JP2012154235A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2012154235A
JP2012154235A JP2011013611A JP2011013611A JP2012154235A JP 2012154235 A JP2012154235 A JP 2012154235A JP 2011013611 A JP2011013611 A JP 2011013611A JP 2011013611 A JP2011013611 A JP 2011013611A JP 2012154235 A JP2012154235 A JP 2012154235A
Authority
JP
Japan
Prior art keywords
cylinder
vane
chamber
rotary compressor
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011013611A
Other languages
Japanese (ja)
Inventor
Takeshi Karino
健 苅野
Daisuke Funakoshi
大輔 船越
Noboru Iida
飯田  登
Hirofumi Yoshida
裕文 吉田
Shingo Oyagi
信吾 大八木
Hiroaki Nakai
啓晶 中井
Ryuichi Ono
竜一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011013611A priority Critical patent/JP2012154235A/en
Publication of JP2012154235A publication Critical patent/JP2012154235A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotary compressor that reduces power loss to be caused by a change in compression volume during capacity adjustment by controlling compression of refrigerant gas before the intake of the refrigerant gas is cut off.SOLUTION: The rotary compressor includes a cylinder 5, a shaft 4 having an eccentric part, a piston 9 which is fitted to an eccentric part of the shaft 4 and revolves in a cylinder chamber 6, a vane 11 which partitions the cylinder chamber 6 into an intake chamber 12 with an opened intake port 17 and a compression chamber 13, and a vane groove 10 which is formed in the cylinder 5 and includes the reciprocating vane 11. A tip of the vane 11 is rockably fitted and connected to the piston 9. A refrigerant gas releasing means for moving the suction cut-off position of refrigerant gas to be sucked from the intake port 17 to the compression chamber 13 side is provided to control the compression of the refrigerant gas. Thus, the power loss caused by the change in the compression volume during the capacity adjustment can be reduced thereby.

Description

本発明は、冷蔵庫、空気調和装置に組み込まれることが可能な回転式圧縮機に関するものである。   The present invention relates to a rotary compressor that can be incorporated into a refrigerator and an air conditioner.

一般に、この種のロータリ圧縮機は、機種により所定の圧縮能力を設定しており、能力の増減に対しては、同一寸法のシリンダーに、偏心量の異なるシャフトと外径の異なるピストンを組み合わせて能力の調整を行っている。ところがこの場合には、シリンダーを共通にできるが、シャフトとピストンの種類が増えて部品の管理が煩雑になるし、製造組立ラインの段取り替えなどが必要となって、コストアップになる問題があった。   In general, this type of rotary compressor has a predetermined compression capacity depending on the model. To increase or decrease the capacity, a cylinder with the same size is combined with a piston with a different eccentric amount and a piston with a different outer diameter. The ability is adjusted. However, in this case, the cylinders can be shared, but the types of shafts and pistons increase, so the management of parts becomes complicated, and it is necessary to change the manufacturing assembly line, which increases costs. It was.

