JP2000265979A5 - - Google Patents

Download PDF

Info

Publication number
JP2000265979A5
JP2000265979A5 JP1999066194A JP6619499A JP2000265979A5 JP 2000265979 A5 JP2000265979 A5 JP 2000265979A5 JP 1999066194 A JP1999066194 A JP 1999066194A JP 6619499 A JP6619499 A JP 6619499A JP 2000265979 A5 JP2000265979 A5 JP 2000265979A5
Authority
JP
Japan
Prior art keywords
tapered surface
piston
clearance
lubricating oil
pressure action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1999066194A
Other languages
Japanese (ja)
Other versions
JP4288741B2 (en
JP2000265979A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP06619499A priority Critical patent/JP4288741B2/en
Priority claimed from JP06619499A external-priority patent/JP4288741B2/en
Publication of JP2000265979A publication Critical patent/JP2000265979A/en
Publication of JP2000265979A5 publication Critical patent/JP2000265979A5/ja
Application granted granted Critical
Publication of JP4288741B2 publication Critical patent/JP4288741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

駆動軸5の回転により、ピストン6はブレード6aを介してガイド9の回転中心位置を支点に揺動運動するようにシリンダ室4aの内壁に沿って公転し、この公転により吸入口4bから吸入した冷媒ガス等の圧縮性流体を圧縮し、吐出口4cから吐出するように構成されている。この時、図8及び図9に示される如くピストン6の上下両端面6b、6cの内周面6g側に面取り形成された上側テーパ面6dおよび下側テーパ面6eは、下側テーパ面6eに上側テーパ面6dよりも潤滑油14の動圧作用が大きく影響するように、互いに上下でアンバランスなテーパ面形状に形成されている。つまり、下側テーパ面6eは、潤滑油の動圧作用を受け易くする為に上側テーパ面6dのテーパ角を同一のままでその外端を該上側テーパ面6dよりもピストン6の外周面6f側に近付けて面積を大きくしている。従って、ピストン6の公転運動時に潤滑油14の動圧作用により下側テーパ面6eを介して下側クリアランス19に入り込んだ潤滑油14がピストン6を自重に抗して浮上させるようなくさび効果の役目をなして、上記上側クリアランス18および下側クリアランス19はほぼ均等になる。
これにより、圧縮室8から低圧室7への冷媒ガスの内部漏れ量は理論上δの半分をそれぞれ3乗した和、つまり(δ/2) ×2=(1/4)δ となり、下側クリアランス19がほとんど無く上側クリアランス18がほぼδとなる状態での漏れ量(=δ )のほぼ4分の1となるので、冷媒ガスの漏れの少ない高効率な圧縮機が得られる。
加えて、ピストン6の下側テーパ面6eに入り込んだ潤滑油14の大きな動圧作用によって自重に抗して浮上するピストン6の浮上過多を、上側テーパ面6dに入り込んだ潤滑油14の小さな動圧作用によって抑制し、上側クリアランス18および下側クリアランス19の均等化をより正確に行うことが可能となる。つまりピストン6の挙動を安定化させることができる。
尚、『機械工学便覧』(昭和62年4月15日 日本機械学会発行)のB5−159頁の図373及びその説明に、ピストンとブレードが一体化されて、ピストンが揺動運動することにより、シリンダ内をピストンが偏心回転運動する前記ブレード一体ピストン型のロータリ圧縮機と類似の構造が記載されている。
Due to the rotation of the drive shaft 5, the piston 6 revolves along the inner wall of the cylinder chamber 4a so as to swing around the rotation center position of the guide 9 via the blade 6a, and is sucked from the suction port 4b by this rotation. It is configured to compress a compressible fluid such as a refrigerant gas and discharge it from the discharge port 4c. At this time, as shown in FIGS. 8 and 9, the upper tapered surface 6d and the lower tapered surface 6e formed by chamfering on the inner peripheral surface 6g side of the upper and lower end surfaces 6b and 6c of the piston 6 are formed on the lower tapered surface 6e. The lubricating oil 14 is formed into an unbalanced tapered surface shape on the upper and lower sides so that the dynamic pressure action of the lubricating oil 14 has a greater effect than the upper tapered surface 6d. That is, the lower tapered surface 6e has the same taper angle of the upper tapered surface 6d and its outer end is closer to the outer peripheral surface 6f of the piston 6 than the upper tapered surface 6d in order to make it more susceptible to the dynamic action of the lubricating oil. The area is increased by approaching the side. Therefore, when the piston 6 revolves, the lubricating oil 14 that has entered the lower clearance 19 through the lower tapered surface 6e due to the dynamic pressure action of the lubricating oil 14 has a rust effect so as to lift the piston 6 against its own weight. The upper clearance 18 and the lower clearance 19 serve to be substantially equal.
As a result, the amount of internal leakage of the refrigerant gas from the compression chamber 8 to the low pressure chamber 7 is theoretically the sum of half of δ squared, that is, (δ / 2) 3 × 2 = (1/4) δ 3 . Since the amount of leakage (= δ 3 ) when the lower clearance 19 is almost nonexistent and the upper clearance 18 is approximately δ is approximately one-fourth, a highly efficient compressor with less leakage of refrigerant gas can be obtained.
In addition, the excessive floating of the piston 6 that rises against its own weight due to the large dynamic pressure action of the lubricating oil 14 that has entered the lower tapered surface 6e of the piston 6 causes the small movement of the lubricating oil 14 that has entered the upper tapered surface 6d. It is suppressed by the pressure action, and it becomes possible to more accurately equalize the upper clearance 18 and the lower clearance 19. That is, the behavior of the piston 6 can be stabilized.
In addition, in Fig. 373 and its explanation on page B5-159 of "Mechanical Engineering Handbook" (published by the Japan Society of Mechanical Engineering on April 15, 1987), the piston and the blade are integrated, and the piston swings. , A structure similar to that of the blade-integrated piston type rotary compressor in which the piston eccentrically rotates in the cylinder is described.

