JP2000266833A - Apparatus and method for acoustic positioning for running noise performing doppler correction - Google Patents

Apparatus and method for acoustic positioning for running noise performing doppler correction

Info

Publication number
JP2000266833A
JP2000266833A JP11069924A JP6992499A JP2000266833A JP 2000266833 A JP2000266833 A JP 2000266833A JP 11069924 A JP11069924 A JP 11069924A JP 6992499 A JP6992499 A JP 6992499A JP 2000266833 A JP2000266833 A JP 2000266833A
Authority
JP
Japan
Prior art keywords
noise
receiver
received
doppler
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11069924A
Other languages
Japanese (ja)
Other versions
JP3199240B2 (en
Inventor
Shigemitsu Kurano
重光 倉野
Takeyoshi Nakano
武吉 中野
Hideyuki Takahashi
秀幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Oki Electric Industry Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP06992499A priority Critical patent/JP3199240B2/en
Publication of JP2000266833A publication Critical patent/JP2000266833A/en
Application granted granted Critical
Publication of JP3199240B2 publication Critical patent/JP3199240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method, for an acoustic positioning operation for a sailing noise performing a Doppler correction, in which the sailing noise generated by a sailing body is received by a plurality of receivers on the basis of a fact that the running speed of a sound source is found from a received signal by a receiver, and in which the position of the running body is detected. SOLUTION: In this positioning apparatus, the radiant noise of a running body is received by two or more receivers, and the direction of a sound source is found by finding a correlation between received signals. The apparatus is constituted in such a way that a receiver A 5, a receiver B 6, a receiving circuit 7, a receiving circuit 8, an A/D converter 9, an A/D converter 10, an FFT processor 11, an FFT processor 12, a storage device 13, a storage device 14, a frequency band detector 15 for a running noise caused by the vibration characteristic of the running body, a band-pass filter processor 16, a band-pass filter processor 17, a sailing- body speed detector 18 by a Doppler frequency, a Doppler-correction computing unit 19, a correlation computing unit 20, and a display 21, are provided. Then, when the sound source is running at high speed, the influence of a Doppler effect generated between received signals received by two or more receivers is corrected, the maximum value of the correlation between the respective received signals is calculated precisely, the difference in the arrival time up to the respective receivers of the radiant noise of the running body is detected, and the position of the sound source is specified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、航走体の放射雑音
を用いて、航走体の位置を測定する音響測位装置及び方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic positioning apparatus and method for measuring a position of a vehicle using radiation noise of the vehicle.

【0002】[0002]

【従来の技術】従来の音響測位装置は、文献1:「海洋
音響(基礎と応用)」 海洋音響学会P.209〜21
3と、文献2:特許公報 特許番号第2723866号
「発明の名称:信号検出装置」に開示されているものが
あり、原理は文献1で示されたSBL測位方式又はSS
BL方式と同様である。文献1で開示された装置のブロ
ック図は、図2に示すものであり、原理等を説明するた
めに、図3、図4及び図5を示す。
2. Description of the Related Art A conventional acoustic positioning device is disclosed in Document 1: "Ocean acoustics (basic and applied)". 209-21
And Patent Document 2: Patent Publication No. 2723866 "Title of Invention: Signal Detector", and the principle is the SBL positioning method or SS disclosed in Document 1.
It is the same as the BL method. The block diagram of the device disclosed in Document 1 is shown in FIG. 2, and FIGS. 3, 4 and 5 are shown in order to explain the principle and the like.

【0003】図2において、1は水中、2は水面、3は
海底、4は航走体、5は受波器A、6は受波器B、7,
8は受信回路、9,10はA/D変換器、20は相互相
関演算部、21は表示器である。
In FIG. 2, 1 is underwater, 2 is the water surface, 3 is the sea floor, 4 is the vehicle, 5 is the receiver A, 6 is the receiver B, 7,.
8 is a receiving circuit, 9 and 10 are A / D converters, 20 is a cross-correlation calculator, and 21 is a display.

【0004】以下、各構成機器の作動状況を説明する。[0004] The operation of each component will be described below.

【0005】水中1及び水面2を航走体4が航走してい
る場合、航走体4からは航走雑音が発生しており、受波
器A5及び受波器B6で受信された信号は受信回路7及
び8で一定レベルまで振幅増幅された後、A/D変換器
9及び10に入力される。ここでアナログ信号はデジタ
ル信号に変換され、相互相関演算部20に入力される。
相互相関演算部20ではA/D変換器9と10から送ら
れてきたデジタル信号である受波信号Aと受波信号Bに
ついて、図3に原理を示すように相互相関処理により雑
音の到達時間差を求める。さらに、図4と図5に示す受
波信号Aと、受波信号Bの到達時間差から音源の方位及
び位置を測位し、その結果を表示器21に表示する。
[0005] When the traveling body 4 is traveling in the water 1 and the water surface 2, the traveling noise is generated from the traveling body 4, and the signals received by the receivers A 5 and B 6 are received. Are amplified to a certain level by the receiving circuits 7 and 8, and then input to the A / D converters 9 and 10. Here, the analog signal is converted into a digital signal and input to the cross-correlation calculating unit 20.
The cross-correlation calculator 20 performs a cross-correlation process on the received signals A and B, which are digital signals sent from the A / D converters 9 and 10, as shown in FIG. Ask for. Further, the azimuth and position of the sound source are measured from the arrival time difference between the received signal A and the received signal B shown in FIGS. 4 and 5, and the result is displayed on the display 21.

【0006】文献2は、文献1で開示された原理におけ
るピンガー音の代わりに航走体の放射雑音を含む広帯域
雑音を用いるもので、異なる二箇所に配置された受波器
で受信した該広帯域雑音に生じる音源の移動に伴うドッ
プラー効果の影響を補正する信号検出装置に関するもの
である。すなわち、二箇所で受信した信号の一方の入力
信号を予め定めた複数の比率でそれぞれ時間圧縮または
時間延伸する複数のドップラー補正部と、該複数のドッ
プラー補正部の出力と他方の信号の相互相関をそれぞれ
求める複数の相互相関部と、各相互相関部の出力から最
大値を選択する最大選択部を有している。図3を用い
て、文献2で開示された従来の発明を数式で説明する。
Document 2 uses broadband noise including radiated noise of a vehicle in place of the pinger sound in the principle disclosed in Document 1, and uses wideband noise received by receivers arranged at two different places. The present invention relates to a signal detection device that corrects the influence of the Doppler effect accompanying the movement of a sound source generated in noise. That is, a plurality of Doppler correction units for time-compressing or expanding one input signal of one of the signals received at the two locations at a plurality of predetermined ratios, respectively, and a cross-correlation between outputs of the plurality of Doppler correction units and the other signal. And a maximum selector for selecting the maximum value from the output of each cross-correlator. With reference to FIG. 3, the conventional invention disclosed in Reference 2 will be described using mathematical expressions.

【0007】異なる二箇所に配置された受波器による受
信波形は次式で表示される。s(t)を時刻tでの受波
器A5の受波信号から雑音とドップラー効果を除去した
振幅とすると、受波器A5及び受波器B6の受信波形x
1 (t)とx2 (t)はドップラー効果を包含して次式
で表示される。
The waveforms received by the receivers arranged at two different locations are represented by the following equations. Assuming that s (t) is an amplitude obtained by removing noise and the Doppler effect from the received signal of the receiver A5 at time t, the received waveform x of the receiver A5 and the receiver B6
1 (t) and x 2 (t) include the Doppler effect and are expressed by the following equations.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】 (Equation 2)

【0010】D(t):時刻tでの受波器AとBとの航
走雑音到達時間差 n1 (t):時刻tに受波器A5が受信するガウス性白
色雑音 n2 (t):時刻tに受波器B6が受信するガウス性白
色雑音 n1 (t)とn2 (t)は無相関とする。
D (t): difference in arrival time of navigation noise between receivers A and B at time t n 1 (t): Gaussian white noise n 2 (t) received by receiver A5 at time t : Gaussian white noise n 1 (t) and n 2 (t) received by the receiver B6 at time t are uncorrelated.

【0011】ここで、文献2で開示された発明は、受波
器A5及び受波器B6の受信波形の周波数を一致させる
ため一方の波形のドップラー周波数を補正する方法とし
て、時間軸伸縮係数を用いた。
Here, the invention disclosed in Document 2 discloses a method of correcting the Doppler frequency of one of the waveforms in order to make the frequencies of the received waveforms of the receivers A5 and B6 coincide with each other. Using.

【0012】[0012]

【数3】 (Equation 3)

【0013】[0013]

【数4】 (Equation 4)

【0014】β1 (t):時刻tでの受波器A5と音源
での音波の時間軸伸縮係数 β2 (t):時刻tでの受波器B6と音源での音波の時
間軸伸縮係数 上記式(3)と式(4)において予め定めた複数の比率
でそれぞれ時間圧縮又は時間延伸する複数のドップラー
補正装置により受波器A5及び受波器B6の受信波形間
の最大相関値を検出している。すなわち、補正後の受信
波形をx1 ′(t)とすると、
Β 1 (t): Time axis expansion / contraction coefficient of sound wave at receiver A5 and sound source at time t β 2 (t): Time axis expansion / contraction of sound wave at receiver B6 and sound source at time t Coefficient The maximum correlation value between the reception waveforms of the receiver A5 and the receiver B6 is calculated by a plurality of Doppler correction devices that perform time compression or time expansion at a plurality of ratios predetermined in Expressions (3) and (4). Detected. That is, if the corrected received waveform is x 1 ′ (t),

【0015】[0015]

【数5】 (Equation 5)

【0016】β(t):時刻tでの受波器A5と音源で
の音波の時間軸伸縮係数 よって、x2 (t)とx1 ′(t)の相互相関関数Ri
(τ)は、次式で表示される。
Β (t): the time axis expansion and contraction coefficient of the sound wave between the receiver A5 and the sound source at the time t, the cross-correlation function Ri of x 2 (t) and x 1 ′ (t)
(Τ) is represented by the following equation.

