JP2000266852A - Distance-measuring apparatus - Google Patents

Distance-measuring apparatus

Info

Publication number
JP2000266852A
JP2000266852A JP11074838A JP7483899A JP2000266852A JP 2000266852 A JP2000266852 A JP 2000266852A JP 11074838 A JP11074838 A JP 11074838A JP 7483899 A JP7483899 A JP 7483899A JP 2000266852 A JP2000266852 A JP 2000266852A
Authority
JP
Japan
Prior art keywords
light
pulse
time
light sources
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11074838A
Other languages
Japanese (ja)
Inventor
Koichi Kanbe
幸一 掃部
Hiroshi Uchino
浩志 内野
Manami Kuiseko
真奈美 杭迫
Fumiya Yagi
史也 八木
Hidekazu Ide
英一 井手
Takashi Kondo
尊司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11074838A priority Critical patent/JP2000266852A/en
Publication of JP2000266852A publication Critical patent/JP2000266852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure a constant accuracy whether a measurement distance is large or small and speed up measurement. SOLUTION: A distance-measuring apparatus 1 which outputs object distance data by measuring a time from a projection time point to a reception time point of a pulse light has a plurality of light sources for projecting pulse lights of mutually different wavelengths, an optical member 13 for making optical axes of pulse lights projected from the plurality of light sources agree with each other, a light-splitting means for separating received pulse lights, and a plurality of photoelectric conversion devices corresponding one by one to the separated pulse lights. The plurality of light sources are made to emit and project light at the same time or sequentially with mutually different output intensities. The reception time point is detected on the basis of an output signal of a largest peak value in an appropriate range among output signals of the plurality of photoelectric conversion devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光を反射する物体
までの光の往復伝搬時間を距離情報として測定する測距
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring apparatus for measuring the round trip propagation time of light to an object reflecting light as distance information.

【0002】[0002]

【従来の技術】光のパルスの送信から物体で反射して戻
ったパルスの受信までのいわゆる飛行時間(TOF:ti
me of flight)を測定することにより、既知の光伝搬速
度を適用して対物間距離を求めることができる。この手
法は土木や天文をはじめとする各種分野で応用されてい
る。原理的にはパルス幅が零に近いほど測定精度は高ま
るが、実際には光源の応答性や受信感度などの制約で決
まる値以上のパルス幅となる。一般の測距装置におい
て、パルス幅は数cm程度の分解能が得られる50〜1
00ns程度の値とされており、波形は単峰の山状であ
る。
2. Description of the Related Art A so-called flight time (TOF: ti) from transmission of a light pulse to reception of a pulse reflected by an object and returned.
By measuring the me of flight, the distance between the objectives can be determined by applying a known light propagation velocity. This method has been applied in various fields such as civil engineering and astronomy. In principle, the closer the pulse width is to zero, the higher the measurement accuracy is. However, in practice, the pulse width is equal to or larger than a value determined by constraints such as light source response and reception sensitivity. In a general distance measuring device, the pulse width is 50 to 1 with a resolution of about several cm.
The value is about 00 ns, and the waveform is a single peak.

【0003】パルス光を反射する物体が近いほど受信光
量が多く、光電変換のSN比が良好となる。しかし、物
体が近すぎると、光電変換信号が飽和してしまい、正確
に受光時点を特定することができなくなる。そこで、従
来において、適正レベルの光電変換信号を得ることので
きる測定範囲を拡げるために、強度の異なる複数のレー
ザ光を光軸を若干ずらして同時に投射する装置が提案さ
れている(特許第2765291号)。提案の装置は、
外部で反射して戻った複数のレーザ光をそれらの光軸の
ずれを利用して区別し、複数の受光素子を用いて電気信
号に変換する。
[0003] The closer the object that reflects the pulsed light, the greater the amount of received light, and the better the SN ratio of photoelectric conversion. However, if the object is too close, the photoelectric conversion signal will be saturated, and it will not be possible to accurately specify the light receiving point. Therefore, conventionally, in order to extend a measurement range in which a photoelectric conversion signal of an appropriate level can be obtained, an apparatus for simultaneously projecting a plurality of laser beams having different intensities with slightly shifted optical axes has been proposed (Japanese Patent No. 2765291). issue). The proposed device is
The plurality of laser beams reflected back from the outside are distinguished by using the shift of their optical axes, and are converted into electric signals using a plurality of light receiving elements.