【0004】
【発明が解決しようとする課題】
図5、図6、図7、図8、図9に示す従来のブレード一体ピストン型のロータリ圧縮機においては、上記のようにピストン6の上下両端面6b、6cの内周面6g側に面取り形成された上側テーパ面6dおよび下側テーパ面6eは、下側テーパ面6eに上側テーパ面6dよりも潤滑油14の動圧作用が大きく影響するように、互いに上下でアンバランスなテーパ面形状に形成されている。つまり、下側テーパ面6eは、潤滑油14の動圧作用を受け易くする為に上側テーパ面6dのテーパ角を同一のままでその外端を該上側テーパ面6dよりもピストン6の外周面6f側に近付けて面積を大きくしているので、ピストン6の公転運動時に潤滑油14の動圧作用により下側テーパ面6eを介して下側クリアランス19に入り込んだ潤滑油14がピストン6を自重に抗して浮上させるようなくさび効果の役目をなして、上記上側クリアランス18および下側クリアランス19はほぼ均等になる。
これにより、圧縮室8から低圧室7への冷媒ガスの内部漏れ量はδの半分をそれぞれ3乗した和、つまり(δ/2) ×2=(1/4)δ となり、下側クリアランス19がほとんど無く上側クリアランス18がほぼδとなる状態での漏れ量(=δ )のほぼ4分の1となるので、冷媒ガスの漏れの少ない高効率な圧縮機が得られる。
加えて、ピストン6の下側テーパ面6eに入り込んだ潤滑油14の大きな動圧作用によって自重に抗して浮上するピストン6の浮上過多を、上側テーパ面6dに入り込んだ潤滑油14の小さな動圧作用によって抑制し、上側クリアランス18および下側クリアランス19の均等化をより正確に行うことが可能となる。つまりピストン6の挙動を安定化させることができる。
0004
[Problems to be Solved by the Invention]
In the conventional blade-integrated piston type rotary compressor shown in FIGS. 5, 6, 7, 8 and 9, chamfering is performed on the inner peripheral surfaces 6g side of the upper and lower end surfaces 6b and 6c of the piston 6 as described above. The formed upper tapered surface 6d and lower tapered surface 6e have an unbalanced tapered surface shape on the upper and lower sides so that the dynamic pressure action of the lubricating oil 14 has a greater effect on the lower tapered surface 6e than the upper tapered surface 6d. Is formed in. That is, in order to make the lower tapered surface 6e more susceptible to the dynamic pressure action of the lubricating oil 14, the outer end of the lower tapered surface 6d is the outer peripheral surface of the piston 6 rather than the upper tapered surface 6d while keeping the taper angle of the upper tapered surface 6d the same. Since the area is increased by approaching the 6f side, the lubricating oil 14 that has entered the lower clearance 19 through the lower tapered surface 6e due to the dynamic pressure action of the lubricating oil 14 during the revolving motion of the piston 6 makes the piston 6 its own weight. The upper clearance 18 and the lower clearance 19 are substantially equal to each other, acting as a rust effect so as to float against the surface.
As a result, the amount of internal leakage of the refrigerant gas from the compression chamber 8 to the low pressure chamber 7 is the sum of half of δ squared, that is, (δ / 2) 3 × 2 = (1/4) δ 3 , which is the lower side. Since the amount of leakage (= δ 3 ) is about one-fourth of the state where there is almost no clearance 19 and the upper clearance 18 is approximately δ, a highly efficient compressor with little leakage of refrigerant gas can be obtained.
In addition, the excessive floating of the piston 6 that rises against its own weight due to the large dynamic pressure action of the lubricating oil 14 that has entered the lower tapered surface 6e of the piston 6 causes the small movement of the lubricating oil 14 that has entered the upper tapered surface 6d. It is suppressed by the pressure action, and it becomes possible to more accurately equalize the upper clearance 18 and the lower clearance 19. That is, the behavior of the piston 6 can be stabilized.

