JP2000266482A - Boiling and cooling device - Google Patents

Boiling and cooling device

Info

Publication number
JP2000266482A
JP2000266482A JP11007498A JP749899A JP2000266482A JP 2000266482 A JP2000266482 A JP 2000266482A JP 11007498 A JP11007498 A JP 11007498A JP 749899 A JP749899 A JP 749899A JP 2000266482 A JP2000266482 A JP 2000266482A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
flow control
condensed liquid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11007498A
Other languages
Japanese (ja)
Inventor
Hiroyuki Osakabe
長賀部  博之
Takahide Oohara
貴英 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11007498A priority Critical patent/JP2000266482A/en
Priority to US09/333,151 priority patent/US6257324B1/en
Priority to EP99111978A priority patent/EP0969261B1/en
Priority to DE69914675T priority patent/DE69914675T2/en
Priority to KR1019990025393A priority patent/KR100330398B1/en
Publication of JP2000266482A publication Critical patent/JP2000266482A/en
Priority to US09/779,141 priority patent/US6857466B2/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Abstract

PROBLEM TO BE SOLVED: To improve the performance for circulating refrigerant of a boiling and cooling device by preventing the interference between a condensed liquid and refrigerant vapor in the refrigerant chamber of the device. SOLUTION: A refrigerant flow control plate 18 covers the topside of a vapor outlet port 21 in the transverse direction in a lower tank 17. In addition, the plate 18 is the highest at the central part in the transverse direction and is gradually downwardly inclined toward both sides. In the longitudinal direction, however, the central part is the lowest and the plate 18 is gradually upwardly inclined toward both sides. Consequently, a condensed liquid flowing passage 23 which is downwardly inclined toward both sides in the transverse direction is formed in the central part in the longitudinal direction on the upper surface of the plate 18. The condensed liquid dropping onto the upper surface of the plate 18 from heat radiating tubes 19 flow to both sides in the transverse direction along the passage 23 of the plate 18 and can flow in a liquid returning passage 9 through a liquid inlet port 22 made through the lower tank 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の蒸発と凝縮
の繰り返しによって発熱体を冷却する沸騰冷却装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling cooling device for cooling a heating element by repeating evaporation and condensation of a refrigerant.

【0002】[0002]

【従来の技術】従来技術として、特開平8−20407
5号公報に記載された冷却器が公知である。この冷却器
は、サーモサイホンの原理を用いたもので、図11に示
すように、液冷媒を貯留する蒸発部100と、この蒸発
部100の上部に設けられる凝縮部110とを有し、蒸
発部100で発熱体の熱を受けて沸騰した冷媒蒸気が凝
縮部110へ流入し、凝縮部110で外部流体との熱交
換により冷却され、液化して再び蒸発部100へ還流す
る構成である。この冷媒の蒸発と凝縮の繰り返しによ
り、発熱体の熱が蒸発部100で冷媒に伝達されて凝縮
部110へ輸送され、凝縮部110で外部流体に放出さ
れる。
2. Description of the Related Art As a prior art, Japanese Patent Laid-Open Publication No.
The cooler described in Japanese Patent Publication No. 5 is known. This cooler uses the principle of a thermosiphon, and has, as shown in FIG. 11, an evaporator 100 for storing a liquid refrigerant and a condenser 110 provided above the evaporator 100. Refrigerant vapor boiled by receiving heat from the heating element in the section 100 flows into the condensing section 110, is cooled by heat exchange with an external fluid in the condensing section 110, liquefies, and returns to the evaporating section 100 again. Due to the repetition of the evaporation and condensation of the refrigerant, the heat of the heating element is transmitted to the refrigerant in the evaporator 100, transported to the condenser 110, and released to the external fluid in the condenser 110.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の冷却
器は、凝縮部110で液化した凝縮液が蒸発部100の
通路101または還流通路102より蒸発部100へ戻
る構成であるが、発熱体の取付け範囲にある通路101
は、発熱体の熱で沸騰した冷媒蒸気が上昇してくるた
め、凝縮液と冷媒蒸気とが対向流となって干渉する。こ
の結果、蒸発部100から冷媒蒸気が抜け難くなるとと
もに、凝縮部110から蒸発部100へ流入しようとす
る凝縮液が蒸発部100より上昇する冷媒蒸気に吹き上
げられて蒸発部100に戻り難くなるため、蒸発部10
0の沸騰面でバーンアウト(温度急上昇)を生じ易くな
り、放熱性能が低下するという問題があった。この問題
は、コスト低減の要求から、高価な冷媒の封入量を減ら
すために蒸発部100を薄型化する程、バーンアウトに
よる放熱性能の低下を生じ易くなる。本発明は、上記事
情に基づいて成されたもので、その目的は、冷媒室での
凝縮液と冷媒蒸気との干渉を防止して、冷媒の循環性を
向上させた沸騰冷却装置を提供することにある。
However, the above-described cooler has a configuration in which the condensed liquid liquefied in the condensing section 110 returns to the evaporating section 100 from the passage 101 or the recirculation passage 102 of the evaporating section 100. Passage 101 in mounting area
In this case, since the refrigerant vapor boiling due to the heat of the heating element rises, the condensed liquid and the refrigerant vapor flow in opposite directions and interfere with each other. As a result, the refrigerant vapor hardly escapes from the evaporating section 100, and the condensed liquid flowing from the condensing section 110 to the evaporating section 100 is blown up by the refrigerant vapor rising from the evaporating section 100, so that it is difficult to return to the evaporating section 100. , Evaporator 10
At the boiling surface of 0, burnout (rapid rise in temperature) is likely to occur and there is a problem that heat radiation performance is reduced. This problem is caused by a demand for cost reduction, as the thickness of the evaporating section 100 is reduced in order to reduce the amount of expensive refrigerant to be charged, and the heat dissipation performance is more likely to deteriorate due to burnout. The present invention has been made based on the above circumstances, and an object of the present invention is to provide a boiling cooling device in which interference between a condensed liquid and a refrigerant vapor in a refrigerant chamber is prevented to improve the circulation of the refrigerant. It is in.

