JP2000266673A - Measuring apparatus for two-dimensional distribution of concentration in flame - Google Patents

Measuring apparatus for two-dimensional distribution of concentration in flame

Info

Publication number
JP2000266673A
JP2000266673A JP11075552A JP7555299A JP2000266673A JP 2000266673 A JP2000266673 A JP 2000266673A JP 11075552 A JP11075552 A JP 11075552A JP 7555299 A JP7555299 A JP 7555299A JP 2000266673 A JP2000266673 A JP 2000266673A
Authority
JP
Japan
Prior art keywords
flame
measured
laser beam
energy
concentration distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11075552A
Other languages
Japanese (ja)
Inventor
Yasunori Hamano
靖徳 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11075552A priority Critical patent/JP2000266673A/en
Publication of JP2000266673A publication Critical patent/JP2000266673A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make measurable the two-dimensional distribution of the absolute concentration of a trace component in a flame. SOLUTION: In this measuring apparatus, a flame 4 is irradiated with a laser beam 1 which is made sheetlike. Then, generated induced fluorescence is photographed by a camera 9 from the side. Then, the two-dimensional distribution of the relative concentration of a trace component in the flame is measured. Then, a transmitted laser beam is measured by a power meter 19. Then, the absorbed energy amount of the laser beam 1 in the flame 4 is measured. Thereby, the two-dimensional distribution of the absolute concentration of the trace component in the flame 4 is calculated on the basis of its measured value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は火炎中で生成される
ラジカル、分子、原子等の微量成分の2次元濃度分布を
計測する計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device for measuring a two-dimensional concentration distribution of trace components such as radicals, molecules, atoms and the like generated in a flame.

【0002】[0002]

【従来の技術】燃焼に関する物理、化学量を計測し、燃
焼現象を解析することは、燃焼器の高効率化、低公害
化、排出物質の処理といった燃焼技術の高度化のために
必要不可欠である。レーザを利用した計測は、非接触の
計測方法であるため、測定対象の場に外乱を与えずに2
次元分布の可視化が可能である。また、時間分解計測が
可能であり、非定常現象も測定しうる。
2. Description of the Related Art It is indispensable to measure combustion physics and stoichiometry and analyze combustion phenomena in order to improve combustion technologies such as improving the efficiency of combustors, reducing pollution, and treating emissions. is there. Since the measurement using a laser is a non-contact measurement method, the measurement is performed without disturbing the field to be measured.
Visualization of dimensional distribution is possible. In addition, time-resolved measurement is possible, and unsteady phenomena can be measured.

【0003】レーザを利用した計測法のなかでもレーザ
誘起蛍光法(Laser Induced Fluorescence:LIF)
は、燃焼過程で生成する特定の化学種の分布や濃度を測
定する方法として特に優れている。
[0003] Among the measurement methods using a laser, a laser induced fluorescence (LIF) method is used.
Is particularly excellent as a method for measuring the distribution and concentration of specific chemical species generated in the combustion process.

【0004】レーザ光を分子に照射し、発生する蛍光を
観測するのがLIF法である。分子中の電子は量子化さ
れたエネルギー準位をもち、分子にエネルギー準位間の
差に等しいエネルギーをもつ光が入射すると、光のエネ
ルギーを吸収して励起状態に遷移する。励起された電子
が再び低いエネルギー準位に戻るとき、そのエネルギ6
を蛍光として放出する。分子の種類によってエネルギー
ギャップが違うので、励起光や蛍光は分子に固有の波長
をもつ。したがって、特定の波長のレーザ光を火炎に照
射し、それに対応する特定の波長の蛍光をカメラで撮影
すれば火炎中のOH、CH、NOなどのラジカルや分子
の相対的2次元濃度分布を計測することができる。
[0004] The LIF method irradiates molecules with laser light and observes the generated fluorescence. Electrons in a molecule have a quantized energy level, and when light having energy equal to the difference between the energy levels is incident on the molecule, the molecule absorbs the energy of the light and transitions to an excited state. When the excited electron returns to a lower energy level again, its energy 6
Is emitted as fluorescence. Since the energy gap differs depending on the type of molecule, the excitation light and the fluorescent light have a wavelength unique to the molecule. Therefore, by irradiating the flame with laser light of a specific wavelength and capturing the corresponding fluorescence of the specific wavelength with a camera, the relative two-dimensional concentration distribution of radicals and molecules such as OH, CH and NO in the flame can be measured. can do.