【0017】[0017]

【数6】 (Equation 6)

【0018】T:受信波形計測時間 積分時間Tが十分大きい場合、上記式(6)のRi
(τ)は雑音n1 (βt)及びn2 (βt)に相関がな
いため、ββ1 ≒β2 かつτ=D(t)において相関の
最大値
T: Received waveform measurement time When the integration time T is sufficiently long, Ri in the above equation (6)
(Τ) has no correlation with the noises n 1 (βt) and n 2 (βt), so that ββ 1 ≒ β 2 and the maximum value of the correlation at τ = D (t)

【0019】[0019]

【数7】 (Equation 7)

【0020】を検出できるものとしている。Can be detected.

【0021】[0021]

【発明が解決しようとする課題】しかし、文献2で開示
された発明の問題点は、水中1または水面2を航走する
航走体4からの航走音と受波器A5又は受波器B6で受
信される受信波形間で生じるドップラー周波数は、文献
2で開示された発明が対象とする広帯域雑音では非常に
範囲が広く、複数のドップラー補正部を用いても、正確
な補正はできない。なぜなら、文献3:Jack R
Williams:「A Nomogram for
VELOCITY AND RANGE DETERM
INATION FROM ACOUSTIC DOP
PLER」,INTERSTATEELECTRONI
CS CORPORATION November 1
970からドップラー周波数と音源速度の関係は、次式
で表示されている。
However, the problem of the invention disclosed in Document 2 is that the traveling sound from the traveling body 4 traveling in the water 1 or the water surface 2 and the receiver A5 or the receiver The Doppler frequency generated between the reception waveforms received in B6 has a very wide range in the wideband noise targeted by the invention disclosed in Reference 2, and accurate correction cannot be performed even if a plurality of Doppler correction units are used. Because, Reference 3: Jack R
Williams: "A Nomogram for
VELOCITY AND RANGE DETERM
INATION FROM ACOUSTIC DOP
PLER ", INTERSTATE ELECTRONI
CS CORPORATION November Number 1
From 970, the relationship between the Doppler frequency and the sound source speed is represented by the following equation.

【0022】[0022]

【数8】 (Equation 8)

【0023】ここで、 fD :ドップラー周波数 f0 :音源周波数 VP :水中音波伝搬速度 VW :受波器A5を中心とする円の半径方向水速度 VH :受波器A5を中心とする円の半径方向受波器速度 Vt :音源航走体速度 上記式(8)より、ドップラー周波数fD は音源周波数
0 と音源航走体速度Vt 等によって異なることが分か
る。文献2の発明は、音源周波数f0 として広帯域周波
数を用いることを原理としている。したがって、予め定
められた複数の時間伸縮比を持った複数のドップラー補
正部に受信波形を入力することによって、有限個である
複数のドップラー周波数成分を除去して相互相関を算出
し、その最大値を検出するものである。したがって、文
献2において開示された発明では、用いる広帯域周波数
音源に生ずる無数のドップラー周波数fD を有限個のド
ップラー補正部で補正することになり、相互相関部に入
力されたドップラー補正された受信波形の相互相関の最
大値検出には大きな誤差を持つか又は検出不可能になる
という問題がある。
Where f D : Doppler frequency f 0 : sound source frequency VP : underwater sound propagation velocity V W : radial water velocity of a circle centered on receiver A5 V H : centered on receiver A5 circle radial receivers velocity V t to: source Wataru Hashikarada rate from the formula (8), the Doppler frequency f D is different it can be seen by means of the sound source frequency f 0 and the sound source Kou Hashikarada velocity V t and the like. The invention of Document 2 is based on the principle that a wide band frequency is used as the sound source frequency f 0 . Therefore, by inputting the received waveform to a plurality of Doppler correction units having a plurality of predetermined time expansion / contraction ratios, a finite number of Doppler frequency components are removed to calculate a cross-correlation, and the maximum value thereof is calculated. Is to be detected. Therefore, according to the invention disclosed in Document 2, the infinite number of Doppler frequencies f D generated in the broadband frequency sound source to be used are corrected by the finite number of Doppler correction units, and the Doppler-corrected reception waveform input to the cross-correlation unit There is a problem that the detection of the maximum value of the cross-correlation has a large error or cannot be detected.

【0024】本発明は、水上又は水中を航走する航走体
の水中雑音の中の、船体やプロペラ等航走体の形状と材
質によって定まる振動特性に起因する放射雑音が、航走
体の航走速度が増減した場合、雑音源音圧が増減して
も、周波数スペクトルにおける周波数帯域が変化しない
ことの既知事実と本発明での検証事実を利用するもので
あり、該航走体の振動特性に起因する放射雑音を航走体
の水中放射雑音から検出する方法を新たに発明したもの
である。
According to the present invention, radiated noise caused by vibration characteristics determined by the shape and material of a hull or a propeller, such as a hull or a propeller, is included in the underwater noise of a marine vehicle traveling on or underwater. When the running speed increases or decreases, the known fact that the frequency band in the frequency spectrum does not change even if the noise source sound pressure increases and decreases and the verification fact according to the present invention are used. The present invention has newly invented a method for detecting radiation noise caused by characteristics from underwater radiation noise of a vehicle.

【0025】そして、本発明は、これらの事実に着目
し、さらに文献3において開示された内容により受波器
Aによる受波信号から音源の航走速度が求まることを基
にして、航走体が発生する航走雑音を複数の受波器で受
信して、航走体の位置を検出するドップラー補正を行う
航走雑音用音響測位装置及び方法を提供することを目的
としている。
The present invention pays attention to these facts, and furthermore, based on the fact that the traveling speed of the sound source is obtained from the signal received by the receiver A based on the contents disclosed in Document 3, It is an object of the present invention to provide a navigation noise acoustic positioning device and method for performing Doppler correction for detecting the position of a navigation body by receiving navigation noise generated by a plurality of receivers.

【0026】[0026]

【課題を解決するための手段】本発明は、上記目的を達
成するために、〔1〕航走体の放射雑音を2つ以上の受
波器で受信し、受信された受波信号間の相互相関をとる
ことにより、音響の方位を求める測位装置において、航
走体の放射雑音を検出する受波器A(5),受波器B
(6)と、入力された波形信号を一定レベルまで振幅増
幅する受信回路(7,8)と、アナログ波形信号をデジ
タル波形信号に変換するA/D変換器(9,10)と、
このデジタル波形信号をFFT処理し時間−周波数信号
に変換するFFT処理器(11,12)と、FFT処理
された時間−周波数信号を記憶する記憶装置(13,1
4)と、航走体振動特性に起因する航走雑音周波数帯域
を検出する検出器(15)と、航走体振動特性に起因す
る航走雑音周波数帯域でバンドパスフィルター処理をす
るバンドパスフィルター処理器(16,17)と、ドッ
プラー周波数による航走体速度検出器(18)と、前記
バンドパスフィルター処理された波形信号についてドッ
プラー現象による時間伸縮率を求めて、ドップラー補正
を行うドップラー補正演算器(19)と、ドップラー補
正された受波信号について相互相関処理を行いその最大
値から航走雑音の受波器A(5)と受波器B(6)への
到達時間差を検出する相互相関演算器(20)と、相互
相関演算の結果から目標航走体の方位と位置を算出し表
示する表示器(21)を具備し、音源が高速で航走した
場合に、2つ以上の受波器で受信した受波信号間に生じ
るドップラー効果の影響を補正し、各受波信号間の相互
相関の最大値の算出を可能にして、航走体放射雑音の各
受波器までの到達時間差を検出し、音源の位置を特定す
るようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides: [1] two or more receivers for receiving radiation noise of a vehicle, and A receiver A (5) and a receiver B for detecting radiation noise of a vehicle in a positioning device that obtains a sound direction by taking a cross-correlation
(6) a receiving circuit (7, 8) for amplifying an input waveform signal to a certain level, an A / D converter (9, 10) for converting an analog waveform signal to a digital waveform signal,
An FFT processor (11, 12) for performing an FFT process on this digital waveform signal to convert it into a time-frequency signal, and a storage device (13, 1) for storing the FFT-processed time-frequency signal
4), a detector (15) for detecting a navigation noise frequency band caused by the running body vibration characteristics, and a bandpass filter for performing bandpass filtering in the navigation noise frequency band caused by the running body vibration characteristics. A processor (16, 17), a vehicle speed detector based on a Doppler frequency (18), and a Doppler correction calculation for performing a Doppler correction on the waveform signal subjected to the band-pass filter processing by obtaining a time expansion and contraction rate due to a Doppler phenomenon. Cross-correlation processing between the receiver (19) and the Doppler-corrected received signal, and from the maximum value, the difference between the arrival times of the traveling noise at the receiver A (5) and the receiver B (6) is detected. A correlation calculator (20); and a display (21) for calculating and displaying the direction and position of the target vehicle based on the result of the cross-correlation calculation. Corrects the effect of the Doppler effect that occurs between the received signals received by the receiver, enables the calculation of the maximum value of the cross-correlation between each received signal, and enables the The arrival time difference is detected, and the position of the sound source is specified.