【0004】[0004]

【課題を解決するための手段】(請求項1の手段)放熱
部より連結タンク内に滴下する凝縮液の流れを制御する
冷媒流制御手段を有し、この冷媒流制御手段は、連結タ
ンク内で蒸気流出口の上方を覆うとともに、放熱部より
冷媒流制御手段の上面に滴下した凝縮液を液流入口へ導
く凝縮液通路を形成している。この構成によれば、蒸気
流出口の上方を覆う冷媒流制御板によって、放熱部より
連結タンク内に滴下する凝縮液が蒸気流出口へ進入する
ことを防止でき、且つ冷媒流制御板の凝縮液通路によっ
て、冷媒流制御手段の上面に滴下した凝縮液を液流入口
へ導くことができる。これにより、冷媒室での冷媒蒸気
と凝縮液との干渉を低減でき、冷媒の循環が良好に行わ
れて放熱性能を向上できる。
(Means for Solving the Problems) A refrigerant flow control means for controlling the flow of condensed liquid dropped from the heat radiating portion into the connection tank, wherein the refrigerant flow control means is provided in the connection tank. To form a condensed liquid passage for guiding the condensed liquid dropped from the radiator to the upper surface of the refrigerant flow control means to the liquid inlet. According to this configuration, the refrigerant flow control plate covering the upper part of the vapor outlet can prevent the condensed liquid dripping into the connection tank from the heat radiating part from entering the vapor outlet, and the condensate of the refrigerant flow control plate can be prevented. The condensed liquid dropped on the upper surface of the refrigerant flow control means can be guided to the liquid inlet by the passage. As a result, interference between the refrigerant vapor and the condensate in the refrigerant chamber can be reduced, and the refrigerant can be circulated satisfactorily to improve the heat radiation performance.

【0005】(請求項2の手段)冷媒室は、左右方向の
幅に対し前後方向の厚みが薄い偏平形状に設けられて、
冷媒室の前後両面または片面に発熱体が取り付けられ、
液流入口及び還流通路は、冷媒室の左右両側に設けられ
ている。この構成によれば、還流通路が冷媒室の片側の
みに形成される場合に対し、冷媒室により安定して凝縮
液を供給できる。また、沸騰冷却装置が左右どちら側に
傾いても、凝縮液が液流入口から還流通路へ流れ込むこ
とができるので、凝縮液を安定的に冷媒室へ還流させる
ことができる。
[0005] (Means of the second aspect) The refrigerant chamber is provided in a flat shape whose thickness in the front-rear direction is thinner than the width in the left-right direction,
Heating elements are attached to both front and rear or one side of the refrigerant chamber,
The liquid inlet and the reflux passage are provided on both left and right sides of the refrigerant chamber. According to this configuration, the condensed liquid can be more stably supplied to the refrigerant chamber as compared with the case where the return passage is formed only on one side of the refrigerant chamber. Further, even if the boiling cooling device is tilted to the left or right, the condensed liquid can flow from the liquid inlet to the reflux passage, so that the condensed liquid can be stably returned to the refrigerant chamber.

【0006】(請求項3の手段)冷媒流制御手段は、前
後方向では中央部が低く、断面凹形状に設けられること
で凝縮液通路を形成している。この場合、冷媒流制御手
段を断面凹形状に設けるだけの簡単な構成で凝縮液通路
を形成できる。言い換えれば、蒸気流出口の上方を覆う
部材とは別に凝縮液通路を形成する部材を設ける必要が
なく、同一部材によって蒸気流出口の上方を覆い、且つ
凝縮液通路を形成できるので、構成が簡単で低コストで
対応できる。
(Claim 3) The refrigerant flow control means has a lower central portion in the front-rear direction and is provided with a concave cross section to form a condensate passage. In this case, the condensed liquid passage can be formed by a simple configuration in which the refrigerant flow control means is provided in a concave cross section. In other words, there is no need to provide a member that forms a condensate passage separately from a member that covers above the vapor outlet, and the same member can cover above the vapor outlet and form the condensate passage, so that the configuration is simple. At low cost.