【0005】図2はかかるLIF法に用いられる計測装
置の概念図である。図において、1はレーザ光、2はビ
ーム拡張用レンズである。3はレーザビームをシート状
に形成するシリンドリカルレンズ、4は火炎である。5
は遮光板、6はイメージ形成用のレンズ、7はバンドパ
スフィルタである。8はイメージインテンシファイア、
9はCCDカメラ、10は画像記憶装置、11はコンピ
ュータである。図のように、レーザ光1をレンズ2で拡
張し、シリンドリカルレンズ3でシート状にする。シー
ト状のレーザ光を火炎4に照射することにより分子群の
一断面を励起し、そこから放出される蛍光の強度を面的
に観測することにより、この分子の相対的2次元濃度分
布を測定することができる。
FIG. 2 is a conceptual diagram of a measuring device used in the LIF method. In the drawing, reference numeral 1 denotes a laser beam, and 2 denotes a beam expanding lens. Reference numeral 3 denotes a cylindrical lens for forming a laser beam into a sheet, and reference numeral 4 denotes a flame. 5
Denotes a light shielding plate, 6 denotes an image forming lens, and 7 denotes a band pass filter. 8 is an image intensifier,
9 is a CCD camera, 10 is an image storage device, and 11 is a computer. As shown in the figure, a laser beam 1 is expanded by a lens 2 and is made into a sheet shape by a cylindrical lens 3. By irradiating the flame 4 with a sheet-like laser beam to excite one section of the molecule group, and observing the intensity of fluorescence emitted from the cross section, the relative two-dimensional concentration distribution of this molecule is measured. can do.

【0006】[0006]

【発明が解決しようとする課題】ところで、励起された
分子がエネルギーを放出してもとの状態に戻るとき、次
の三通りのエネルギー緩和過程をとる。すなわち、蛍光
として観測される輻射的な遷移過程(光エネルギーへの
変換:A)、他分子との衝突による衝突失活(熱、並進
エネルギーへの変換:Q)、分子自身の解離(化学エネ
ルギーへの変換:P)である。基底状態のある振動・回
転エネルギー準位Eに存在する対象分子が強度I0 のレ
ーザ光を吸収した後に発する蛍光の積分強度SF は次式
で表わされる。 SF =C(Ω/4π)N0 f(T)I0 A/(A+Q+
P) C:定数 Ω:集光の立体角 N0 :分子数密度 f(T):基定状態Eにおけるボルツマン分布定数で、
絶対温度Tの関数 A:自然放出(蛍光)のアインシュタイン係数 Q:衝突失活速度定数 P:前期解離速度定数 A/(A+Q+P)は「蛍光を放出する分子/励起され
た分子」の比に相当し、この値が決定できれば、蛍光強
度から濃度を定量化できる。しかし、Qは測定場の密度
(圧力)と温度に依存し、火炎のような反応の激しい場
では正確に値を決定することは難しい。前期解離は分子
が高い励起準位に励起されないと起こらないので、通常
P=0である。前期解離を起こさない場合には、P=
0、Q≫Aであり、したがって、A/(A+Q+P)〜
A/Qと近似可能である。Qが温度変化などの影響を受
けるためA/Qの定量化は困難であるが、定性的測定と
して簡便に利用される。
When an excited molecule returns to its original state after releasing energy, the following three types of energy relaxation processes are performed. That is, a radiative transition process observed as fluorescence (conversion to light energy: A), collision deactivation due to collision with another molecule (conversion to heat and translational energy: Q), dissociation of the molecule itself (chemical energy) To P :). The integrated intensity S F of the fluorescence emitted after the target molecule existing at the vibration / rotation energy level E in the ground state absorbs the laser light of intensity I 0 is expressed by the following equation. S F = C (Ω / 4π) N 0 f (T) I 0 A / (A + Q +
P) C: constant Ω: solid angle of light collection N 0 : molecular number density f (T): Boltzmann distribution constant in base state E,
Function of absolute temperature T A: Einstein coefficient of spontaneous emission (fluorescence) Q: Collision deactivation rate constant P: Predissociation rate constant A / (A + Q + P) is equivalent to the ratio of "molecule emitting fluorescence / excited molecule" However, if this value can be determined, the concentration can be quantified from the fluorescence intensity. However, Q depends on the density (pressure) and temperature of the measurement field, and it is difficult to determine the value accurately in a field having a strong reaction such as a flame. Predissociation does not occur unless the molecule is excited to a high excited level, so P = 0 is usually the case. If dissociation does not occur, P =
0, Q≫A, so A / (A + Q + P))
A / Q can be approximated. Although it is difficult to quantify A / Q because Q is affected by a change in temperature or the like, it is easily used as a qualitative measurement.