【0004】[0004]

【発明が解決しようとする課題】従来の装置では、強度
の異なる複数のパルス光の光軸に差異があるので、どの
パルス光に基づいて測定を行うかによって測定結果に微
妙な差異が生じるという問題があった。この差異を無く
すには投射角度を微小変化させて複数回の投射を行う必
要があり、それによって測定の所要時間が長くなる。特
に複数の方向に投射して物体の形状を測定する場合に
は、投射角度の変更(走査)の制御が複雑になる。
In the conventional apparatus, since the optical axes of a plurality of pulsed lights having different intensities are different, a slight difference occurs in the measurement result depending on which pulsed light is used for the measurement. There was a problem. In order to eliminate this difference, it is necessary to perform a plurality of projections by slightly changing the projection angle, which increases the time required for measurement. In particular, when measuring the shape of an object by projecting in a plurality of directions, the control of changing (scanning) the projection angle becomes complicated.

【0005】本発明は、測定距離の大小に係わらず一定
の精度を確保し且つ測定の高速化を図ることを目的とし
ている。
SUMMARY OF THE INVENTION It is an object of the present invention to secure a constant accuracy regardless of the magnitude of the measurement distance and to speed up the measurement.

【0006】[0006]

【課題を解決するための手段】本発明においては、強度
及び波長の異なる複数のパルス光を投射する。強度の異
なる投射を行うことにより、単一強度の投射を行う場合
と比べて飽和していない適正な受信信号の得られる距離
範囲が拡がる。また、波長の異なる投射を行うことによ
り、複数のパルス光の光路を一致させても、分光によっ
て各パルス光を区別して光電変換をすることができる。
光路が同一であれば、どのパルス光に基づいて測定を行
っても結果は同一となる。
In the present invention, a plurality of pulsed lights having different intensities and wavelengths are projected. By performing projections with different intensities, the distance range over which an appropriate non-saturated received signal can be obtained is expanded as compared with the case of performing projection with a single intensity. Further, by performing projections with different wavelengths, even if the optical paths of a plurality of pulsed lights are made to coincide, it is possible to perform photoelectric conversion while distinguishing each pulsed light by spectroscopy.
If the optical paths are the same, the result will be the same regardless of which pulsed light is used for the measurement.

【0007】請求項1の発明の装置は、外部へパルス光
を投射する投光手段と、外部で反射した前記パルス光を
受光して光電変換をする受光手段とを備え、前記パルス
光の投射時点から受光時点までの時間を測定して対物間
距離データを出力する測距装置であって、前記投光手段
は互いに異なる波長のパルス光を射出する複数の光源
と、当該複数の光源のそれぞれから射出されたパルス光
の光軸を一致させる光学部材とを有し、前記受光手段
は、前記複数の光源のそれぞれから射出されたパルス光
を分離する分光手段と、分離されたパルス光のそれぞれ
に1個ずつ対応する複数の光電変換デバイスとを有し、
前記複数の光源を互いに異なる出力強度で同時又は順に
発光させて投射を行い、前記複数の光電変換デバイスの
出力信号のうち、ピーク値が適正範囲内で最も大きい出
力信号に基づいて前記受光時点を検出するものである。
According to a first aspect of the present invention, there is provided an apparatus comprising: a light projecting means for projecting a pulse light to the outside; and a light receiving means for receiving the pulse light reflected outside and performing photoelectric conversion, and projecting the pulse light. A distance measuring device for measuring a time from a time point to a light receiving time point and outputting inter-object distance data, wherein the light projecting means includes a plurality of light sources that emit pulsed light beams having different wavelengths, and each of the plurality of light sources. An optical member that matches the optical axis of the pulsed light emitted from the light source, the light receiving unit is a spectral unit that separates the pulsed light emitted from each of the plurality of light sources, and each of the separated pulsed light. And a plurality of photoelectric conversion devices corresponding one by one,
The plurality of light sources emit light simultaneously or sequentially at different output intensities and perform projection, and among the output signals of the plurality of photoelectric conversion devices, the peak value is used to determine the light receiving time based on the largest output signal within an appropriate range. It is to detect.