【0007】(請求項4の手段)冷媒流制御手段は、左
右方向では中央部が最も高く、左右両側へ向かって次第
に低くなる傾斜面を有している。この構成によれば、放
熱部から冷媒流制御手段の上面に滴下した凝縮液が、冷
媒流制御手段の傾斜面に沿って凝縮液通路を左右両側へ
流れて、安定的に液流入口へ流れ込むことができる。ま
た、還流通路が冷媒室の左右両側に設けられている場合
は、両側の還流通路より略均等に凝縮液を冷媒室へ還流
させることができるので、より冷媒循環が良好に行われ
て放熱性能の向上に寄与できる。
(Claim 4) The refrigerant flow control means has an inclined surface which is highest at the center in the left-right direction and gradually decreases toward the left and right sides. According to this configuration, the condensed liquid dropped from the heat radiating portion onto the upper surface of the refrigerant flow control means flows to the left and right sides of the condensed liquid passage along the inclined surface of the refrigerant flow control means, and stably flows into the liquid inlet. be able to. In addition, when the return passages are provided on both the left and right sides of the refrigerant chamber, the condensed liquid can be returned to the refrigerant chamber substantially evenly from the return passages on both sides, so that the refrigerant circulation is better performed and the heat dissipation performance is improved. Can be improved.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて説明する。図1は沸騰冷却装置1の正面図であ
る。本実施例の沸騰冷却装置1は、冷媒の沸騰と凝縮の
繰り返しによって発熱体2を冷却するもので、内部に液
冷媒を貯留する冷媒槽3と、この冷媒槽3の上部に組付
けられる放熱器4とを備え、一体ろう付けにより製造さ
れる。発熱体2は、例えば電気自動車のインバータ回路
を構成するIGBTモジュールであり、図2に示すよう
に、ボルト5等により冷媒槽3の両表面に密着して固定
される。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of the boiling cooling device 1. The boiling cooling device 1 of the present embodiment cools the heating element 2 by repeatedly boiling and condensing the refrigerant, and includes a refrigerant tank 3 for storing a liquid refrigerant therein, and a radiator mounted on the upper part of the refrigerant tank 3. , And manufactured by integral brazing. The heating element 2 is, for example, an IGBT module constituting an inverter circuit of an electric vehicle, and is fixed to both surfaces of the refrigerant tank 3 by bolts 5 or the like as shown in FIG.

【0009】冷媒槽3は、中空部材6とエンドキャップ
7から成り、内部に冷媒室8、液戻り通路9、断熱通路
10、及び連通路11が設けられている。中空部材6
は、アルミニウム等の熱伝導性に優れる金属材料から成
る押出成形品で、横幅に対し厚みが薄い偏平形状に設け
られ、その内部に太さの異なる複数の仕切壁(第1仕切
壁12、第2仕切壁13、第3仕切壁14、第4仕切壁
15)を有している。エンドキャップ7は、例えば中空
部材6と同じアルミニウム製で、中空部材6の下端部に
被せられ、中空部材6の下端面との間に空間を有してい
る。
The refrigerant tank 3 comprises a hollow member 6 and an end cap 7, and is provided with a refrigerant chamber 8, a liquid return passage 9, a heat insulating passage 10, and a communication passage 11 therein. Hollow member 6
Is an extruded product made of a metal material having excellent thermal conductivity, such as aluminum, provided in a flat shape having a small thickness with respect to the width, and a plurality of partition walls having different thicknesses (the first partition wall 12, the first partition wall 12). It has two partition walls 13, a third partition wall 14, and a fourth partition wall 15). The end cap 7 is made of, for example, the same aluminum as the hollow member 6, is covered on the lower end of the hollow member 6, and has a space between the end cap 7 and the lower end surface of the hollow member 6.

【0010】冷媒室8は、中空部材6の中央部に有する
第1仕切壁12の左右両側に設けられ、その内部が第2
仕切壁13によって複数の通路状に区画されている。こ
の冷媒室8は、内部に貯留する液冷媒が発熱体2の熱を
受けて沸騰する空間を形成している。液戻り通路9は、
放熱器4で冷却され液化した凝縮液が流入する通路で、
中空部材6の左右両側に設けられている。断熱通路10
は、冷媒室8と液戻り通路9との間を断熱するための通
路で、第3仕切壁14によって冷媒室8と区画され、第
4仕切壁15によって液戻り通路9と区画されている。
連通路11は、液戻り通路9へ流入した凝縮液を冷媒室
8へ供給するための通路で、エンドキャップ7の内側空
間によって形成され、液戻り通路9と冷媒室8及び断熱
通路10とを相互に連通している。
The refrigerant chamber 8 is provided on both left and right sides of a first partition wall 12 provided at the center of the hollow member 6, and the inside thereof is a second partition wall.
A plurality of passages are defined by the partition wall 13. The refrigerant chamber 8 forms a space in which the liquid refrigerant stored therein receives heat from the heating element 2 and boils. The liquid return passage 9 is
A passage into which the condensed liquid cooled and liquefied by the radiator 4 flows,
It is provided on both left and right sides of the hollow member 6. Insulated passage 10
Is a passage for insulating the space between the refrigerant chamber 8 and the liquid return passage 9. The passage is partitioned from the refrigerant chamber 8 by the third partition wall 14 and is separated from the liquid return passage 9 by the fourth partition wall 15.
The communication passage 11 is a passage for supplying the condensed liquid flowing into the liquid return passage 9 to the refrigerant chamber 8, and is formed by the space inside the end cap 7, and connects the liquid return passage 9 with the refrigerant chamber 8 and the heat insulating passage 10. Communicate with each other.