JP06619499A 1999-03-12 1999-03-12 Rotary compressor Expired - Lifetime JP4288741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06619499A JP4288741B2 (en) 1999-03-12 1999-03-12 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06619499A JP4288741B2 (en) 1999-03-12 1999-03-12 Rotary compressor

Publications (3)

Publication Number Publication Date
JP2000265979A JP2000265979A (en) 2000-09-26
JP2000265979A5 true JP2000265979A5 (en) 2006-02-02
JP4288741B2 JP4288741B2 (en) 2009-07-01

Family

ID=13308810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06619499A Expired - Lifetime JP4288741B2 (en) 1999-03-12 1999-03-12 Rotary compressor

Country Status (1)

Country Link
JP (1) JP4288741B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016452A1 (en) * 2009-08-06 2011-02-10 ダイキン工業株式会社 Compressor
JP5789787B2 (en) * 2010-08-02 2015-10-07 パナソニックIpマネジメント株式会社 Multi-cylinder compressor
KR20130083998A (en) * 2012-01-16 2013-07-24 삼성전자주식회사 Rotary compressor
CN104196726B (en) * 2014-08-22 2016-04-20 广东美芝制冷设备有限公司 Rotary compressor
CN104196728B (en) * 2014-08-22 2016-04-20 广东美芝制冷设备有限公司 Rotary compressor
CN105952649B (en) * 2016-06-17 2018-03-23 广东美芝制冷设备有限公司 Compressor
CN108194356B (en) * 2017-12-18 2023-10-03 珠海格力电器股份有限公司 Pump body and compressor
CN113623218B (en) * 2021-09-07 2023-08-29 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly and compressor

Similar Documents

Publication Publication Date Title
KR102051094B1 (en) Scroll compressor
JP6979703B2 (en) Hydraulic system
JP2000265979A5 (en)
JPH0151910B2 (en)
JP5644494B2 (en) Compressor
JP2011179453A (en) Rotary compressor device
JP4288741B2 (en) Rotary compressor
JP2012154235A (en) Rotary compressor
KR102288429B1 (en) Rotary Compressor
JPH07180682A (en) Oscillating rotary compressor
JPS60259790A (en) Rotary compressor
JP2502894Y2 (en) Oil pump relief valve structure
JPS62291401A (en) Scroll type fluid machine
JPS62126203A (en) Scroll hydraulic machine
JP2537523Y2 (en) Rolling piston type compressor
WO2016151769A1 (en) Hermetic rotary compressor
KR102083968B1 (en) Scroll compressor
JPS6120317Y2 (en)
JPS6321756Y2 (en)
JPH0113828Y2 (en)
KR100235857B1 (en) An oldham coupling ring of scroll compressor
JPH0113827Y2 (en)
JP3071965B2 (en) Variable displacement vane pump
JPH0683977U (en) Vane type fluid machinery
JPH036356B2 (en)