【0008】請求項2の発明の測距装置は、前記パルス
光をその光軸の向き又は位置を変更して複数回投射し、
複数回分の前記対物間距離データを形状データとして出
力するものである。
The distance measuring apparatus according to a second aspect of the present invention projects the pulse light a plurality of times by changing the direction or position of the optical axis thereof,
The object distance data for a plurality of times is output as shape data.

【0009】[0009]

【発明の実施の形態】図1は本発明に係る測距装置の全
体構成図である。測距装置1は、投光手段としての送信
光学系10、受光手段としての受信光学系20、受信処
理回路30、コントローラ40、クロック発生器45、
及び出力ポート46から構成されている。送信光学系1
0は、2個の発光部11,12とこれらのそれぞれから
射出されたパルス光P1,P2の光軸を一致させる光路
統一部13とからなり、コントローラ40からの指示に
呼応して100ns程度のパルス幅のパルス光P1,P
2を外部へ射出する。時点tp0に射出されたパルス光
P1,P2は物体Qで反射して測距装置1へ戻り、時点
tp1に受信光学系20によって受光される。受信光学
系20は受光量に応じた受信信号(光電変換信号)S2
0を受信処理回路30へ出力し、受信処理回路30は受
信信号S20に基づいて時点tp1を示すデータD30
を生成する。時点tp0から時点tp1までの時間を光
伝搬時間(距離Lの往復の所要時間)Taとして求め、
さらに既知の光伝搬速度(3×108 m/s)を適用し
て距離Lを算出する演算はコントローラ40が受け持
つ。算出された距離Lは測定データDLとして出力ポー
ト46から他の装置(ディスプレイ、コンピュータな
ど)へ転送される。
FIG. 1 is an overall configuration diagram of a distance measuring apparatus according to the present invention. The distance measuring device 1 includes a transmission optical system 10 as a light projecting unit, a reception optical system 20 as a light receiving unit, a reception processing circuit 30, a controller 40, a clock generator 45,
And an output port 46. Transmission optical system 1
0 includes two light emitting units 11 and 12 and an optical path unifying unit 13 for matching the optical axes of the pulsed lights P1 and P2 emitted from the two light emitting units 11 and 12, respectively. Pulse light P1, P of pulse width
Inject 2 to the outside. The pulse lights P1 and P2 emitted at the time point tp0 are reflected by the object Q, return to the distance measuring device 1, and received by the receiving optical system 20 at the time point tp1. The receiving optical system 20 receives a signal (photoelectric conversion signal) S2 corresponding to the amount of received light.
0 to the reception processing circuit 30, and the reception processing circuit 30 outputs data D30 indicating the time point tp1 based on the reception signal S20.
Generate The time from the time point tp0 to the time point tp1 is obtained as a light propagation time (time required for a round trip of the distance L) Ta,
Further, the controller 40 is in charge of calculating the distance L by applying a known light propagation speed (3 × 10 8 m / s). The calculated distance L is transferred as measurement data DL from the output port 46 to another device (display, computer, etc.).

【0010】図2は送信光学系のブロック図、図3は投
射動作のタイムチャートである。発光部11は、レーザ
光を射出する光源(半導体レーザ)111、発光用のド
ライバ112、発光時間を規定するパルス回路113、
及び投光用のレンズ(コリメータレンズ)114からな
る。発光部12も同様に光源121、ドライバ122、
パルス回路123、及びレンズ124からなる。ただ
し、本実施形態において、光源121の発光波長λ2は
光源111の発光波長λ1と異なる値に選定されている
(λ1≠λ2)。
FIG. 2 is a block diagram of a transmission optical system, and FIG. 3 is a time chart of a projection operation. The light emitting unit 11 includes a light source (semiconductor laser) 111 for emitting laser light, a driver 112 for light emission, a pulse circuit 113 for defining a light emission time,
And a light projecting lens (collimator lens) 114. Similarly, the light emitting unit 12 includes a light source 121, a driver 122,
It comprises a pulse circuit 123 and a lens 124. However, in the present embodiment, the emission wavelength λ2 of the light source 121 is selected to be different from the emission wavelength λ1 of the light source 111 (λ1 ≠ λ2).