【0011】放熱器4は、コア部(下述する)、上部タ
ンク16、下部タンク17(本発明の連結タンク)より
構成され、下部タンク17の内部に冷媒流制御板18が
設置されている。コア部は、発熱体2の熱を受けて沸騰
した冷媒蒸気を外部流体(例えば空気)との熱交換によ
って冷却する本発明の放熱部であり、複数本の放熱チュ
ーブ19と、各放熱チューブ19の間に介在される放熱
フィン20とから成る。放熱チューブ19は、内部を冷
媒が流れる冷媒通路を形成するもので、例えばアルミニ
ウム製の偏平な管を所定の長さに切断して下部タンク1
7と上部タンク16との間に複数本並設され、下部タン
ク17と上部タンク16とを連通している。放熱フィン
20は、熱伝導性に優れる薄い金属板(例えばアルミニ
ウム板)を交互に折り曲げて波状に成形したもので、放
熱チューブ19の表面に接合されている。
The radiator 4 comprises a core portion (described below), an upper tank 16 and a lower tank 17 (the connection tank of the present invention), and a refrigerant flow control plate 18 is provided inside the lower tank 17. . The core portion is a heat radiating portion of the present invention that cools the refrigerant vapor that has boiled by receiving heat from the heat generating element 2 by heat exchange with an external fluid (for example, air), and includes a plurality of heat radiating tubes 19 and each of the heat radiating tubes 19. And radiation fins 20 interposed therebetween. The heat radiating tube 19 forms a refrigerant passage through which the refrigerant flows, and is formed by cutting a flat tube made of, for example, aluminum into a predetermined length to form the lower tank 1.
7 and the upper tank 16 are arranged in parallel, and communicate the lower tank 17 and the upper tank 16. The radiating fins 20 are formed by alternately bending thin metal plates (for example, aluminum plates) having excellent thermal conductivity and forming them into a wavy shape, and are joined to the surface of the radiating tube 19.

【0012】上部タンク16は、浅皿状のコアプレート
16Aと深皿状のタンクプレート16Bとを組み合わせ
て構成され、コアプレート16Aに開けられている複数
の長孔(図示しない)にそれぞれ放熱チューブ19の上
端部が挿入される。下部タンク17は、上部タンク16
と同様に、浅皿状のコアプレート17Aと深皿状のタン
クプレート17Bとを組み合わせて構成され、コアプレ
ート17Aに開けられている複数の長孔(図示しない)
にそれぞれ放熱チューブ19の下端部が挿入され、且つ
タンクプレート17Bの底面に開けられている開口部に
中空部材6の上端部が挿入される(図1参照)。これに
より、冷媒室8の上端開口部、液戻り通路9の上端開口
部、及び断熱通路10の上端開口部がそれぞれ下部タン
ク17内に開口している。ここで、冷媒室8の上端開口
部は、冷媒室8で沸騰した冷媒蒸気が流出する蒸気流出
口21であり、液戻り通路9の上端開口部は、放熱部で
冷却され液化した凝縮液が流れ込む液流入口22であ
る。
The upper tank 16 is formed by combining a shallow dish-shaped core plate 16A and a deep dish-shaped tank plate 16B, and a plurality of heat radiating tubes are provided in a plurality of long holes (not shown) formed in the core plate 16A. The upper end of 19 is inserted. The lower tank 17 is the upper tank 16
Similarly, a shallow dish-shaped core plate 17A and a deep dish-shaped tank plate 17B are combined, and a plurality of long holes (not shown) opened in the core plate 17A.
The lower end of the heat radiating tube 19 is inserted into each of the holes, and the upper end of the hollow member 6 is inserted into an opening formed in the bottom surface of the tank plate 17B (see FIG. 1). Thereby, the upper end opening of the refrigerant chamber 8, the upper end opening of the liquid return passage 9, and the upper end opening of the heat insulating passage 10 are each opened in the lower tank 17. Here, the upper end opening of the refrigerant chamber 8 is a vapor outlet 21 from which the refrigerant vapor boiling in the refrigerant chamber 8 flows out, and the upper end opening of the liquid return passage 9 is provided with a condensed liquid cooled and liquefied by the heat radiating part. The liquid inlet 22 into which the liquid flows.