【0027】〔2〕特に、上記〔1〕記載のドップラー
補正を行う航走雑音用音響測位装置において、前記航走
体振動特性に起因する航走雑音周波数帯域を検出する検
出器(15)は、(a)第1の受波器による受波信号に
基づいて、前記記憶装置(13,14)からFFT処理
された時間−周波数受波信号を読み込んで、サンプリン
グ時間N秒毎のローファーグラムを作成する手段と、
(b)前記ローファーグラムにおいて周波数0〜FHz
間のスペクトルラインにおけるパワー値極大値列を抽出
する手段と、(c)前記(a)及び(b)手段の処理を
前記ローファーグラムにおいて周波数0〜FHzの範囲
にある航走雑音のパワー値の極大値列群の全部について
実施する手段とを備え、(d)第2の受波器による受波
信号に基づいて、上記(a)、(b)及び(c)手段に
よる処理を行い、前記第1の受波器受波信号に基づいて
検出された航走雑音周波数帯域の上限値と下限値が、前
記第2の受波器受波信号に基づいて検出された航走雑音
周波数帯域の上限値と下限値とに一致した場合に、航走
体振動特性に起因する航走雑音の周波数帯域と判定する
手段とを具備するようにしたものである。
[2] In particular, in the navigation noise acoustic positioning device for performing the Doppler correction according to the above [1], the detector (15) for detecting a navigation noise frequency band caused by the vibration characteristics of the navigation body includes: And (a) reading the time-frequency received signal subjected to the FFT processing from the storage device (13, 14) based on the received signal from the first receiver, and forming a loafergram every sampling time N seconds. Means to create,
(B) A frequency of 0 to FHz in the loafgram
Means for extracting a power value maximal value sequence in a spectrum line between the two, and (c) performing the processing of the means (a) and (b) on the loafgram in the range of the power value of the traveling noise in the frequency range of 0 to FHz. And (d) performing the processing by means (a), (b) and (c) based on the signal received by the second receiver, The upper limit value and the lower limit value of the navigation noise frequency band detected based on the first receiver received signal are determined based on the navigation noise frequency band detected based on the second receiver received signal. Means for determining, when the upper limit value and the lower limit value coincide with each other, a frequency band of the running noise caused by the running body vibration characteristics.

【0028】また、本発明のドップラー補正を行う航走
雑音用音響測位方法においては、〔6〕航走体の放射雑
音を2つ以上の受波器で受信し、受信された受波信号間
の相互相関をとることにより、音響の方位を求める測位
方法において、第1の受波器による受波信号から音源の
航走速度が求まることを基にして、航走体が発生する航
走雑音を複数の受波器で受信して、音源が高速で航走し
た場合に、2つ以上の受波器で受信した受波信号間に生
じるドップラー効果の影響を補正し、各受波信号間の相
互相関の最大値の算出を可能にして、航走体放射雑音の
各受波器までの到達時間差を検出し、音源の位置を特定
するようにしたものである。
[0028] Further, in the acoustic positioning method for running noise that performs Doppler correction according to the present invention, [6] the radiation noise of the running vehicle is received by two or more receivers, and In the positioning method for determining the direction of the sound by taking the cross-correlation of the vehicle, the navigation noise generated by the vehicle is determined based on the determination of the traveling speed of the sound source from the signal received by the first receiver. Is received by multiple receivers, and when the sound source travels at high speed, the effect of the Doppler effect that occurs between the received signals received by two or more receivers is corrected, and the The maximum value of the cross-correlation can be calculated, the difference in the arrival time of the vehicle radiation noise to each receiver is detected, and the position of the sound source is specified.

【0029】〔7〕特に、上記〔6〕記載のドップラー
補正を行う航走雑音用音響測位方法において、(a)第
1の受波器による受波信号に基づいて、記憶装置からF
FT処理された時間−周波数受波信号を読み込んで、サ
ンプリング時間N秒毎のローファーグラムを作成し、
(b)そのローファーグラムにおいて周波数0〜FHz
間のスペクトルラインにおけるパワー値極大値列を抽出
し、(c)前記(a)及び(b)の処理を前記ローファ
ーグラムにおいて周波数0〜FHzの範囲にある航走雑
音のパワー値の極大値列群の全部について実施し、
(d)前記(a)、(b)及び(c)の処理を第2の受
波器受波信号に基づいて行い、そこで検出された航走雑
音周波数帯域の上限値と下限値が第1の受波器による受
波信号の周波数帯域の上限値と下限値とに一致した場合
に、航走体振動特性に起因する航走雑音の周波数帯域と
することを特徴とするドップラー補正を行うようにした
ものである。
[7] In particular, in the acoustic positioning method for running noise for performing Doppler correction according to the above [6], (a) F is stored in the storage device based on a signal received by the first receiver.
The time-frequency reception signal subjected to the FT processing is read, and a loafgram is generated every sampling time N seconds,
(B) a frequency of 0 to FHz in the loafgram
(C) applying the processing of (a) and (b) to the maximum value sequence of the power values of the running noise in the frequency range of 0 to FHz in the lophergram; For all of the groups,
(D) The processes (a), (b) and (c) are performed based on the second receiver signal, and the upper limit and the lower limit of the running noise frequency band detected therefrom are set to the first value. When the upper and lower limits of the frequency band of the signal received by the receiver are matched with each other, the frequency band of the traveling noise caused by the vibration characteristics of the vehicle is used to perform Doppler correction. It was made.

【0030】以下、より詳細に説明すると、音源航走体
の速度は、船体やプロペラ等航走体の形状と材質によっ
て定まる振動特性に起因する各種雑音の周波数帯域の
内、上記した本発明での検証事実と従来の技術による既
知事実から、FHz以下の低周波数帯域の雑音を音源周
波数として、ドップラー現象を考えると、以下に説明す
る原理から求められる。
The speed of the sound source vehicle will be described in more detail below. Within the frequency band of various noises caused by vibration characteristics determined by the shape and material of the vehicle such as a hull or a propeller, the present invention described above. From the verification facts and the known facts of the prior art, when the Doppler phenomenon is considered, using the noise in the low frequency band below FHz as the sound source frequency, it can be obtained from the principle described below.

【0031】文献3に開示された技術により、受波器A
5又は受波器B6で受信された音波において、次式
(9)が成り立つ。
According to the technique disclosed in Document 3, the receiver A
5 or the sound wave received by the receiver B6, the following equation (9) holds.

【0032】[0032]

【数9】 (Equation 9)

【0033】ここで、 fD =ドップラー周波数 f2 =上限ドップラー周波数 f1 =下限ドップラー周波数 また、上記式(9)は、受波器を中心とする円の半径方
向水速度VW と受波器を中心とする円の半径方向音源航
走体速度VH とは、共に受波器が静止しているものとし
て、VW =VH =0とすると、上記式(9)は、
Where f D = Doppler frequency f 2 = upper limit Doppler frequency f 1 = lower limit Doppler frequency The above equation (9) also shows the radial water velocity V W of a circle centered on the receiver and the received wave the radial source Kou Hashikarada velocity V H of a circle centered on the vessel, as both receivers is at rest, when V W = V H = 0, the equation (9),

【0034】[0034]

【数10】 (Equation 10)

【0035】ここで、一般にVp ≫Vt であるから、Here, since V p ≫V t generally,

【0036】[0036]

【数11】 [Equation 11]

【0037】式(10)と式(11)から、From equations (10) and (11),

【0038】[0038]

【数12】 (Equation 12)

【0039】が導かれ、ここで、(f2 −f1 )≪f0
であり、水中音波伝搬速度VP =1500m/sを式
(10)に代入すると、
Is derived, where (f 2 −f 1 ) 0f 0
Substituting the underwater sound wave propagation velocity V P = 1500 m / s into equation (10) gives

【0040】[0040]

【数13】 (Equation 13)

【0041】また、式(8)から、From equation (8),

【0042】[0042]

【数14】 [Equation 14]

【0043】ここで、 Vr :受波器を中心とする円の半径方向の音源航走体速
度 式(14)から
Here, V r : velocity of the sound source vehicle in the radial direction of the circle centered on the receiver from the equation (14)

【0044】[0044]

【数15】 (Equation 15)

【0045】この上記式(15)によってドップラー周
波数と音源周波数が分かれば航走体速度が検出できる。
If the Doppler frequency and the sound source frequency are known from the above equation (15), the speed of the vehicle can be detected.

【0046】受波器A5及びB6からの音源航走体の方
位測定については次の原理による。
The azimuth measurement of the sound source vehicle from the receivers A5 and B6 is based on the following principle.