【0011】これら発光部11,12にはコントローラ
40から投射タイミング信号S1が与えられる。パルス
回路113,123は投射タイミング信号S1の立上が
りt1,t2,t3,…に呼応して、所定幅のパルス信
号SP1,SP2を出力する。パルス信号SP1がアク
ティブのときに、ドライバ112から光源111に所定
の駆動電流が供給されて光源111が発光する。同様に
パルス信号SP2がアクティブのときに、ドライバ12
2から光源121に所定の駆動電流が供給されて光源1
21が発光する。このとき、光源111の射出するパル
ス光P1の強度(発光分布のピーク値)Pp1と光源1
21の射出するパルス光P2の強度Pp2とが異なるよ
うに発光が制御される。本例ではPp1>Pp2であ
る。例えばPp1をPp2の1.5〜2倍程度とする。
同時に発光したパルス光P1,P2は、光路統一部13
を経た後、同一の光路を通って物体Qに向かう。
A projection timing signal S1 is supplied from the controller 40 to the light emitting units 11 and 12. The pulse circuits 113 and 123 output pulse signals SP1 and SP2 having a predetermined width in response to the rises t1, t2, t3,... Of the projection timing signal S1. When the pulse signal SP1 is active, a predetermined drive current is supplied from the driver 112 to the light source 111, and the light source 111 emits light. Similarly, when the pulse signal SP2 is active, the driver 12
A predetermined drive current is supplied to the light source 121 from
21 emits light. At this time, the intensity (peak value of the light emission distribution) Pp1 of the pulse light P1 emitted from the light source 111 and the light source 1
Light emission is controlled so that the intensity Pp2 of the pulse light P2 emitted from the light emitting device 21 is different. In this example, Pp1> Pp2. For example, Pp1 is set to about 1.5 to 2 times Pp2.
The pulse lights P1 and P2 emitted at the same time are
After that, it goes to the object Q through the same optical path.

【0012】なお、上述の時点tp0は、投射タイミン
グ信号S1の立上がりエッジから予め定めた時間が経過
した時点(発光強度の推定ピーク時期)としてもよい
し、発光強度のピーク検出によって設定してもよい。
The above-mentioned time point tp0 may be a time point when a predetermined time has elapsed from the rising edge of the projection timing signal S1 (estimated peak time of light emission intensity), or may be set by peak detection of light emission intensity. Good.

【0013】図4は光路統一部の具体例を示す図であ
る。図示のようにプリズム131,132,133を組
み合わせることにより、コリメータレンズ114で平行
化された光の光軸とコリメータレンズ124で平行化さ
れた光の光軸とを一致させることができる。プリズム1
31は光路長の調整のために設けられる。
FIG. 4 is a diagram showing a specific example of the optical path unifying unit. By combining the prisms 131, 132, and 133 as shown, the optical axis of the light collimated by the collimator lens 114 and the optical axis of the light collimated by the collimator lens 124 can be matched. Prism 1
31 is provided for adjusting the optical path length.