【0007】このように、LIF法はラジカルや分子の
相対的2次元濃度分布を計測するのに便利ではあるが、
絶対的(定量的)2次元濃度分布が計測できず、計測の
目的によっては必ずしも目的を達成できない場合があ
る。
As described above, the LIF method is convenient for measuring the relative two-dimensional concentration distribution of radicals and molecules,
An absolute (quantitative) two-dimensional concentration distribution cannot be measured, and the purpose may not always be achieved depending on the purpose of the measurement.

【0008】本発明は従来技術のかかる問題点に鑑み案
出されたもので火炎中におけるラジカルなどの微量成分
の絶対的(定量的)2次元濃度分布の計測が可能な火炎
中の2次元濃度分布計測装置を提供することを目的とす
る。
The present invention has been devised in view of the above-mentioned problems of the prior art, and has a two-dimensional concentration in a flame capable of measuring an absolute (quantitative) two-dimensional concentration distribution of trace components such as radicals in the flame. It is an object to provide a distribution measurement device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明の火炎中の2次元濃度分布計測装置は、火炎にレ
ーザ光をシート状にして照射し、発生する誘起蛍光を横
からカメラで撮影して火炎中の微量成分の相対的2次元
濃度分布を計測するとともに、透過レーザ光をパワーメ
ータで測定して火炎中でのレーザの吸収エネルギー量を
計測し、これらの計測値から火炎中の微量成分の絶対的
2次元濃度分布を算出するものである。
In order to achieve the above object, a two-dimensional concentration distribution measuring apparatus in a flame according to the present invention irradiates the flame with a laser beam in a sheet form, and generates induced fluorescence generated from a side by a camera. Photographs are used to measure the relative two-dimensional concentration distribution of trace components in the flame, and the transmitted laser light is measured with a power meter to measure the amount of energy absorbed by the laser in the flame. Is used to calculate the absolute two-dimensional concentration distribution of the trace components of the above.

【0010】次に、本発明の作用を説明する。火炎に計
測しようとする微量成分の励起に適した波長のレーザ光
をシート状にして照射する。励起された微量成分が再び
低いエネルギー準位に戻るとき、その微量成分に固有の
蛍光を放出する。照射されるレーザ光がシート状なの
で、放出される蛍光も面状であり、それをカメラにより
撮影することにより、微量成分の相対的2次元濃度分布
を計測することができる。
Next, the operation of the present invention will be described. A sheet of laser light having a wavelength suitable for exciting a trace component to be measured is applied to the flame. When the excited trace component returns to a lower energy level again, it emits fluorescence inherent in the trace component. Since the emitted laser light is in the form of a sheet, the emitted fluorescent light is also in the form of a plane. By photographing the emitted fluorescent light with a camera, the relative two-dimensional concentration distribution of the trace component can be measured.

【0011】一方、火炎を通過したレーザ光の光エネル
ギーをパワーメータで計測する。出射したレーザの光エ
ネルギーは、火炎を通過させない状態でパワーメータで
受光したときの光エネルギーなので、火炎を通過したと
きのパワーメータの計測値との比を取れば火炎中で吸収
された光エネルギーが定量的に把握できる。一方、レー
ザ光の光路に既知の濃度の微量成分を存在させておき、
濃度と吸収エネルギーの関係をあらかじめ求めてグラフ
化しておけば、実際にレーザ光が火炎中を通過したとき
に、光路途中に存在する微量成分の総和の濃度が判明す
る。したがって、LIFにより計測した相対的2次元濃
度分布とパワーメータの出力とをコンピュータに入力し
て計算をすれば火炎中の微量成分の絶対的(定量的)2
次元濃度分布を算出することができる。
On the other hand, the light energy of the laser light passing through the flame is measured by a power meter. The light energy of the emitted laser is the light energy received by the power meter without passing through the flame, so if you take the ratio with the measured value of the power meter when passing through the flame, the light energy absorbed in the flame Can be grasped quantitatively. On the other hand, a trace component of a known concentration is present in the optical path of the laser light,
If the relationship between the concentration and the absorbed energy is obtained in advance and graphed, the concentration of the sum of the trace components existing in the optical path when the laser light actually passes through the flame can be determined. Therefore, if the relative two-dimensional concentration distribution measured by the LIF and the output of the power meter are input to a computer and calculated, the absolute (quantitative) 2 of the trace components in the flame can be obtained.
A dimensional density distribution can be calculated.