【0047】受波器A5で受信した受信波形をx
1 (t)、受波器B6で受信した受信波形をx2 (t)
とする。s(t)を時刻tでの受波器A5の受信波形か
ら雑音とドップラー効果を除去した振幅とすると、受波
器A5及び受波器B6での受信波形x1 (t)とx
2 (t)は、ドップラー効果を包含して次式で表示され
る。
The received waveform received by the receiver A5 is represented by x
1 (t), the received waveform received by the receiver B6 is x 2 (t)
And Assuming that s (t) is an amplitude obtained by removing noise and the Doppler effect from the reception waveform of the receiver A5 at the time t, the reception waveforms x 1 (t) and x at the receivers A5 and B6 are obtained.
2 (t) is expressed by the following equation including the Doppler effect.

【0048】[0048]

【数16】 (Equation 16)

【0049】[0049]

【数17】 [Equation 17]

【0050】ここで、 β1 (t):時刻tでの受波器A5と目標の受信波形時
間軸伸縮係数 β2 (t):時刻tでの受波器B6と目標の受信波形時
間軸伸縮係数 D(t) :時刻tでの受波器A5とB6の受信波形到
達時間差 n1 (t):時刻tに受波器A5が受信するガウス性白
色雑音 n2 (t):時刻tに受波器B6が受信するガウス性白
色雑音 n1 (t)とn2 (t)は無相関とする。
Here, β 1 (t): Reception receiver A5 and target reception waveform time axis expansion / contraction coefficient at time t β 2 (t): Receiver B6 and target reception waveform time axis at time t Expansion / contraction coefficient D (t): difference in arrival waveform arrival time between receivers A5 and B6 at time t n 1 (t): Gaussian white noise received by receiver A5 at time t n 2 (t): time t The Gaussian white noises n 1 (t) and n 2 (t) received by the receiver B6 are uncorrelated.

【0051】ここで、受波器A5と受波器B6の受信波
形の周波数を一致させるため受波器B6のドップラー周
波数を補正する。
Here, the Doppler frequency of the receiver B6 is corrected in order to match the frequencies of the reception waveforms of the receiver A5 and the receiver B6.

【0052】補正後の信号波形をx2 ′(t)とするとAssuming that the corrected signal waveform is x 2 ′ (t)

【0053】[0053]

【数18】 (Equation 18)

【0054】ただし、β=β1 /β2 よって、x1 (t)とx2 ′(t)の相互相関関数R
(τ)は、次式で表される。
Where β = β 1 / β 2 , the cross-correlation function R of x 1 (t) and x 2 ′ (t)
(Τ) is represented by the following equation.

【0055】[0055]

【数19】 [Equation 19]

【0056】ここで、α(t)は、時刻tでの信号減衰
係数である。
Here, α (t) is a signal attenuation coefficient at time t.

【0057】上記式(19)の第2項はn1 (t)とn
2 (t)が無相関であるから0である。
The second term in the above equation (19) is n 1 (t) and n
It is 0 because 2 (t) is uncorrelated.

【0058】第1項は、τ=−β1 DにおいてThe first term is that at τ = −β 1 D

【0059】[0059]

【数20】 (Equation 20)

【0060】よって、RS において相互相関は最大とな
る。
Therefore, the cross-correlation becomes maximum at R S.

【0061】上記式(20)から分かるように、受信波
形x2 (t)の時間軸をβ倍伸縮させてドップラー補正
することにより、τ=−β1 Dで相関が最大となる。し
かし、相関が最大となるβ(β1 /β2 )が得られて
も、β1 とβ2 の値は得られず、最大値の位置は、β1
倍ずれた誤差が残る。以上のことを正弦波で説明する。
As can be seen from the above equation (20), the correlation becomes maximum at τ = −β 1 D by expanding and contracting the time axis of the received waveform x 2 (t) by β times and performing Doppler correction. However, even if β (β 1 / β 2 ) that maximizes the correlation is obtained, the values of β 1 and β 2 cannot be obtained, and the position of the maximum value is β 1
A double-shifted error remains. The above is described with a sine wave.

【0062】図3において、航走体の速度をVr とし受
波器Aへの速度成分をV1 、受波器Bへの速度成分をV
2 、目標航走体の放射雑音の周波数をf0 とすると、受
波器Aで受信される周波数fA 、受波器Bで受信される
周波数fB はそれぞれ次式で表示される。
[0062] In FIG. 3, V 1 the velocity component of the velocity of the domestic Hashikarada the wave receiver A and V r, the velocity component of the receivers B V
2, when the frequency of the radiation noise of the target domestic Hashikarada and f 0, a frequency f A which is received by the wave receiver A, the frequency f B received by the wave receiver B are each represented in the following equation.

【0063】[0063]

【数21】 (Equation 21)

【0064】[0064]

【数22】 (Equation 22)

【0065】ただし、β1 =1−V1 /VP β2
1−V2 /VP よって、入力となる受信波形は、
Where β 1 = 1−V 1 / V P β 2 =
According to 1−V 2 / V P , the input received waveform is

【0066】[0066]

【数23】 (Equation 23)

【0067】[0067]

【数24】 (Equation 24)

【0068】と置いたものとなる。さらに、受波器Bの
受信波形をドップラー補正により受波器Aの受信波形に
一致させると図3のx2 ′(t)となる。
[0086] Then, the following is set. Further, when the reception waveform of the receiver B is made to coincide with the reception waveform of the receiver A by Doppler correction, x 2 ′ (t) in FIG. 3 is obtained.

【0069】よって、図3におけるドップラー補正後の
二つの受信波形x1 (t)とx2 ′(t)は、次式で表
示される。
Accordingly, the two received waveforms x 1 (t) and x 2 ′ (t) after Doppler correction in FIG. 3 are represented by the following equations.

【0070】[0070]

【数25】 (Equation 25)

【0071】[0071]

【数26】 (Equation 26)

【0072】よって、x1 (t)とx2 ′(t)の相互
相関関数R(τ)は、
Thus, the cross-correlation function R (τ) between x 1 (t) and x 2 ′ (t) is

【0073】[0073]

【数27】 [Equation 27]

【0074】以上のドップラー補正により二つの音響波
形x1 (t)とx2 ′(t)の相互相関の最大値を上記
式(27)によって検出すれば目標航走体放射雑音の二
つの受波器A及び受波器Bまでの到達時間差τ0 の検出
が可能となる。
If the maximum value of the cross-correlation between the two acoustic waveforms x 1 (t) and x 2 ′ (t) is detected by the above equation (27) by the above Doppler correction, the two noises of the target vehicle radiation noise can be detected. The arrival time difference τ 0 between the wave device A and the wave receiver B can be detected.

【0075】すなわち、上記式(21)と上記式(2
2)による値は、図1の相互相関演算器20に入力され
処理される。相互相関演算器20では、図3に示すよう
に相互相関を演算し雑音到来方向を求め表示器21に表
示する。
That is, the above equation (21) and the above equation (2)
The value according to 2) is input to the cross-correlation calculator 20 in FIG. 1 and processed. The cross-correlation calculator 20 calculates the cross-correlation as shown in FIG.

【0076】図4は、到来方向を求める原理を示したも
のである。受波器Aと受波器Bの信号は同一の音源から
発生した雑音であり、航走体4からは十分に遠いとする
と受波器A及び受波器Bに入力する信号は平行な波と見
なせる。ここで、受波器Aと受波器Bとに同一な波が受
信される時刻が分かるとその到達時間差から、該到達時
間差に相当する距離rが求められる。受波器Aと受波器
Bの間隔をdとすると
FIG. 4 shows the principle of obtaining the direction of arrival. The signals from the receiver A and the receiver B are noises generated from the same sound source. If the signals are sufficiently far from the vehicle 4, the signals input to the receivers A and B are parallel waves. Can be considered. Here, when the time when the same wave is received by the receiver A and the receiver B is known, the distance r corresponding to the arrival time difference is obtained from the arrival time difference. If the distance between receiver A and receiver B is d

【0077】[0077]

【数28】 [Equation 28]

【0078】が成り立つので、この上記式(28)から
音波の到来方向を求めることが出来る。
Since the above expression holds, the arrival direction of the sound wave can be obtained from the above equation (28).

【0079】以上は、受波器が2個の場合について説明
したが、図5に示すように複数の受波器を水中に設置し
て、受波器Aと受波器Bによって方位角θ1 を得、受波
器Cと受波器Dによりθ2 を得る。これよりそれぞれの
受波器の位置から方位角θ1,θ2 で直線を描き、交点
をP0 とすることによって目標航走体の位置を特定でき
る。
The above description has been made of the case where there are two receivers. However, as shown in FIG. 5, a plurality of receivers are installed in water, and the azimuth θ 1 is obtained, and θ 2 is obtained by the receiver C and the receiver D. From this, a straight line is drawn at the azimuth angles θ 1 and θ 2 from the positions of the respective receivers, and the intersection point is set to P 0 , whereby the position of the target marine vehicle can be specified.

【0080】以上説明した原理は、予め定められた周波
数を用いるピンガー方式やトランスポンダ方式による測
位装置についても実現可能である。
The principle described above can also be realized for a positioning device using a Pinger system or a transponder system using a predetermined frequency.

【0081】[0081]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0082】図1は本発明に係る航走雑音のドップラー
補正を行い目標航走体の位置を測位する装置の一実施例
の構成を示している。
FIG. 1 shows the configuration of an embodiment of the apparatus for performing Doppler correction of the running noise and measuring the position of the target running body according to the present invention.