【0014】図5は受信光学系のブロック図である。受
信光学系20は、2個の受光素子(例えばフォトダイオ
ード)21,22、受光用のドライバ23,24、光電
流を電圧に変換する増幅器25,26、受光用のレンズ
27、及び光路分岐部28からなる。増幅器25,26
の出力S25,S26が受信信号S20として後段へ送
られる。光路分岐部28は、レンズ27で集光された受
信光を分光し、波長λ1のパルス光P1を受光素子21
へ導き、波長λ2のパルス光P2を受光素子22へ導
く。
FIG. 5 is a block diagram of the receiving optical system. The receiving optical system 20 includes two light receiving elements (for example, photodiodes) 21 and 22, light receiving drivers 23 and 24, amplifiers 25 and 26 for converting a photocurrent into a voltage, a light receiving lens 27, and an optical path branching unit. Consists of 28. Amplifier 25, 26
Are output to the subsequent stage as a reception signal S20. The optical path branching unit 28 disperses the received light condensed by the lens 27 and outputs the pulse light P1 having the wavelength λ1
And the pulse light P2 having the wavelength λ2 is guided to the light receiving element 22.

【0015】図6は光路分岐部の具体例を示す図であ
る。所定特性の多層反射膜281とそれを挟む一対の三
角プリズム282,283とからなるダイクロイックプ
リズムにより、光路分岐部28の機能を実現することが
できる。
FIG. 6 is a diagram showing a specific example of the optical path branching unit. The function of the optical path branching unit 28 can be realized by a dichroic prism including a multilayer reflective film 281 having a predetermined characteristic and a pair of triangular prisms 282 and 283 sandwiching the multilayer reflective film 281.

【0016】図7は受信処理回路のブロック図、図8は
重心演算の概念図である。受信処理回路30は、信号セ
レクタ31、A/D変換器32、メモリ33、及び重心
演算回路34からなる。強度の異なるパルス光P1,P
2のそれぞれを光電変換した受信信号S25,S26の
一方が信号セレクタ31によって選択され、A/D変換
器32へ送られる。A/D変換器32は、クロック発生
器45からのクロックに同期したタイミングで、入力信
号をサンプリングホールドして量子化する。A/D変換
器32の出力はメモリ33に時系列に格納された後、重
心演算回路34へ送られる。重心演算回路34は、クロ
ック周期より短い時間単位で受光時点tp1を特定して
測定精度を高めるために設けられており、次の式で表さ
れる時間重心ipをデータD30として算出する。
FIG. 7 is a block diagram of the reception processing circuit, and FIG. 8 is a conceptual diagram of the center of gravity calculation. The reception processing circuit 30 includes a signal selector 31, an A / D converter 32, a memory 33, and a center-of-gravity calculation circuit. Pulsed light P1, P with different intensities
One of the received signals S25 and S26 obtained by photoelectrically converting each of the two is selected by the signal selector 31 and sent to the A / D converter 32. The A / D converter 32 samples and holds and quantizes the input signal at a timing synchronized with the clock from the clock generator 45. The output of the A / D converter 32 is stored in the memory 33 in time series, and then sent to the center-of-gravity calculation circuit 34. The center-of-gravity calculating circuit 34 is provided for specifying the light receiving time point tp1 in a time unit shorter than the clock cycle and improving the measurement accuracy, and calculates the time center of gravity ip expressed by the following equation as data D30.

【0017】[0017]

【数1】 (Equation 1)

【0018】図8のとおり、時間重心ipは、パルス光
の受光量を周期的にサンプリングして得られた所定数n
(図ではn=30)の受光データの分布における時間軸
上の重心であって、受光量が最大となるピーク時点に相
当する。
As shown in FIG. 8, the time centroid ip is a predetermined number n obtained by periodically sampling the amount of received pulsed light.
(N = 30 in the figure) is the barycenter on the time axis in the distribution of the received light data, and corresponds to the peak time when the amount of received light is maximum.