【0012】[0012]

【発明の実施の形態】以下、本発明の1実施形態につい
て図面を参照しつつ説明する。図1は本発明の火炎中の
2次元濃度分布計測装置の概念図である。なお、図1で
は従来技術として図2で説明したものと共通の部分につ
いては同一の符号を付しており、重複した説明は省略す
る。図1において、18はLIF装置、19はレーザ光
のエネルギーを計測するパワーメータ装置、20は両者
からの情報を受けて計算を行うコンピュータである。L
IF装置18は、先に述べたように、レーザ発生装置1
2とCCDカメラ9を有している。レーザ発生装置12
は、NO、OH、CHなどのラジカルを計測するときに
は紫外領域のレーザ光で、かつ、波長が可変な色素レー
ザ、チタンサファイアレーザなどが適している。レーザ
発生装置12からのレーザ光1は、ビーム拡張用レンズ
2、シリンドリカルレンズ3を経てシート状に形成さ
れ、火炎4に照射される。この照射により、火炎4から
蛍光が面状に発生するのでCCDカメラ9により撮影す
る。なお、16は制御装置、17はディスプレイであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of a device for measuring a two-dimensional concentration distribution in a flame according to the present invention. In FIG. 1, the same reference numerals are given to the same parts as those described in FIG. 2 as the related art, and the overlapping description will be omitted. In FIG. 1, reference numeral 18 denotes a LIF device, 19 denotes a power meter device for measuring the energy of laser light, and 20 denotes a computer which receives information from both to perform calculations. L
The IF device 18 is, as described above, the laser generator 1
2 and a CCD camera 9. Laser generator 12
When measuring radicals such as NO, OH, and CH, a laser beam in the ultraviolet region and a wavelength variable dye laser, titanium sapphire laser, or the like is suitable. The laser beam 1 from the laser generator 12 is formed into a sheet shape via the beam expanding lens 2 and the cylindrical lens 3, and is applied to the flame 4. Due to this irradiation, fluorescent light is emitted from the flame 4 in a planar manner. In addition, 16 is a control device, and 17 is a display.

【0013】パワーメータ装置19は、図に示すように
集光レンズ13、受光素子14、表示装置15を有して
いる。火炎4を通過したときのパワーメータ19の測定
値と、火炎4がないときのパワーメータ19の測定値と
の比をとれば火炎中で吸収されたレーザ光の吸収エネル
ギーが判明する。CCDカメラ9からの情報とパワーメ
ータ15からの情報をコンピュータ20に入力し、計算
を行えば微量成分の絶対的(定量的)2次元濃度分布を
算出することができる。
The power meter device 19 has a condenser lens 13, a light receiving element 14, and a display device 15, as shown in FIG. If the ratio of the measured value of the power meter 19 when passing through the flame 4 to the measured value of the power meter 19 when there is no flame 4 is determined, the absorption energy of the laser beam absorbed in the flame is determined. By inputting information from the CCD camera 9 and information from the power meter 15 to the computer 20 and performing calculations, an absolute (quantitative) two-dimensional concentration distribution of a trace component can be calculated.

【0014】次に、本実施形態の作用を説明する。火炎
4に計測しようとする微量成分の励起に適した波長のレ
ーザ光1をシート状にして照射する。照射により励起さ
れた微量成分が再び低いエネルギー準位に戻るとき、そ
の微量成分に固有の蛍光を放出する。微量成分がラジカ
ルである場合にラジカルの種類と、励起波長および検出
波長(放出される蛍光の波長)との関係を表1に示す。
Next, the operation of the present embodiment will be described. The flame 4 is irradiated with a laser beam 1 having a wavelength suitable for exciting a trace component to be measured in a sheet shape. When the trace component excited by the irradiation returns to a low energy level again, it emits fluorescence unique to the trace component. Table 1 shows the relationship between the type of radical, the excitation wavelength and the detection wavelength (the wavelength of emitted fluorescence) when the trace component is a radical.

【0015】[0015]

【表1】 [Table 1]

【0016】照射されるレーザ光1がシート状なので、
放出される蛍光も面状であり、それをCCDカメラ9に
より撮影することにより、微量成分の相対的2次元濃度
分布を計測することができる。
Since the laser beam 1 to be irradiated is sheet-shaped,
The emitted fluorescent light is also planar, and by capturing the fluorescent light with the CCD camera 9, the relative two-dimensional concentration distribution of the trace component can be measured.