【0083】この図において、1は水中、2は水面、3
は海底、4は航走体、5は受波器A、6は受波器B、7
と8は受信回路、9と10はA/D変換器、11と12
はFFT処理器、13と14は記憶装置、15は航走体
振動特性に起因する航走雑音周波数帯域検出器、16と
17はバンドパスフィルター処理器、18はドップラー
周波数による航走体速度検出器、19はドップラー補正
演算器、20は相互相関演算器、21は表示器である。
In this figure, 1 is underwater, 2 is water surface, 3
Is the sea floor, 4 is the carrier, 5 is receiver A, 6 is receiver B, 7
And 8 are receiving circuits, 9 and 10 are A / D converters, 11 and 12
Is an FFT processor, 13 and 14 are storage devices, 15 is a navigation noise frequency band detector due to the vibration characteristics of the vehicle, 16 and 17 are bandpass filter processors, 18 is a vehicle speed detection based on Doppler frequency. , 19 is a Doppler correction calculator, 20 is a cross-correlation calculator, and 21 is a display.

【0084】受波器A5及び受波器B6は水面または水
中を航走する航走体の航走音を検出するものであり、例
えばハイドロホン等である。
The receiver A5 and the receiver B6 detect the traveling sound of a traveling body traveling on the water surface or underwater, and are, for example, hydrophones.

【0085】受信回路7と8は受波器A5と、受波器B
6から入力された波形信号を一定レベルまで増幅した
後、A/D変換器9と10に信号を出力する。
The receiving circuits 7 and 8 are provided with a receiver A5 and a receiver B
After amplifying the waveform signal input from 6 to a certain level, the signal is output to A / D converters 9 and 10.

【0086】A/D変換器9と10は、受信回路7と8
から転送されたアナログ波形信号をデジタル波形信号に
変換し、該デジタル波形信号をFFT処理器11と12
に転送する。
A / D converters 9 and 10 are provided with receiving circuits 7 and 8
From the analog waveform signal transferred from the FFT processors 11 and 12
Transfer to

【0087】図6は受波器A、受波器B、受波器Cが検
出する航走雑音受波信号の一例を示す図であり、図6
(a)は受波器Aによる航走雑音受波信号、図6(b)
は受波器Bによる航走雑音受波信号、図6(c)は受波
器Cによる航走雑音受波信号をそれぞれ示している。な
お、縦軸に振幅、横軸に計測時間を表している。
FIG. 6 is a diagram showing an example of a navigation noise reception signal detected by the receiver A, the receiver B, and the receiver C.
(A) is a received signal of the traveling noise by the receiver A, and FIG.
6A shows the received signal of the traveling noise by the receiver B, and FIG. 6C shows the received signal of the traveling noise by the receiver C. The vertical axis represents amplitude, and the horizontal axis represents measurement time.

【0088】FFT処理器11と12は、デジタル波形
信号をN秒毎にFFT処理し、時間−周波数信号に変換
して記憶装置13と14に転送する。
The FFT processors 11 and 12 perform FFT processing on the digital waveform signal every N seconds, convert the digital waveform signal into a time-frequency signal, and transfer it to the storage devices 13 and 14.

【0089】図7は受波器A、受波器B、受波器Cが検
出する航走雑音の周波数スペクトルの一例を示す図であ
り、図7(a)は受波器Aによる航走雑音周波数スペク
トル、図7(b)は受波器Bによる航走雑音周波数スペ
クトル、図7(c)は受波器Cによる航走雑音周波数ス
ペクトルをそれぞれ示しており、図中のΣは航走体振動
特性に起因する航走雑音周波数帯域の一例である。ここ
で、縦軸はパワー値、横軸は周波数である。
FIG. 7 is a diagram showing an example of the frequency spectrum of the traveling noise detected by the receiver A, the receiver B, and the receiver C. FIG. 7 (b) shows the running noise frequency spectrum of the receiver B, and FIG. 7 (c) shows the running noise frequency spectrum of the receiver C. In FIG. It is an example of a running noise frequency band caused by body vibration characteristics. Here, the vertical axis is the power value, and the horizontal axis is the frequency.

【0090】航走体振動特性に起因する航走雑音周波数
帯域検出器15は、記憶装置13と14から時間−周波
数信号に変換された波形信号を個々に検出器内に取り込
んで、受波器A5の受信波形x1 (t)と受波器B6の
受信波形x2 (t)のそれぞれについてサンプリング時
間N秒毎のローファーグラムを作成する。該ローファー
グラムにおける一つのスペクトルラインの縦軸の値はパ
ワー値、横軸は周波数である。すなわち、図7に示した
周波数スペクトルを一つのスペクトルラインとしてN秒
毎にT/Nライン並べたものが該ローファーグラムであ
る。ここで該ローファーグラムを基に航走体振動特性に
起因する航走雑音周波数帯域を検出する。
The traveling noise frequency band detector 15 caused by the vibration characteristics of the traveling vehicle fetches the waveform signals converted into the time-frequency signals from the storage devices 13 and 14 into the detectors individually, and receives the signals. creating a loafer grams per sampling time N seconds for A5 each received waveform x 1 (t) and the received waveform x 2 of receivers B6 (t) of the. The value on the vertical axis of one spectrum line in the loafgram is the power value, and the horizontal axis is the frequency. That is, the frequency spectrum shown in FIG. 7 is arranged as T / N lines every N seconds as one spectrum line, which is the lofergram. Here, a running noise frequency band caused by the running body vibration characteristics is detected based on the loafgram.

【0091】該航走雑音周波数帯域の検出方法を以下に
説明する。
A method of detecting the running noise frequency band will be described below.

【0092】航走体振動特性に起因する航走雑音は、既
知事実と本発明での検証事実から、次の特徴を示す。 (1)航走速度が変化しても雑音の周波数帯域は変化し
ない。 (2)エンジン、発電機等船体に固定された振動源から
の振動が船体を伝搬して水中に放射される場合、水中放
射雑音は、航走体の振動特性に同期した固有周波数帯域
を持つ。 (3)低周波数FHz以下の航走雑音は、パワー値が大
きな連続波であり、遠方まで伝搬する。
The running noise due to the running body vibration characteristics has the following characteristics based on the known facts and the verification facts of the present invention. (1) Even if the traveling speed changes, the frequency band of the noise does not change. (2) When vibration from a vibration source fixed to the hull, such as an engine or a generator, propagates through the hull and is radiated into water, the underwater radiation noise has a natural frequency band synchronized with the vibration characteristics of the hull. . (3) The running noise having a low frequency of FHz or less is a continuous wave having a large power value and propagates far.

【0093】よって、以上の特徴を持つドップラー現象
を生じている航走雑音の検出を次の手順で行う。
Therefore, the detection of the traveling noise having the Doppler phenomenon having the above characteristics is performed in the following procedure.

【0094】記憶装置からFFT処理された時間−周
波数受波信号を読み込んで、サンプリング時間N秒毎の
ローファーグラムを作成する。
The FFT-processed time-frequency reception signal is read from the storage device, and a loafgram is generated every sampling time N seconds.

【0095】該ローファーグラムにおいて周波数0〜
FHz間のスペクトルラインにおけるパワー値極大値列
を抽出する。抽出条件は次の通りである。
In the loafgram, the frequency 0
A sequence of power value maxima in a spectrum line between FHz is extracted. The extraction conditions are as follows.

【0096】i.周波数0〜FHzの範囲で(c−1)
番目、c番目、(c+1)番目のいずれかのスペクトル
ラインに極大値がなくてはならない。すなわち、航走雑
音内で、上記(1),(2),(3)の特徴を満たし、
かつドップラー現象が生じている周波数の存否を見てい
る。
I. (C-1) in the frequency range of 0 to FHz
There must be a local maximum in any of the th, cth, and (c + 1) th spectral lines. That is, the characteristics of (1), (2), and (3) above are satisfied within the running noise,
In addition, the presence or absence of a frequency where the Doppler phenomenon occurs is observed.

【0097】ii.隣り合うスペクトルラインでの極大周
波数の差が、航走体の移動によって隣のスペクトルライ
ンで生じる周波数のずれを表す増分上限値σf(ここで
は、例えばdfを周波数分解能としたとき、df<σf
<3df)を超えてはならない。すなわち、(1),
(2),(3)の特徴を満たし、かつドップラー現象を
引き起こしている当該周波数のものに属しているかどう
かを見ている。
Ii. The difference between the maximum frequencies of adjacent spectral lines is the incremental upper limit value σf (here, for example, when df is frequency resolution, df <σf
<3df). That is, (1),
It is checked whether the frequency satisfies the characteristics of (2) and (3) and belongs to the frequency causing the Doppler phenomenon.

【0098】iii. ii の増分上限値σfを超えた場合
は、データ欠損として次のスペクトルラインに移る。
Iii. If the increment upper limit value σf of ii is exceeded, the processing shifts to the next spectral line as data loss.

【0099】iv.周波数のずれを表す増分上限値σfを
超えた周波数範囲において、条件i,iiを満たす次のス
ペクトルラインの極大値列を検出する。
Iv. A maximum value sequence of the next spectrum line satisfying the conditions i and ii is detected in a frequency range exceeding the increment upper limit value σf representing a frequency shift.