【0019】図9は信号セレクタの動作を説明するため
の図である。信号セレクタ31は、受信信号S25,S
26のピーク値Vp1,Vp2を検出し、ピーク値Vp
1,Vp2と閾値Vmaxとを比較する。図9(a)の
ようにVp1<Vmaxの場合(すなわち遠距離測定
時)には、受信信号S26よりのノイズの影響の少ない
受信信号S25を出力として選択する。図9(b)のよ
うにVp1>Vmaxの場合(すなわち近距離測定時で
受光素子21が飽和している状態)には受信信号S25
を選択する。重心演算及びピーク検出のどちらであって
も、受信信号が飽和していると正確に受信時点tp1を
特定することができない。
FIG. 9 is a diagram for explaining the operation of the signal selector. The signal selector 31 detects the reception signals S25, S
26 peak values Vp1 and Vp2 are detected, and the peak value Vp
1, Vp2 and a threshold value Vmax are compared. As shown in FIG. 9A, when Vp1 <Vmax (that is, at the time of long-distance measurement), the reception signal S25 that is less affected by noise than the reception signal S26 is selected as an output. When Vp1> Vmax as shown in FIG. 9B (that is, when the light receiving element 21 is saturated at the time of the short distance measurement), the reception signal S25 is received.
Select Regardless of either the center-of-gravity calculation or the peak detection, if the received signal is saturated, the reception time point tp1 cannot be specified accurately.

【0020】以上の実施形態では、光路統一及び光路分
岐にプリズムを用いた例を挙げたが、光ファイバーのス
ターカプラを用いてもよい。光源の数は2に限らず、3
個以上の光源を用いればより広範囲の測定が可能とな
る。また、投射角度を変更し又は投射の起点を平行移動
させる走査機構を設け、2方向の走査を行うことによ
り、3次元形状の計測が可能である。
In the above embodiment, an example is described in which a prism is used for unifying the optical path and branching the optical path. However, a star coupler of an optical fiber may be used. The number of light sources is not limited to two, but three
The use of more than two light sources enables a wider range of measurement. A three-dimensional shape can be measured by providing a scanning mechanism for changing the projection angle or moving the projection start point in parallel, and performing scanning in two directions.

【0021】[0021]

【発明の効果】請求項1又は請求項2の発明によれば、
測定距離の大小に係わらず一定の精度を確保し且つ測定
の高速化を図ることができる。
According to the first or second aspect of the present invention,
Irrespective of the magnitude of the measurement distance, it is possible to secure a certain accuracy and to speed up the measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る測距装置の全体構成図である。FIG. 1 is an overall configuration diagram of a distance measuring apparatus according to the present invention.

【図2】送信光学系のブロック図である。FIG. 2 is a block diagram of a transmission optical system.

【図3】投射動作のタイムチャートである。FIG. 3 is a time chart of a projection operation.

【図4】光路統一部の具体例を示す図である。FIG. 4 is a diagram illustrating a specific example of an optical path unifying unit.

【図5】受信光学系のブロック図である。FIG. 5 is a block diagram of a receiving optical system.

【図6】光路分岐部の具体例を示す図である。FIG. 6 is a diagram illustrating a specific example of an optical path branching unit.

【図7】受信処理回路のブロック図である。FIG. 7 is a block diagram of a reception processing circuit.

【図8】重心演算の概念図である。FIG. 8 is a conceptual diagram of the center of gravity calculation.

【図9】信号セレクタの動作を説明するための図であ
る。
FIG. 9 is a diagram for explaining the operation of the signal selector.

【符号の説明】[Explanation of symbols]