【0013】冷媒流制御板18は、図3(a)に示すよ
うに、左右方向に長く、且つ中央部より両側が低くなる
ように全体が緩やかに湾曲して設けられている。また、
前後方向では、図3(b)に示すように、中央部が最も
低く、前後両側へ向かって次第に高くなる傾斜面を有し
ている。また、冷媒流制御板18の前後方向両側には、
下部タンク17へ取り付けるためのステー18aが一体
に設けられている。この冷媒流制御板18は、前記ステ
ー18aを下部タンク17の前後両側面に固定して取り
付けられ、図1に示すように、下部タンク17の内部で
左右方向の両端が第4仕切壁15の上方まで到達して蒸
気流出口21及び断熱通路10の上方を覆っている。ま
た、図2に示すように、前後方向の両端が下部タンク1
7の側面まで近接して、下部タンク17の側面との間に
所定の隙間を確保している。なお、図1に示す冷媒流制
御板18は、左右方向の中央部が最も高く、左右両側に
向かって次第に低くなる傾斜面を有しているが、機能上
は図3(a)に示した冷媒流制御板18と同等である。
As shown in FIG. 3 (a), the refrigerant flow control plate 18 is long in the left-right direction and gently curved so that both sides are lower than the center. Also,
In the front-rear direction, as shown in FIG. 3 (b), the center portion has the lowest slope and the slope gradually increases toward both front and rear sides. Further, on both sides in the front-rear direction of the refrigerant flow control plate 18,
A stay 18a for attaching to the lower tank 17 is provided integrally. The refrigerant flow control plate 18 is fixedly attached to the front and rear side surfaces of the lower tank 17 with the stay 18a, and both ends in the left-right direction inside the lower tank 17 are formed by the fourth partition wall 15, as shown in FIG. It reaches the upper part and covers the upper part of the steam outlet 21 and the heat insulating passage 10. Also, as shown in FIG.
7 and a predetermined gap is secured between the lower tank 17 and the side surface. The refrigerant flow control plate 18 shown in FIG. 1 has a slope that is highest at the center in the left-right direction and gradually decreases toward both the left and right sides, but is functionally shown in FIG. This is equivalent to the refrigerant flow control plate 18.

【0014】次に、本実施例の作動を説明する。冷媒室
8で発熱体2の熱を受けて沸騰した冷媒蒸気は、蒸気流
出口21より下部タンク17内へ進入し、下部タンク1
7内で冷媒流制御板18の周囲に確保されている隙間を
通り抜けて下部タンク17から各放熱チューブ19内へ
進入する。放熱チューブ19を流れる冷媒蒸気は、コア
部を通過する外部流体との熱交換によって冷却され、潜
熱を放出して放熱チューブ19の内面に凝縮する。放出
された潜熱は、放熱チューブ19の壁面から放熱フィン
20へ伝達され、放熱フィン20を介して外部流体に放
出される。一方、凝縮して液滴となった凝縮液は、重力
により放熱チューブ19の内面を伝って降下し、放熱チ
ューブ19から下部タンク17内へ滴下する。
Next, the operation of this embodiment will be described. The refrigerant vapor boiled by receiving the heat of the heating element 2 in the refrigerant chamber 8 enters the lower tank 17 through the vapor outlet 21, and the lower tank 1
Through the gap secured around the refrigerant flow control plate 18 in the inside 7, the liquid enters the heat radiation tubes 19 from the lower tank 17. The refrigerant vapor flowing through the heat radiating tube 19 is cooled by heat exchange with an external fluid passing through the core portion, releases latent heat, and condenses on the inner surface of the heat radiating tube 19. The released latent heat is transmitted from the wall surface of the radiation tube 19 to the radiation fin 20, and is released to the external fluid via the radiation fin 20. On the other hand, the condensed liquid that has been condensed into droplets descends along the inner surface of the heat radiation tube 19 due to gravity and drops from the heat radiation tube 19 into the lower tank 17.

【0015】ここで、下部タンク17内では、冷媒流制
御板18が蒸気流出口21および断熱通路10の上方を
覆っているため、放熱チューブ19から滴下した凝縮液
が蒸気流出口21へ落下することを防止できる。また、
冷媒流制御板18は、左右方向で中央部より両側の方が
低く、且つ前後方向で両側より中央部の方が低く設けら
れているため、冷媒流制御板18の上面には、前後方向
の中央部に左右方向の両側へ傾斜する凝縮液通路23が
形成される。これにより、放熱チューブ19から冷媒流
制御板18の上面に落下した凝縮液は、冷媒流制御板1
8の凝縮液通路23に沿って左右両側へ流れ、下部タン
ク17内に開口する液流入口22より液戻り通路9へ流
入し、更に連通路11を通って冷媒室8へ還流する。
Since the refrigerant flow control plate 18 covers the upper part of the vapor outlet 21 and the heat insulating passage 10 in the lower tank 17, the condensed liquid dropped from the heat radiation tube 19 falls to the vapor outlet 21. Can be prevented. Also,
Since the refrigerant flow control plate 18 is provided lower on both sides than the center in the left-right direction and lower on the center than both sides in the front-rear direction, the upper surface of the refrigerant flow control plate 18 A condensed liquid passage 23 is formed at the center portion, which is inclined to both sides in the left-right direction. As a result, the condensed liquid that has fallen from the heat radiating tube 19 onto the upper surface of the refrigerant flow control plate 18 is
8, flows into the left and right sides along the condensed liquid passage 23, flows into the liquid return passage 9 through the liquid inflow port 22 opened in the lower tank 17, and then returns to the refrigerant chamber 8 through the communication passage 11.