【0100】 上記,の処理を該ローファーグラ
ムにおいて周波数0〜FHzの範囲にある航走雑音のパ
ワー値の極大値列群の全部について実施する。
The above-described processing is performed on all the maximal value sequence groups of the power values of the traveling noise in the frequency range of 0 to FHz in the lofergram.

【0101】以上の,,の処理手順を受波器Bに
よる受波信号x2 (t)にも同様に行い、そこで検出さ
れた航走雑音周波数帯域の上限値と下限値が受波器Aに
よる受波信号x1 (t)の周波数帯域の上限値と下限値
とに一致した場合に、航走体振動特性に起因する航走雑
音の周波数帯域とする。
The above processing procedure is similarly performed on the received signal x 2 (t) by the receiver B, and the upper limit value and the lower limit value of the navigation noise frequency band detected there are determined by the receiver A. In the case where the upper limit value and the lower limit value of the frequency band of the received signal x 1 (t) coincide with each other, the frequency band is determined as the frequency band of the traveling noise caused by the vibration characteristics of the traveling body.

【0102】図8は航走雑音受波信号についてのサンプ
リング時間N秒毎ローファーグラムの一例を示す図であ
り、縦軸に周波数、横軸に計測時間を示している。
FIG. 8 is a diagram showing an example of a loafgram with a sampling time of N seconds for the received signal of the traveling noise, in which the vertical axis indicates the frequency and the horizontal axis indicates the measurement time.

【0103】図8中に航走体振動特性に起因する航走雑
音周波数帯域検出器15によるN秒毎の周波数スペクト
ルライン上のパワー値が極大値列を成す航走雑音の時間
−周波数信号と航走体振動特性に起因する航走雑音周波
数範囲の上限値と下限値の検出例を示す。
In FIG. 8, a time-frequency signal of the traveling noise, in which the power value on the frequency spectrum line every N seconds forms a maximum value sequence by the traveling noise frequency band detector 15 caused by the traveling body vibration characteristics, and The detection example of the upper limit value and the lower limit value of the running noise frequency range caused by the running body vibration characteristic is shown.

【0104】該航走雑音周波数帯域検出器15は、検出
した航走雑音周波数帯域の上限値と下限値の値をバンド
パスフィルター処理器に入力するとともに、N秒毎の周
波数スペクトルライン上のパワー値が極大値列を成す時
間−周波数波形信号をドップラー周波数による航走体速
度検出器18に転送する。
The running noise frequency band detector 15 inputs the detected upper limit value and lower limit value of the running noise frequency band to the band-pass filter processor, and outputs the power on the frequency spectrum line every N seconds. The time-frequency waveform signal having the maximum value sequence is transferred to the vehicle speed detector 18 based on the Doppler frequency.

【0105】バンドパスフィルター処理器16と17は
航走雑音周波数帯域検出器15から入力された周波数帯
域の上限値と下限値の範囲で、記憶装置13と14に記
憶された波形信号についてバンドパスフィルター処理を
行いドップラー補正演算器19に転送する。
The bandpass filter processors 16 and 17 perform bandpass filtering on the waveform signals stored in the storage devices 13 and 14 within the range of the upper limit value and the lower limit value of the frequency band input from the running noise frequency band detector 15. Filter processing is performed and the result is transferred to the Doppler correction calculator 19.

【0106】図9に航走体振動特性に起因する航走雑音
周波数帯域の上限値と下限値の範囲でバンドパスフィル
ター処理を実施した受波器A、受波器Bおよび受波器C
による信号波形の一例を示す。
FIG. 9 shows receivers A, B, and C that have been subjected to band-pass filter processing in the range of the upper limit value and the lower limit value of the running noise frequency band caused by the running body vibration characteristics.
1 shows an example of a signal waveform according to FIG.

【0107】ドップラー周波数による航走体速度検出器
18は、航走雑音周波数帯域検出器15から転送された
N秒毎周波数スペクトルライン上のパワー値が該ローフ
ァーグラムにおいて極大値列を成す時間−周波数波形信
号から上記式(15)及び文献4:特願平10−190
212号で本願発明者によって提案された技術によりド
ップラー周波数を求め航走体速度を検出する。そして検
出した航走体速度の値をドップラー補正演算器19に入
力する。
The traveling vehicle speed detector 18 based on the Doppler frequency calculates the time-frequency at which the power value on the frequency spectrum line every N seconds transferred from the traveling noise frequency band detector 15 forms a maximum value sequence in the lofergram. From the waveform signal, the above equation (15) and Reference 4: Japanese Patent Application No. 10-190
In No. 212, the Doppler frequency is obtained by the technique proposed by the present inventors, and the speed of the vehicle is detected. Then, the value of the detected traveling vehicle speed is input to the Doppler correction calculator 19.

【0108】図10はドップラー周波数による航走体速
度検出器18による上限ドップラー周波数f2 と下限ド
ップラー周波数f1 の検出結果の一例を示す図であり、
縦軸に周波数、横軸に時間を示している。
FIG. 10 is a diagram showing an example of detection results of the upper limit Doppler frequency f 2 and the lower limit Doppler frequency f 1 by the vehicle speed detector 18 based on the Doppler frequency.
The vertical axis indicates frequency, and the horizontal axis indicates time.

【0109】ドップラー補正演算器19はバンドパスフ
ィルター処理器16と17から入力された波形信号につ
いて、上記式(27)からドップラー現象による受信波
形の時間伸縮率を求めて、ドップラー補正を行う。な
お、β1 については、ドップラー周波数による航走体速
度検出器18から入力された航走体速度Vr を上記式
(21)及び上記式(22)に代入してドップラー補正
を行う。なお、本発明は、予め目標航走体の速度が他の
計測手段によって検出される場合にはドップラー周波数
による航走体速度検出器18によることなく、他の計測
手段によって検出された目標航走体速度をドップラー補
正演算器19に入力することによっても実施可能であ
る。
The Doppler correction operation unit 19 performs the Doppler correction on the waveform signals input from the band-pass filter processors 16 and 17 by obtaining the time expansion and contraction rate of the received waveform due to the Doppler phenomenon from the above equation (27). For β 1 , the Doppler correction is performed by substituting the sailing body speed V r input from the sailing body speed detector 18 based on the Doppler frequency into the above equations (21) and (22). It should be noted that, when the speed of the target cruising vehicle is detected in advance by another measuring means, the target cruising speed detected by the other measuring means is not used by the traveling vehicle speed detector 18 based on the Doppler frequency. The present invention can also be implemented by inputting the body velocity to the Doppler correction calculator 19.

【0110】相互相関演算器20ではドップラー補正演
算器19において、検出された受信波形x1 (t)とx
2 ′(t)について上記式(27)より相互相関関数の
最大値を算出し、その時の到達時間差を求める。
In the cross-correlation calculator 20, the received waveforms x 1 (t) and x
For 2 ′ (t), the maximum value of the cross-correlation function is calculated from the above equation (27), and the arrival time difference at that time is obtained.

【0111】図11に相互相関演算器20により受波器
A、受波器B、受波器Cにより受信された波形信号につ
いて各受波器間の到達時間差を求めた結果を示す。
FIG. 11 shows the result of the cross-correlation calculator 20 calculating the arrival time difference between the receivers for the waveform signals received by the receivers A, B and C.

【0112】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, but various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0113】[0113]

【発明の効果】以上説明した如く、本発明によれば、航
走体の放射雑音を2つ以上の受波器で受信し、該受波信
号間の相互相関をとることにより、音源の方位を求める
測位装置において、音源の航走によるドップラー効果が
受波器の波形信号に与える影響により生じる相互相関の
誤差を、航走体振動特性に起因する航走雑音周波数帯域
検出器と、ドップラー周波数による航走体速度検出器及
びドップラー補正器により補正し、容易に相互相関によ
る航走体放射雑音の各受波器までの到達時間差を検出す
ることが出来るので、目標航走体の位置を特定すること
が出来る。
As described above, according to the present invention, the radiation noise of a vehicle is received by two or more receivers, and the cross-correlation between the received signals is obtained, whereby the azimuth of the sound source is obtained. The cross-correlation error caused by the effect of the Doppler effect due to the navigation of the sound source on the waveform signal of the receiver is determined by the navigation noise frequency band detector caused by the vehicle's vibration characteristics, and the Doppler frequency Detects the position of the target vehicle by compensating with the vehicle speed detector and the Doppler corrector, and easily detecting the difference in the arrival time of the vehicle radiation noise to each receiver by cross-correlation. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るドップラー補正を行う航走雑音か
らの航走体測位装置の一実施例構成図である。
FIG. 1 is a block diagram of an embodiment of a vehicle positioning apparatus for performing Doppler correction from running noise according to the present invention.

【図2】文献1で開示された従来の技術の一実施例構成
図である。
FIG. 2 is a configuration diagram of an example of a conventional technique disclosed in Document 1.

【図3】音源速度とドップラー周波数差の発生との関係
説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a sound source speed and occurrence of a Doppler frequency difference.

【図4】目標音源の方位検出原理説明図である。FIG. 4 is a diagram illustrating the principle of detecting the direction of a target sound source.

【図5】複数受波器による目標音源の測位原理説明図で
ある。
FIG. 5 is an explanatory diagram of a positioning principle of a target sound source by a plurality of receivers.