【0017】一方、火炎4を通過したレーザ光1の光エ
ネルギーをパワーメータ19で計測する。出射したレー
ザの光エネルギーは火炎4を通過させないでパワーメー
タ19で受光したときの光エネルギーなので、火炎4を
通過したときのパワーメータ19の計測値との比を取れ
ば火炎4中で吸収された光エネルギーが定量的に把握で
きる。一方、レーザ光1の光路に既知の濃度の微量成分
を存在させておき、濃度と吸収エネルギーの関係をあら
かじめグラフ化しておけば、実際にレーザ光1が火炎4
中を通過したときに光路途中に存在する微量成分の総和
の濃度が判明する。したがって、LIF18により計測
した相対的2次元濃度分布とパワーメータ19の出力と
をコンピュータ20に入力して計算をすれば火炎中の微
量成分の絶対的(定量的)2次元濃度分布を算出するこ
とができる。
On the other hand, the light energy of the laser beam 1 passing through the flame 4 is measured by a power meter 19. The light energy of the emitted laser is the light energy when received by the power meter 19 without passing through the flame 4, and is absorbed in the flame 4 by taking the ratio with the measured value of the power meter 19 when passing through the flame 4. Light energy can be grasped quantitatively. On the other hand, if a trace component having a known concentration is present in the optical path of the laser beam 1 and the relationship between the concentration and the absorption energy is plotted in advance, the laser beam 1 actually
When passing through the inside, the concentration of the sum of the trace components existing in the middle of the optical path is determined. Therefore, if the relative two-dimensional concentration distribution measured by the LIF 18 and the output of the power meter 19 are input to the computer 20 for calculation, the absolute (quantitative) two-dimensional concentration distribution of the trace components in the flame can be calculated. Can be.

【0018】本発明は以上述べた実施形態に限定される
ものではなく、発明の要旨を逸脱しない範囲で種々の変
更が可能である。たとえば、カメラ9はCCD型でな
く、MOS型であってもよい。
The present invention is not limited to the embodiments described above, and various changes can be made without departing from the gist of the invention. For example, the camera 9 may be a MOS type instead of a CCD type.

【0019】[0019]

【発明の効果】以上述べたように本発明の火炎中の2次
元濃度分布の計測装置は、通常のLIF装置に加えて透
過レーザ光のエネルギーをパワーメータで測定して火炎
中で吸収される光エネルギーの総和量を計測し、LIF
からの情報と、パワーメータからの情報とをコンピュー
タに入力して計算するようにしたので、火炎中の絶対的
(定量的)2次元濃度分布を算出することができるとい
う優れた効果を有する。
As described above, the apparatus for measuring the two-dimensional concentration distribution in a flame according to the present invention measures the energy of a transmitted laser beam with a power meter in addition to a normal LIF apparatus and is absorbed in the flame. The total amount of light energy is measured and LIF
Since the information from the power meter and the information from the power meter are input to the computer for calculation, there is an excellent effect that an absolute (quantitative) two-dimensional concentration distribution in the flame can be calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の火炎中の2次元濃度分布計測装置の概
念図である。
FIG. 1 is a conceptual diagram of a device for measuring a two-dimensional concentration distribution in a flame according to the present invention.

【図2】LIF装置の概念図である。FIG. 2 is a conceptual diagram of a LIF device.

【符号の説明】[Explanation of symbols]

1 レーザ光 4 火炎 9 CCDカメラ 19 パワーメータ装置 20 コンピュータ Reference Signs List 1 laser beam 4 flame 9 CCD camera 19 power meter device 20 computer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G043 AA01 BA12 BA17 CA01 DA01 DA08 EA01 EA10 EA13 FA01 FA07 GA07 GA11 GB07 HA01 JA08 KA05 KA09 LA03 LA07 2G059 AA01 BB20 CC20 EE01 FF01 GG01 HH03 JJ11 KK01 KK04 PP04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G043 AA01 BA12 BA17 CA01 DA01 DA08 EA01 EA10 EA13 FA01 FA07 GA07 GA11 GB07 HA01 JA08 KA05 KA09 LA03 LA07 2G059 AA01 BB20 CC20 EE01 FF01 GG01 HH03 JJ11 KK01 KK04 PP