【0016】(実施例の効果)本実施例では、下部タン
ク17内に配置した冷媒流制御板18によって、放熱チ
ューブ19から滴下した凝縮液が蒸気流出口21へ落下
することを防止でき、且つ放熱チューブ19から滴下し
た凝縮液が冷媒流制御板18の上面に形成された凝縮液
通路23に沿って液流入口22へ流れ込むことができ
る。これにより、冷媒室8での冷媒蒸気と凝縮液との干
渉を防止できるとともに、下部タンク17内で蒸気流出
口21より流出する冷媒蒸気によって凝縮液が吹き上げ
られることはなく、凝縮液が効率良く冷媒室8へ還流で
きるため、冷媒の循環性が向上して沸騰面でのバーンア
ウトを抑制できる。
(Effects of Embodiment) In this embodiment, the refrigerant flow control plate 18 disposed in the lower tank 17 can prevent the condensed liquid dropped from the heat radiation tube 19 from dropping to the vapor outlet 21. The condensed liquid dropped from the heat radiation tube 19 can flow into the liquid inlet 22 along the condensed liquid passage 23 formed on the upper surface of the refrigerant flow control plate 18. Thereby, the interference between the refrigerant vapor and the condensed liquid in the refrigerant chamber 8 can be prevented, and the condensed liquid is not efficiently blown up by the refrigerant vapor flowing out from the vapor outlet 21 in the lower tank 17, so that the condensed liquid can be efficiently produced. Since the refrigerant can be returned to the refrigerant chamber 8, the circulation of the refrigerant is improved, and burnout on the boiling surface can be suppressed.

【0017】特に、冷媒槽3を薄型化した場合は、冷媒
室8の沸騰面が沸騰に必要充分な液冷媒で満たされ難く
なり、沸騰面のバーンアウトによる放熱性能の低下を生
じ易くなる。従って、本実施例の薄型化した冷媒槽3で
は、冷媒流制御板18によって冷媒の循環性を向上し、
冷媒室8に凝縮液を戻り易くできる効果は大きいと言え
る。また、1枚の冷媒流制御板18によって、凝縮液が
蒸気流出口21より冷媒室8へ流れ込むことを防止で
き、且つ凝縮液を液流入口22へ導く凝縮液通路23を
形成できるので、本実施例の効果(冷媒室8での凝縮液
と冷媒蒸気との干渉を防止でき、冷媒の循環性を向上で
きる)を、簡単な構成により、且つ低コストで実現でき
る。
In particular, when the thickness of the refrigerant tank 3 is reduced, the boiling surface of the refrigerant chamber 8 becomes difficult to be filled with the liquid refrigerant necessary and sufficient for the boiling, and the heat radiation performance is easily deteriorated due to the burnout of the boiling surface. Therefore, in the thinned refrigerant tank 3 of the present embodiment, the refrigerant flow control plate 18 improves the circulation of the refrigerant,
It can be said that the effect of easily returning the condensed liquid to the refrigerant chamber 8 is great. Further, the condensed liquid can be prevented from flowing into the refrigerant chamber 8 from the vapor outlet 21 by the single refrigerant flow control plate 18 and the condensed liquid passage 23 for guiding the condensed liquid to the liquid inlet 22 can be formed. The effects of the embodiment (the interference between the condensed liquid and the refrigerant vapor in the refrigerant chamber 8 can be prevented and the circulation of the refrigerant can be improved) can be realized with a simple configuration and at low cost.

【0018】以下に、冷媒流制御板18の変形例を示
す。 a)図4に示す冷媒流制御板18は、左右両端に下方へ
延びる端板18bを設けたもので、端板18bの下端と
第4仕切壁15の上端面との間には、冷媒蒸気が流出で
きる隙間が確保される。この場合、冷媒流制御板18の
凝縮液通路23を流れてきた凝縮液を端板18bに沿っ
て、より確実に液流入口22へ導くことができる。
Hereinafter, a modified example of the refrigerant flow control plate 18 will be described. a) The refrigerant flow control plate 18 shown in FIG. 4 is provided with end plates 18b extending downward at both left and right ends, and a refrigerant vapor is provided between a lower end of the end plate 18b and an upper end surface of the fourth partition wall 15. A gap through which water can flow out is secured. In this case, the condensed liquid flowing through the condensed liquid passage 23 of the refrigerant flow control plate 18 can be more reliably guided to the liquid inlet 22 along the end plate 18b.

【0019】b)図5に示す冷媒流制御板18は、前後
方向の中央部を溝状に窪ませることにより凝縮液通路2
3を形成している。 c)図6に示す冷媒流制御板18は、前後方向の中央部
を一定の幅で窪ませることにより凝縮液通路23を形成
している。 d)図7に示す冷媒流制御板18は、全体を円弧状に湾
曲させて凝縮液通路23を形成している。
B) The refrigerant flow control plate 18 shown in FIG.
3 is formed. c) The refrigerant flow control plate 18 shown in FIG. 6 forms the condensed liquid passage 23 by depressing a central portion in the front-rear direction with a constant width. d) The refrigerant flow control plate 18 shown in FIG. 7 has a condensed liquid passage 23 formed by curving the whole in an arc shape.