【図6】受波器A、受波器B、受波器Cが検出する航走
雑音受波信号の一例を示す図である。
FIG. 6 is a diagram showing an example of a traveling noise reception signal detected by the receiver A, the receiver B, and the receiver C.

【図7】受波器A、受波器B、受波器Cが検出する航走
雑音の周波数スペクトルの一例を示す図である。Σが航
走体振動特性に起因する航走雑音周波数帯域の一例であ
る。
FIG. 7 is a diagram illustrating an example of a frequency spectrum of navigation noise detected by the receiver A, the receiver B, and the receiver C. Σ is an example of the running noise frequency band caused by the running body vibration characteristics.

【図8】航走雑音受信波形についてのサンプリング時間
N秒毎ローファーグラムの一例を示す図である。
FIG. 8 is a diagram showing an example of a loafgram every N seconds for a sampling time of a running noise reception waveform.

【図9】航走体振動特性に起因する航走雑音周波数帯域
の上限値と下限値の範囲でバンドパスフィルター処理を
実施した受波器Aと受波器Bによる波形信号の一例を示
す図である。
FIG. 9 is a diagram showing an example of waveform signals from the receiver A and the receiver B that have been subjected to bandpass filter processing in the range of the upper limit value and the lower limit value of the running noise frequency band caused by the vibration characteristics of the vehicle. It is.

【図10】ドップラー周波数による航走体速度検出器に
よる上限ドップラー周波数f1 と下限ドップラー周波数
2 の一検出例を示す図である。
10 is a diagram showing an example of detection of the upper limit Doppler frequency f 1 and the lower limit Doppler frequency f 2 by due to the Doppler frequency Kou Hashikarada speed detector.

【図11】相互相関演算器により受波器A、受波器B、
受波器Cにより計測された受信波形について各受波器間
の到達時間差を求めた一例を示す図である。
FIG. 11 shows a receiver A, a receiver B,
It is a figure which shows an example which calculated | required the arrival time difference between each receiver about the reception waveform measured by the receiver C.

【符号の説明】[Explanation of symbols]

1 水中 2 水面 3 海底 4 航走体 5 受波器A 6 受波器B 7,8 受信回路 9,10 A/D変換器 11,12 FFT処理器 13,14 記憶装置 15 航走体振動特性に起因する航走雑音周波数帯域
検出器 16,17 バンドパスフィルター処理器 18 ドップラー周波数による航走体速度検出器 19 ドップラー補正演算器 20 相互相関演算器 21 表示器
DESCRIPTION OF SYMBOLS 1 Underwater 2 Water surface 3 Sea bottom 4 Aircraft 5 Receiver A 6 Receiver B 7,8 Receiving circuit 9,10 A / D converter 11,12 FFT processor 13,14 Storage device 15 Vehicle vibration characteristics Navigation noise frequency band detector due to noise 16, 17 Band-pass filter processor 18 Vessel velocity detector based on Doppler frequency 19 Doppler correction calculator 20 Cross-correlation calculator 21 Display

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01S 7/526 G01S 7/52 J (72)発明者 高橋 秀幸 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 Fターム(参考) 5J083 AA05 AC07 AD01 AD08 AD17 AE02 BE06 BE10 BE12 BE43 BE44 BE54 CA07 DA01 EB02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01S 7/526 G01S 7/52 J (72) Inventor Hideyuki Takahashi 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. F term (reference) 5J083 AA05 AC07 AD01 AD08 AD17 AE02 BE06 BE10 BE12 BE43 BE44 BE54 CA07 DA01 EB02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 航走体の放射雑音を2つ以上の受波器で
受信し、受信された受波信号間の相互相関をとることに
より、音響の方位を求める測位装置において、航走体の
放射雑音を検出する受波器A(5),受波器B(6)
と、入力された波形信号を一定レベルまで振幅増幅する
受信回路(7,8)と、アナログ波形信号をデジタル波
形信号に変換するA/D変換器(9,10)と、該デジ
タル波形信号をFFT処理し時間−周波数信号に変換す
るFFT処理器(11,12)と、FFT処理された時
間−周波数信号を記憶する記憶装置(13,14)と、
航走体振動特性に起因する航走雑音周波数帯域を検出す
る検出器(15)と、航走体振動特性に起因する航走雑
音周波数帯域でバンドパスフィルター処理をするバンド
パスフィルター処理器(16,17)と、ドップラー周
波数による航走体速度検出器(18)と、前記バンドパ
スフィルター処理された波形信号についてドップラー現
象による時間伸縮率を求めて、ドップラー補正を行うド
ップラー補正演算器(19)と、ドップラー補正された
受波信号について相互相関処理を行いその最大値から航
走雑音の受波器A(5)と受波器B(6)への到達時間
差を検出する相互相関演算器(20)と、相互相関演算
の結果から目標航走体の方位と位置を算出し表示する表
示器(21)を具備し、音源が高速で航走した場合に、
2つ以上の受波器で受信した受波信号間に生じるドップ
ラー効果の影響を補正し、各受波信号間の相互相関の最
大値の算出を可能にして、航走体放射雑音の各受波器ま
での到達時間差を検出し、音源の位置を特定することを
特徴とするドップラー補正を行う航走雑音用音響測位装
置。
1. A positioning apparatus for receiving a radiation noise of a traveling vehicle by two or more receivers and calculating a cross-correlation between the received signals to determine an azimuth of sound. A (5) and B (6) for detecting radiation noise of
Receiving circuits (7, 8) for amplifying an input waveform signal to a certain level; A / D converters (9, 10) for converting an analog waveform signal into a digital waveform signal; An FFT processor (11, 12) for performing FFT processing and converting it into a time-frequency signal, and a storage device (13, 14) for storing the FFT-processed time-frequency signal;
A detector (15) for detecting a running noise frequency band caused by the running body vibration characteristics, and a bandpass filter processor (16) for performing bandpass filtering in the running noise frequency band caused by the running vehicle vibration characteristics. , 17), a vehicle speed detector based on the Doppler frequency (18), and a Doppler correction calculator (19) for performing Doppler correction by obtaining the time expansion and contraction ratio of the waveform signal subjected to the band pass filter processing due to the Doppler phenomenon. And a cross-correlation calculator that performs cross-correlation processing on the Doppler-corrected received signal and detects a difference in arrival time of the traveling noise between the receiver A (5) and the receiver B (6) from the maximum value. 20) and an indicator (21) for calculating and displaying the direction and position of the target hull based on the result of the cross-correlation calculation. When the sound source cruises at high speed,
By correcting the effect of the Doppler effect that occurs between the received signals received by two or more receivers, it is possible to calculate the maximum value of the cross-correlation between the received signals, and to obtain the reception of the vehicle radiation noise. An acoustic positioning device for running noise that performs Doppler correction by detecting a difference in arrival time to a wave device and specifying a position of a sound source.
【請求項2】 請求項1記載のドップラー補正を行う航
走雑音用音響測位装置において、前記航走体振動特性に
起因する航走雑音周波数帯域を検出する検出器(15)
は、(a)第1の受波器による受波信号に基づいて、前
記記憶装置(13,14)からFFT処理された時間−
周波数受波信号を読み込んで、サンプリング時間N秒毎
のローファーグラムを作成する手段と、(b)前記ロー
ファーグラムにおいて周波数0〜FHz間のスペクトル
ラインにおけるパワー値極大値列を抽出する手段と、
(c)前記(a)及び(b)手段の処理を前記ローファ
ーグラムにおいて周波数0〜FHzの範囲にある航走雑
音のパワー値の極大値列群の全部について実施する手段
とを備え、(d)第2の受波器による受波信号に基づい
て、上記(a)、(b)及び(c)手段による処理を行
い、前記第1の受波器受波信号に基づいて検出された航
走雑音周波数帯域の上限値と下限値が、前記第2の受波
器受波信号に基づいて検出された航走雑音周波数帯域の
上限値と下限値とに一致した場合に、航走体振動特性に
起因する航走雑音の周波数帯域と判定する手段とを具備
することを特徴とするドップラー補正を行う航走雑音用
音響測位装置。
2. A navigation noise acoustic positioning apparatus for performing Doppler correction according to claim 1, wherein the detector detects a navigation noise frequency band caused by the vibration characteristics of the navigation body.
Is (a) the time when the FFT processing is performed from the storage device (13, 14) based on the signal received by the first receiver;
Means for reading the received frequency signal and creating a loafgram every N seconds of sampling time; and (b) means for extracting a power value maximal value sequence in a spectrum line between frequencies 0 and FHz in the loafgram.
(C) means for performing the processing of the means (a) and (b) for all of the maximum value sequence groups of the power values of the running noise in the range of frequencies 0 to FHz in the lofergram; A) performing the processing by the means (a), (b) and (c) based on the signal received by the second receiver and detecting the navigation detected based on the signal received by the first receiver; When the upper limit value and the lower limit value of the running noise frequency band match the upper limit value and the lower limit value of the running noise frequency band detected based on the second receiver received signal, Means for determining the frequency band of the running noise caused by the characteristic. Acoustic positioning apparatus for the running noise that performs Doppler correction.
【請求項3】 請求項1記載のドップラー補正を行う航
走雑音用音響測位装置において、ドップラー周波数によ
る航走体速度検出器(18)以外の他の手段によって、
目標航走体速度が検出される場合には、ドップラー周波
数による航走体速度検出器(18)に代えて、前記他の
手段による目標航走体速度の値をドップラー補正演算器
(19)に入力することによって、各受波信号間の相互
相関の最大値の算出を可能にして、航走体放射雑音の各
受波器までの到達時間差を検出し、音源の位置を特定す
ることを特徴とするドップラー補正を行う航走雑音用音
響測位装置。
3. The acoustic positioning device for running noise which performs Doppler correction according to claim 1, wherein the means for detecting the speed of the vehicle based on the Doppler frequency is other than a means for detecting the speed.
When the target vehicle speed is detected, the value of the target vehicle speed by the other means is sent to the Doppler correction calculator (19) instead of the vehicle speed detector (18) based on the Doppler frequency. By inputting, it is possible to calculate the maximum value of the cross-correlation between each received signal, detect the difference in the arrival time of the vehicle radiation noise to each receiver, and specify the position of the sound source Acoustic noise positioning system that performs Doppler correction.
【請求項4】 請求項1記載のドップラー補正を行う航
走雑音用音響測位装置を水平方向に多数設置し、それぞ
れの装置が求めた音源の方位からその交点を求め、音源
位置を特定することを特徴とするドップラー補正を行う
航走雑音用音響測位装置。
4. A plurality of acoustic positioning devices for running noise for performing Doppler correction according to claim 1, which are installed in a horizontal direction, and their intersections are determined from the directions of the sound sources determined by the respective devices, and a sound source position is specified. An acoustic positioning device for running noise that performs Doppler correction characterized by the following.
【請求項5】 請求項1記載のドップラー補正を行う航
走雑音用音響測位装置を垂直方向に多数設置し、それぞ
れの装置が求めた音源の方位からその交点を求め、音源
位置を特定することを特徴とするドップラー補正を行う
航走雑音用音響測位装置。
5. A plurality of acoustic positioning devices for running noise for performing Doppler correction according to claim 1, which are installed in a vertical direction, and their intersections are determined from the directions of the sound sources determined by the respective devices to specify the position of the sound source. An acoustic positioning device for running noise that performs Doppler correction characterized by the following.
【請求項6】 航走体の放射雑音を2つ以上の受波器で
受信し、受信された受波信号間の相互相関をとることに
より、音響の方位を求める測位方法において、第1の受
波器による受波信号から音源の航走速度が求まることを
基にして、航走体が発生する航走雑音を複数の受波器で
受信して、音源が高速で航走した場合に、2つ以上の受
波器で受信した受波信号間に生じるドップラー効果の影
響を補正し、各受波信号間の相互相関の最大値の算出を
可能にして、航走体放射雑音の各受波器までの到達時間
差を検出し、音源の位置を特定することを特徴とするド
ップラー補正を行う航走雑音用音響測位方法。
6. A positioning method for receiving an radiated noise of a vehicle by two or more receivers and calculating a cross-correlation between the received received signals to determine an azimuth of sound. Based on the fact that the traveling speed of the sound source is obtained from the signal received by the receiver, the traveling noise generated by the vehicle is received by multiple receivers, and when the sound source travels at high speed Correcting the effect of the Doppler effect occurring between the received signals received by two or more receivers, enabling the calculation of the maximum value of the cross-correlation between the received signals, and An acoustic positioning method for running noise that performs Doppler correction by detecting a difference in arrival time to a receiver and specifying a position of a sound source.
【請求項7】 請求項6記載のドップラー補正を行う航
走雑音用音響測位方法において、(a)第1の受波器に
よる受波信号に基づいて、記憶装置からFFT処理され
た時間−周波数受波信号を読み込んで、サンプリング時
間N秒毎のローファーグラムを作成し、(b)該ローフ
ァーグラムにおいて周波数0〜FHz間のスペクトルラ
インにおけるパワー値極大値列を抽出し、(c)前記
(a)及び(b)の処理を前記ローファーグラムにおい
て周波数0〜FHzの範囲にある航走雑音のパワー値の
極大値列群の全部について実施し、(d)前記(a)、
(b)及び(c)の処理を第2の受波器受波信号に基づ
いて行い、そこで検出された航走雑音周波数帯域の上限
値と下限値が第1の受波器による受波信号の周波数帯域
の上限値と下限値とに一致した場合に、航走体振動特性
に起因する航走雑音の周波数帯域とすることを特徴とす
るドップラー補正を行う航走雑音用音響測位方法。
7. The acoustic positioning method for running noise for performing Doppler correction according to claim 6, wherein (a) a time-frequency signal subjected to FFT processing from a storage device based on a signal received by the first receiver. The received signal is read to create a loagram every N seconds of the sampling time, and (b) a maximum value sequence of power values in a spectrum line between frequencies 0 to FHz is extracted from the loagram, and (c) the (a) ) And (b) are carried out for all of the maximal value sequence groups of the power values of the running noise in the range of 0 to FHz in the lofergram, and (d) the above (a),
The processing of (b) and (c) is performed based on the received signal of the second receiver, and the upper limit value and the lower limit value of the running noise frequency band detected there are determined by the received signal of the first receiver. A running noise acoustic positioning method for performing Doppler correction, characterized in that when the upper limit value and the lower limit value of the frequency band coincide with each other, the frequency band of the running noise caused by the running body vibration characteristics is used.
JP06992499A 1999-03-16 1999-03-16 Acoustic positioning device and method for running noise with Doppler correction Expired - Lifetime JP3199240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06992499A JP3199240B2 (en) 1999-03-16 1999-03-16 Acoustic positioning device and method for running noise with Doppler correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06992499A JP3199240B2 (en) 1999-03-16 1999-03-16 Acoustic positioning device and method for running noise with Doppler correction

