
JPWO2009038134A1 (en) * 2007-09-19 2011-01-06 株式会社ニコン Resin composite type optical element and method for manufacturing the same
US7901787B2 (en) 2007-09-19 2011-03-08 Nikon Corporation Resin composite-type optical element and process for producing the resin composite-type optical element
JP2015014631A (en) * 2013-07-03 2015-01-22 キヤノン株式会社 Antireflection film and optical element having the same
WO2022138683A1 (en) * 2020-12-22 2022-06-30 Agc株式会社 Optical element

Also Published As

Publication number Publication date
JP4281146B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US8619365B2 (en) Anti-reflective coating for optical windows and elements
TWI432770B (en) Optical system
US7256948B2 (en) Anti-reflection coating, and optical element and optical system with anti-reflection coating
US7679820B2 (en) IR absorbing reflector
US20060285208A1 (en) Optical multilayer thin-film system
JP2005157119A (en) Reflection preventing optical element and optical system using the same
US20090080077A1 (en) Optical element having antireflection film
JP2003050311A (en) Attenuating filter for ultraviolet light
US5194989A (en) Dielectric combiner including first and second dielectric materials having indices of refraction greater than 2.0
US20070076297A1 (en) Transmission type optical element
US7626772B2 (en) Optical system and optical apparatus having the same
JPS5860701A (en) Reflection preventing film
JP2000266907A (en) Resin joint type optical element
CN112764135A (en) Narrow-band antireflection film with extremely low residual reflection
JP3204966B2 (en) Manufacturing method of thin film optical element
JP2005173326A (en) Plastic optical component
KR20160123671A (en) Multi-layered lens and method for manufacturing the same
JPH11287904A (en) Diffraction optical element and its production
JP2006072031A (en) Antireflection film for infrared region, and infrared lens using the same
JP2638806B2 (en) Anti-reflective coating
JP3497236B2 (en) Anti-reflection coating for high precision optical components
US10359544B2 (en) Long-wave infrared anti-reflective laminate
US20030107818A1 (en) Optical thin film and manufacturing method thereof
CN104066867B (en) Optical element, optical thin film forming apparatus and optical thin film forming method
JPS58223101A (en) Production of polygonal mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term