【0020】e)図8に示す冷媒流制御板18は、凝縮
液通路23を幅広く形成し、且つ左右方向の両側で凝縮
液通路23の幅を次第に狭くなるように絞ることによ
り、凝縮液通路23を流れてきた凝縮液を液流入口22
へ流れ込み易くしている。 f)図9に示す冷媒流制御板18は、前後方向の両側に
蒸気を通すための開口部18dを設けている。 g)図10に示す冷媒流制御板18は、前後方向の中央
部より両側を低く形成して凝縮液通路23としたもので
ある。
E) The refrigerant flow control plate 18 shown in FIG. 8 forms the condensate passage 23 wide and narrows the condensate passage 23 on both sides in the left-right direction so that the condensate passage 23 gradually narrows. The condensate flowing through the liquid inlet 22
It is easy to flow into. f) The refrigerant flow control plate 18 shown in FIG. 9 has openings 18d for passing steam on both sides in the front-rear direction. g) The refrigerant flow control plate 18 shown in FIG. 10 has a condensed liquid passage 23 formed on both sides lower than the center in the front-rear direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】沸騰冷却装置の正面図である。FIG. 1 is a front view of a boiling cooling device.

【図2】沸騰冷却装置の側面図である。FIG. 2 is a side view of the boiling cooling device.

【図3】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 3 is a perspective view (a) and a sectional view (b) of a refrigerant flow control plate.
It is.

【図4】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 4 is a perspective view (a) and a sectional view (b) of a refrigerant flow control plate.
It is.

【図5】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 5 is a perspective view (a) and a cross-sectional view (b) of a refrigerant flow control plate.
It is.

【図6】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 6 is a perspective view (a) and a sectional view (b) of a refrigerant flow control plate.
It is.

【図7】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 7 is a perspective view (a) and a cross-sectional view (b) of a refrigerant flow control plate.
It is.

【図8】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 8 is a perspective view (a) and a sectional view (b) of a refrigerant flow control plate.
It is.

【図9】冷媒流制御板の斜視図(a)及び断面図(b)
である。
FIG. 9 is a perspective view (a) and a sectional view (b) of a refrigerant flow control plate.
It is.

【図10】下部タンクの内部を示す断面図である。FIG. 10 is a sectional view showing the inside of a lower tank.

【図11】沸騰冷却装置の正面断面図である(従来技
術)。
FIG. 11 is a front sectional view of a boiling cooling device (prior art).

【符号の説明】[Explanation of symbols]