1 測距装置 P1,P2 パルス光 10 送信光学系(投光手段) 20 受信光学系(受光手段) tp0 時点(投射時点) tp1 時点(受光時点) Ta 光伝搬時間(時間) DL 距離データ(対物間距離データ) 111,121 光源 13 光路統一部(光学部材) 40 コントローラ(投射制御手段) 28 光路分岐部(分光手段) λ1,λ2 発光波長 21,22 受光素子(光電変換デバイス) Reference Signs List 1 distance measuring device P1, P2 pulsed light 10 transmission optical system (light emitting means) 20 receiving optical system (light receiving means) tp0 time (projection time) tp1 time (light reception time) Ta light propagation time (time) DL distance data (objective) Distance data) 111, 121 Light source 13 Optical path unifying unit (optical member) 40 Controller (projection control unit) 28 Optical path branching unit (spectral unit) λ1, λ2 Emission wavelength 21, 22, Light receiving element (photoelectric conversion device)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杭迫 真奈美 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 八木 史也 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 井手 英一 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 近藤 尊司 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 Fターム(参考) 2F065 AA06 DD03 FF31 GG04 JJ05 LL04 LL46 2F112 AD01 5J084 AA05 AD01 BA03 BA12 BA19 BA36 BA38 BB02 BB04 BB11 BB24 CA03 CA57 CA61 CA70 DA09 EA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Manami Tsukusako 2-3-1-13 Azuchicho, Chuo-ku, Osaka-shi, Osaka Inside Osaka International Building Minolta Co., Ltd. (72) Inventor Fumiya Yagi, Chuo-ku, Osaka-shi, Osaka 2nd-13-13 Azuchicho Osaka International Building Minolta Co., Ltd. (72) Inventor Eiichi Ede 2-3-113 Azuchicho Chuo-ku, Osaka-shi, Osaka Osaka International Building Minolta Co., Ltd. (72) Inventor Kondo Takashi Takashi 2-3-13 Azuchicho, Chuo-ku, Osaka-shi, Osaka F-term in Osaka International Building Minolta Co., Ltd. 2F065 AA06 DD03 FF31 GG04 JJ05 LL04 LL46 2F112 AD01 5J084 AA05 AD01 BA03 BA12 BA19 BA36 BA38 BB02 BB04 BB11 BB24 CA57 CA61 CA70 DA09 EA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外部へパルス光を投射する投光手段と、外
部で反射した前記パルス光を受光して光電変換をする受
光手段とを備え、前記パルス光の投射時点から受光時点
までの時間を測定して対物間距離データを出力する測距
装置であって、 前記投光手段は互いに異なる波長のパルス光を射出する
複数の光源と、当該複数の光源のそれぞれから射出され
たパルス光の光軸を一致させる光学部材とを有し、 前記受光手段は、前記複数の光源のそれぞれから射出さ
れたパルス光を分離する分光手段と、分離されたパルス
光のそれぞれに1個ずつ対応する複数の光電変換デバイ
スとを有し、 前記複数の光源を互いに異なる出力強度で同時又は順に
発光させて投射を行い、前記複数の光電変換デバイスの
出力信号のうち、ピーク値が適正範囲内で最も大きい出
力信号に基づいて前記受光時点を検出することを特徴と
する測距装置。
A light projecting means for projecting the pulse light to the outside; and a light receiving means for receiving the pulse light reflected outside and performing photoelectric conversion, and a time period from the time when the pulse light is projected to the time when the pulse light is received. A distance measuring device that outputs inter-object distance data by measuring the plurality of light sources, wherein the light projecting unit emits a plurality of light sources that emit pulse light having different wavelengths from each other, and the pulse light emitted from each of the plurality of light sources. An optical member for aligning optical axes, wherein the light receiving unit is configured to separate pulse light emitted from each of the plurality of light sources, and a plurality of light receiving units corresponding to each of the separated pulse light. The plurality of light sources are simultaneously or sequentially emitted with different output intensities and project, and among the output signals of the plurality of photoelectric conversion devices, the peak value is the most within an appropriate range. Distance measuring apparatus and detects the reception time on the basis of hearing output signal.
【請求項2】前記パルス光をその光軸の向き又は位置を
変更して複数回投射し、複数回分の前記対物間距離デー
タを形状データとして出力する請求項1記載の測距装置
2. The distance measuring apparatus according to claim 1, wherein the pulse light is projected a plurality of times while changing the direction or position of the optical axis thereof, and the distance data for a plurality of times is output as shape data.
JP11074838A 1999-03-19 1999-03-19 Distance-measuring apparatus Pending JP2000266852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11074838A JP2000266852A (en) 1999-03-19 1999-03-19 Distance-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11074838A JP2000266852A (en) 1999-03-19 1999-03-19 Distance-measuring apparatus

Publications (1)

Publication Number Publication Date
JP2000266852A true JP2000266852A (en) 2000-09-29

Family

ID=13558887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11074838A Pending JP2000266852A (en) 1999-03-19 1999-03-19 Distance-measuring apparatus

Country Status (1)