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 火炎にレーザ光をシート状にして照射
し、発生する誘起蛍光を横からカメラで撮影して、火炎
中の微量成分の相対的2次元濃度分布を計測するととも
に、透過レーザ光をパワーメータで測定して火炎中での
レーザの吸収エネルギ量を計測し、これらの計測値から
火炎中の微量成分の絶対的2次元濃度分布を算出するこ
とを特徴とする火炎中の2次元濃度分布の計測装置。
1. A flame is irradiated with a laser beam in a sheet form, and the induced fluorescence generated is photographed by a camera from the side to measure a relative two-dimensional concentration distribution of a trace component in the flame and transmit a laser beam. Is measured with a power meter to measure the amount of energy absorbed by the laser in the flame, and the absolute two-dimensional concentration distribution of the trace components in the flame is calculated from these measured values. Measurement device for concentration distribution.
JP11075552A 1999-03-19 1999-03-19 Measuring apparatus for two-dimensional distribution of concentration in flame Pending JP2000266673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11075552A JP2000266673A (en) 1999-03-19 1999-03-19 Measuring apparatus for two-dimensional distribution of concentration in flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11075552A JP2000266673A (en) 1999-03-19 1999-03-19 Measuring apparatus for two-dimensional distribution of concentration in flame

Publications (1)

Publication Number Publication Date
JP2000266673A true JP2000266673A (en) 2000-09-29

Family

ID=13579475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11075552A Pending JP2000266673A (en) 1999-03-19 1999-03-19 Measuring apparatus for two-dimensional distribution of concentration in flame

Country Status (1)

Country Link
JP (1) JP2000266673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023378A1 (en) * 2001-09-06 2003-03-20 Japan Science And Technology Agency Method for estimating concentration of generating hotochemical ozone by the use of pump-probe method, and apparatus for estimating concentration of generating photochemical ozone utilizing the method
WO2022239392A1 (en) * 2021-05-13 2022-11-17 株式会社島津製作所 Flame atomic absorption spectrophotometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003023378A1 (en) * 2001-09-06 2003-03-20 Japan Science And Technology Agency Method for estimating concentration of generating hotochemical ozone by the use of pump-probe method, and apparatus for estimating concentration of generating photochemical ozone utilizing the method
US7425452B2 (en) 2001-09-06 2008-09-16 Japan Science And Technology Agency Pump-and-probe method for estimating strength of forming photochemical ozone and apparatus therefor
WO2022239392A1 (en) * 2021-05-13 2022-11-17 株式会社島津製作所 Flame atomic absorption spectrophotometer

Similar Documents

Publication Publication Date Title
Baldacchini et al. Soft x-ray submicron imaging detector based on point defects in LiF
Wellander et al. Time-resolved (kHz) 3D imaging of OH PLIF in a flame
JP6998469B2 (en) Electron beam device
Khalil A comparative spectroscopic study of single and dual pulse laser produced UV tin plasmas
US20210011430A1 (en) Quantum simulator and quantum simulation method
Ballini et al. Wavelength-resolved lifetime measurements of emissions from DNA components and poly rA at room temperature excited with synchrotron radiation
CN108318459A (en) Pulsed Laser induces the measuring device and measuring method of photoluminescence spectrum
CN110178016A (en) Device and method for measuring fluorescence lifetime
Valdivia et al. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
Kirby et al. Imaging of CO and CO2 using infrared planar laser-induced fluorescence
CN107340066B (en) Superelevation laser intensity remote measuring method based on fluorescence spectrum
Wubetu et al. Recombination contributions to the anisotropic emission from a laser produced copper plasma
JP2000266673A (en) Measuring apparatus for two-dimensional distribution of concentration in flame
CN109154567A (en) At being grouped as measurement system and at being grouped as measuring method
Furstenberg et al. Laser vaporization of trace explosives for enhanced non-contact detection
JP2009002811A (en) Temperature measuring instrument and temperature measuring method
JP2001004543A (en) Method and apparatus for measuring concentration distribution of combustion product
JP4895534B2 (en) Mid-infrared light-ultraviolet light generator
Mizuse et al. Visualizing rotational wave functions of electronically excited nitric oxide molecules by using an ion imaging technique
Liang et al. Ultrafast optical imaging
Antonelli et al. X-ray absorption radiography for high pressure shock wave studies
Van Der Geest et al. Extreme ultraviolet-excited time-resolved luminescence spectroscopy using an ultrafast table-top high-harmonic generation source
JP3197132B2 (en) Measuring device using laser light
JPH10153416A (en) Flame front three-dimensional measuring method and device therefor
JP2010019562A (en) Two-dimensional distribution measuring instrument using laser beam