1 沸騰冷却装置 2 発熱体 8 冷媒室 9 液戻り通路(還流通路) 11 連通路(還流通路) 17 下部タンク(連結タンク) 18 冷媒流制御板(冷媒流制御手段) 19 放熱チューブ(冷媒通路) 21 蒸気流出口 22 液流入口 23 凝縮液通路 REFERENCE SIGNS LIST 1 boiling cooling device 2 heating element 8 refrigerant chamber 9 liquid return passage (return passage) 11 communication passage (return passage) 17 lower tank (connection tank) 18 refrigerant flow control plate (refrigerant flow control means) 19 heat radiation tube (refrigerant passage) 21 Vapor outlet 22 Liquid inlet 23 Condensate passage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】発熱体の熱を受けて沸騰する液冷媒を貯留
する冷媒室と、 この冷媒室で沸騰した冷媒蒸気が流出する蒸気流出口
と、 この蒸気流出口より流出した冷媒蒸気が流れ込む冷媒通
路を有し、この冷媒通路を流れる冷媒蒸気を外部流体と
の熱交換によって冷却する放熱部と、 この放熱部で冷却され液化した凝縮液が流れ込む液流入
口と、 この液流入口より流入した凝縮液を前記冷媒室へ還流さ
せる還流通路と、 前記放熱部と前記冷媒室及び前記還流通路との間に設け
られて、前記冷媒通路と前記冷媒室及び前記還流通路と
を連通する連結タンクと、 この連結タンク内に設けられ、前記放熱部より滴下する
凝縮液の流れを制御する冷媒流制御手段とを有し、 前記蒸気流出口と前記液流入口は、共に前記連結タンク
内に開口し、 前記冷媒流制御手段は、前記連結タンク内で前記蒸気流
出口の上方を覆うとともに、前記放熱部より前記冷媒流
制御手段の上面に滴下した凝縮液を前記液流入口へ導く
凝縮液通路を形成していることを特徴とする沸騰冷却装
置。
1. A refrigerant chamber for storing a liquid refrigerant that boils by receiving heat from a heating element, a vapor outlet from which refrigerant vapor boiling in the refrigerant chamber flows out, and a refrigerant vapor flowing out from the vapor outlet flows into the refrigerant chamber. A radiator that has a refrigerant passage and cools the refrigerant vapor flowing through the refrigerant passage by heat exchange with an external fluid; a liquid inlet into which condensed liquid cooled and liquefied by the heat radiator flows; A recirculation passage for recirculating the condensed liquid to the refrigerant chamber; and a connection tank provided between the heat dissipating part, the refrigerant chamber, and the recirculation passage, and communicating the refrigerant passage with the refrigerant chamber and the recirculation passage. And a refrigerant flow control means provided in the connection tank and controlling the flow of condensed liquid dropped from the heat radiating portion, wherein the vapor outlet and the liquid inlet both open into the connection tank. And the cold The flow control means covers the upper part of the vapor outlet in the connection tank, and forms a condensate passage for guiding the condensate dropped from the radiator to the upper surface of the refrigerant flow control means to the liquid inlet. A boiling cooling device.
【請求項2】前記冷媒室は、左右方向の幅に対し前後方
向の厚みが薄い偏平形状に設けられて、前記冷媒室の前
後両面または片面に前記発熱体が取り付けられ、 前記液流入口及び前記還流通路は、前記冷媒室の左右両
側に設けられていることを特徴とする請求項1に記載し
た沸騰冷却装置。
2. The refrigerant chamber is provided in a flat shape having a small thickness in the front-rear direction with respect to a width in the left-right direction, and the heating element is attached to both front and rear surfaces or one surface of the refrigerant chamber; 2. The boiling cooling device according to claim 1, wherein the return passage is provided on both left and right sides of the refrigerant chamber. 3.
【請求項3】前記冷媒流制御手段は、前後方向では中央
部が低く、断面凹形状に設けられることで前記凝縮液通
路を形成していることを特徴とする請求項1及び2に記
載した沸騰冷却装置。
3. The refrigerant flow control means according to claim 1, wherein the condensate passage is formed by being provided with a concave portion in a cross section at a center portion in the front-rear direction. Boiling cooling device.
【請求項4】前記冷媒流制御手段は、左右方向では中央
部が最も高く、左右両側へ向かって次第に低くなる傾斜
面を有していることを特徴とする請求項1〜3に記載し
た沸騰冷却装置。
4. The boiling method according to claim 1, wherein said refrigerant flow control means has an inclined surface which is highest at a central portion in the left-right direction and gradually becomes lower toward both left and right sides. Cooling system.
JP11007498A 1998-06-30 1999-01-14 Boiling and cooling device Pending JP2000266482A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11007498A JP2000266482A (en) 1999-01-13 1999-01-14 Boiling and cooling device
US09/333,151 US6257324B1 (en) 1998-06-30 1999-06-14 Cooling apparatus boiling and condensing refrigerant
EP99111978A EP0969261B1 (en) 1998-06-30 1999-06-28 Cooling apparatus using boiling and condensing refrigerant
DE69914675T DE69914675T2 (en) 1998-06-30 1999-06-28 Cooling device with boiling and condensing coolant
KR1019990025393A KR100330398B1 (en) 1998-06-30 1999-06-29 Cooling apparatus boiling and condensing refrigerant
US09/779,141 US6857466B2 (en) 1998-06-30 2001-02-08 Cooling apparatus boiling and condensing refrigerant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP693499 1999-01-13
JP11-6934 1999-01-13
JP11007498A JP2000266482A (en) 1999-01-13 1999-01-14 Boiling and cooling device

Publications (1)

Publication Number Publication Date
JP2000266482A true JP2000266482A (en) 2000-09-29

Family

ID=26341158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11007498A Pending JP2000266482A (en) 1998-06-30 1999-01-14 Boiling and cooling device

Country Status (1)

Country Link
JP (1) JP2000266482A (en)

Similar Documents

Publication Publication Date Title
US6360814B1 (en) Cooling device boiling and condensing refrigerant
JP2003130561A (en) Boiling cooler
US6341646B1 (en) Cooling device boiling and condensing refrigerant
JP2000065456A (en) Ebullient cooler
US6321831B1 (en) Cooling apparatus using boiling and condensing refrigerant
WO2011114616A1 (en) Ebullient cooling device
JP3924674B2 (en) Boiling cooler for heating element
JP2000266482A (en) Boiling and cooling device
JP3810119B2 (en) Boiling cooler
JP2001028415A (en) Boiling and cooling device
JP3890795B2 (en) Boiling cooler
JP2000049265A (en) Boiling cooler
JP2000205721A (en) Evaporative cooling device
JP2000156445A (en) Boiling cooling device
JP7299441B1 (en) boiling cooler
JP3975252B2 (en) Boiling cooler for electric vehicles
JP2001068611A (en) Boiling cooler
JP4253987B2 (en) Boiling cooler
JP2000205769A (en) Evaporative cooling apparatus
JP2001116474A (en) Ebullient cooling device
JP2000111225A (en) Boiling cooling system
JP2000065454A (en) Ebullient cooler
JPH09205167A (en) Boiling cooling device
JP2000269393A (en) Boiling/cooling device
JP2000022377A (en) Boiling cooler