Publications (2)

Publication Number Publication Date
JP2000266833A true JP2000266833A (en) 2000-09-29
JP3199240B2 JP3199240B2 (en) 2001-08-13

Family

ID=13416735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06992499A Expired - Lifetime JP3199240B2 (en) 1999-03-16 1999-03-16 Acoustic positioning device and method for running noise with Doppler correction

Country Status (1)

Country Link
JP (1) JP3199240B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071784A (en) * 2000-08-30 2002-03-12 Tech Res & Dev Inst Of Japan Def Agency Method and device for orienting track from sailing body radiant noise
JP2006023306A (en) * 2004-07-09 2006-01-26 Thales High-speed coherent processing for code for periodic line spectrum
WO2019032165A3 (en) * 2017-06-19 2019-04-25 Ge Aviation Systems Llc Methods and apparatus for distributed, multi-node, low-frequency radar systems for degraded visual environments
WO2021039606A1 (en) * 2019-08-29 2021-03-04 石井 徹 Spatial position calculation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071784A (en) * 2000-08-30 2002-03-12 Tech Res & Dev Inst Of Japan Def Agency Method and device for orienting track from sailing body radiant noise
JP2006023306A (en) * 2004-07-09 2006-01-26 Thales High-speed coherent processing for code for periodic line spectrum
WO2019032165A3 (en) * 2017-06-19 2019-04-25 Ge Aviation Systems Llc Methods and apparatus for distributed, multi-node, low-frequency radar systems for degraded visual environments
US10830882B2 (en) 2017-06-19 2020-11-10 Ge Aviation Systems, Llc Methods and apparatus for distributed, multi-node, low-frequency radar systems for degraded visual environments
WO2021039606A1 (en) * 2019-08-29 2021-03-04 石井 徹 Spatial position calculation device

Also Published As

Publication number Publication date
JP3199240B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP6158845B2 (en) System and method for determining wave characteristics from a mobile platform
CN113687308B (en) Method for positioning seismic source on ice based on bending waves
CN104714235A (en) Ranging method and system for double low-frequency vector hydrophone arrays
CN112965053A (en) Shallow sea sound source depth resolution method based on matching of vertical array beam intensity
JP3199240B2 (en) Acoustic positioning device and method for running noise with Doppler correction
JP2018091647A (en) Signal processing apparatus, orientation calculation method and orientation calculation program
CN103513249A (en) Broadband coherent mold base signal processing method and system
JPH10206539A (en) Synthesized opening radar system and its information-processing device and method
CN113126029B (en) Multi-sensor pulse sound source positioning method suitable for deep sea reliable acoustic path environment
CN115656994A (en) Real-time calibration method for double-base active detection towed array formation
GB2181239A (en) A method of detecting sound impulses
JP3511090B2 (en) Wake locating method and device from vehicle noise
JP6610224B2 (en) Bistatic active sonar device and its receiver
JP2000266832A (en) Method and device for measuring sound source direction
CN112684437A (en) Passive distance measurement method based on time domain warping transformation
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
EP1216422B1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
JP7316854B2 (en) object detector
CN116046893B (en) Ultrasonic guided wave signal enhancement method and system based on multi-mode recognition-fusion
CN117310671B (en) Shallow sea sound source distance environment self-adaptive estimation method applying frequency dispersion elimination transformation
JP7267825B2 (en) Time difference measuring device and direction of arrival estimating device
Rudnicki Implementation of DIFAR processing in ASW dipping sonar
JPH11211809A (en) Underwater position measuring method
JP3506605B2 (en) Apparatus and method for detecting speed of navigation object
JPH11201811A (en) Closed space point-sound-source measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term