Country Link
JP (1) JP2000266852A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315022A (en) * 2001-04-16 2002-10-25 Asahi Optical Co Ltd Three-dimensional image detector
JP2006250927A (en) * 2005-02-14 2006-09-21 Nissan Motor Co Ltd Occupant crash protection device, occupant protection method, and vehicle with occupant crash protection device
JP2007003369A (en) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd Collision determination device
JP2008275331A (en) * 2007-04-25 2008-11-13 Ihi Corp Laser radar device and its ranging method
JP2009544023A (en) * 2006-07-17 2009-12-10 ライカ ジオシステムズ アクチェンゲゼルシャフト Optical distance measuring method and optical distance measuring apparatus using the same
JP2011027451A (en) * 2009-07-22 2011-02-10 Nikon Vision Co Ltd Ranging device and ranging method
WO2017038203A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Distance image acquisition device-equipped projector device and projection mapping method
WO2022030555A1 (en) * 2020-08-05 2022-02-10 京セラ株式会社 Electromagnetic wave detector
WO2023281978A1 (en) * 2021-07-09 2023-01-12 株式会社デンソー Distance measurement device and distance measurement method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315022A (en) * 2001-04-16 2002-10-25 Asahi Optical Co Ltd Three-dimensional image detector
JP4530571B2 (en) * 2001-04-16 2010-08-25 Hoya株式会社 3D image detection device
JP2006250927A (en) * 2005-02-14 2006-09-21 Nissan Motor Co Ltd Occupant crash protection device, occupant protection method, and vehicle with occupant crash protection device
JP2007003369A (en) * 2005-06-24 2007-01-11 Nissan Motor Co Ltd Collision determination device
JP2009544023A (en) * 2006-07-17 2009-12-10 ライカ ジオシステムズ アクチェンゲゼルシャフト Optical distance measuring method and optical distance measuring apparatus using the same
JP2008275331A (en) * 2007-04-25 2008-11-13 Ihi Corp Laser radar device and its ranging method
JP2011027451A (en) * 2009-07-22 2011-02-10 Nikon Vision Co Ltd Ranging device and ranging method
WO2017038203A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Distance image acquisition device-equipped projector device and projection mapping method
US10412352B2 (en) 2015-08-28 2019-09-10 Fujifilm Corporation Projector apparatus with distance image acquisition device and projection mapping method
WO2022030555A1 (en) * 2020-08-05 2022-02-10 京セラ株式会社 Electromagnetic wave detector
JP7483548B2 (en) 2020-08-05 2024-05-15 京セラ株式会社 Electromagnetic wave detection device
WO2023281978A1 (en) * 2021-07-09 2023-01-12 株式会社デンソー Distance measurement device and distance measurement method

Similar Documents

Publication Publication Date Title
JPH1123709A (en) Distance-measuring device
JP2000266852A (en) Distance-measuring apparatus
JPH10221065A (en) Distance-measuring device
BE898152A (en) METHOD AND DEVICE FOR NON-CONTACT DETECTION OF THE MOVEMENT OF AN OBJECT.
JP2001074827A (en) Range finder
JP2001074842A (en) Range finder
JP2003254858A (en) Optical pulse tester
JP2000266851A (en) Distance-measuring apparatus
JPH0313565B2 (en)
JPH1123710A (en) Range finder
JP2638607B2 (en) Distance measuring device
JP2018072097A (en) Measurement device and method for measurement
JP2000028719A (en) Range finder
JPH05232228A (en) Distance measuring device
US10241204B2 (en) Method for illuminating an object
JP3651412B2 (en) Distance measuring device and distance measuring method
JPH04136829A (en) Range-finder device for moving body
JP2001108747A (en) Range finder
JP2000121352A (en) Range finder
EP4040108A1 (en) Distance measurement device and control method
JPH11142110A (en) Charge coupled device photodetector and distance measuring apparatus using the same
JP3447509B2 (en) Distance measuring device
JPH0747687Y2 (en) Distance detector
WO2019176751A1 (en) Light detection device, light detection method and optical distance sensor
JPH0587583U (en) Distance measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050704