そこで、従来では特開昭58−70089号公報に記載されているように、シリンダー、主軸受けおよび副軸受けのうちの1つに、冷媒ガスの圧縮行程において圧縮室と吸入室とを連通するバイパス溝を設けて、その長さの変化により能力を調整する方法が知られている。この能力調整方法は、図6及び図7に示すように、密閉容器1に電動機部と、電動機部によって駆動される圧縮機構部が収納されており、圧縮機構部は、シリンダー5と、このシリンダー5の両端面に締結されてシリンダー室6を形成する主軸受け7及び副軸受け8と、この主軸受け7と副軸受け8との間に偏心部を設けたシャフト4と、シャフト4の偏心部に嵌合されてシリンダー室6内を公転運動するピストン9と、シリンダー5の半径方向に形成されるベーン溝10内を往復運動するベーン11とで構成され、ベーン11の先端部をピストン9の外周面に当接させて、シリンダー室6内に、ベーン11によって仕切られた吸入室12と圧縮室13を形成するように構成されたロータリ圧縮機において、シリンダー5、主軸受け7及び副軸受け8のうちの1つに、吸入ポート17より吸入される冷媒ガスの吸入閉じ切り位置を、圧縮室13側に移動させる冷媒ガスのバイパス溝Xを設けたものである。これにより、シャフト4の回転に伴ってシリンダー室6内を公転運動するピストン9の外周面がシリンダー5の内周面と接触する接触点201が上記バイパス溝Xに位置すると、吸入室12と圧縮室13は連通した状態となり、吸入ポート17から吸入された冷媒ガスは閉じ切られず、上記バイパス溝Xを通過した後に、冷媒ガスの吸入が閉じ切られて圧縮室13が密閉空間となり、冷媒ガスは容積変化によって圧縮されて高温高圧となり、圧縮室13より吐出ポート18、吐出マフラー室19を経て、密閉容器1内に吐出される。従って、シリンダー、主軸受けおよび副軸受けのうちの1つに設けた上記冷媒ガスのバイパス溝の長さを変化させることにより、吸入ポートから吸入された冷媒ガスの閉じ切り位置を圧縮室側へ任意に変化させ、圧縮容積の変化により能力の調整を行うのである。   Therefore, conventionally, as described in Japanese Patent Application Laid-Open No. 58-70089, one of a cylinder, a main bearing, and a sub-bearing is connected to a bypass that communicates the compression chamber and the suction chamber in the refrigerant gas compression stroke. A method is known in which a groove is provided and the capacity is adjusted by changing the length of the groove. As shown in FIGS. 6 and 7, this capacity adjustment method includes a sealed container 1 in which an electric motor unit and a compression mechanism unit driven by the electric motor unit are housed. The compression mechanism unit includes a cylinder 5 and the cylinder. 5, a main bearing 7 and a sub-bearing 8 which are fastened to both end surfaces to form a cylinder chamber 6, a shaft 4 provided with an eccentric portion between the main bearing 7 and the sub-bearing 8, and an eccentric portion of the shaft 4. It is composed of a piston 9 that revolves in the cylinder chamber 6 and a vane 11 that reciprocates in a vane groove 10 formed in the radial direction of the cylinder 5, and the tip of the vane 11 is the outer periphery of the piston 9. In a rotary compressor configured to form a suction chamber 12 and a compression chamber 13 partitioned by a vane 11 in a cylinder chamber 6 in contact with a surface, a cylinder 5, a main bearing 7 and a sub-compression To one of receiving 8, is provided with a suction closed-away position of the refrigerant gas sucked from the suction port 17, the bypass channel X of the refrigerant gas is moved to the compression chamber 13 side. Thus, when the contact point 201 where the outer peripheral surface of the piston 9 revolving in the cylinder chamber 6 with the rotation of the shaft 4 comes into contact with the inner peripheral surface of the cylinder 5 is located in the bypass groove X, the suction chamber 12 is compressed. The chamber 13 is in a communicating state, the refrigerant gas sucked from the suction port 17 is not closed, and after passing through the bypass groove X, the suction of the refrigerant gas is closed and the compression chamber 13 becomes a sealed space. Is compressed by the volume change to become high temperature and high pressure, and is discharged from the compression chamber 13 through the discharge port 18 and the discharge muffler chamber 19 into the sealed container 1. Therefore, by changing the length of the bypass groove for the refrigerant gas provided in one of the cylinder, the main bearing, and the sub-bearing, the closing position of the refrigerant gas sucked from the suction port can be arbitrarily set to the compression chamber side. The capacity is adjusted by changing the compression volume.

特開昭58−70089号公報JP 58-70089 A

しかしながら、図6及び図7で示したロータリ圧縮機では、シャフト4に設けられたオイルポンプによって、密閉容器底部のオイル溜り内のオイルが吸引されてシャフト4に設けられた中空孔を通り、圧縮機構部内の摺動面に給油されて潤滑する構成としているため、シャフト4の偏心部とピストン9の内周面との摺動面に介在するオイルの粘性により、シャフト4の回転に伴ってピストン9はシャフト4の回転方向に自転するので、バイパス溝Xが上記接触点201に位置して吸入室12と圧縮室13とが連通しているときに、ピ
ストン9の外周面及び端面で吸入室12から圧縮室13への冷媒ガスの粘性流れが誘起されて、バイパス溝Xを通過する冷媒ガスの流れを阻害し、上記接触点201がバイパス溝Xを通過する前に冷媒ガスが圧縮を開始する問題があった。即ち、冷媒ガスの吸入が閉じ切る前に圧縮を開始した圧縮室13内の冷媒ガスがバイパス溝Xを通過して吸入室12側へ漏れるため、比較的大きな動力ロスが生じていた。
However, in the rotary compressor shown in FIGS. 6 and 7, the oil in the oil reservoir at the bottom of the sealed container is sucked by the oil pump provided in the shaft 4 and compressed through the hollow hole provided in the shaft 4. Since the sliding surface in the mechanism portion is lubricated and lubricated, the piston is rotated with the rotation of the shaft 4 due to the viscosity of the oil present in the sliding surface between the eccentric portion of the shaft 4 and the inner peripheral surface of the piston 9. 9 rotates in the rotation direction of the shaft 4, and therefore, when the bypass groove X is located at the contact point 201 and the suction chamber 12 and the compression chamber 13 communicate with each other, the suction chamber is formed on the outer peripheral surface and the end surface of the piston 9. The viscous flow of the refrigerant gas from 12 to the compression chamber 13 is induced to inhibit the flow of the refrigerant gas passing through the bypass groove X, and the refrigerant gas is pressurized before the contact point 201 passes through the bypass groove X. There is a problem to start. That is, the refrigerant gas in the compression chamber 13 that started compression before the suction of the refrigerant gas is completely closed passes through the bypass groove X and leaks to the suction chamber 12 side, so that a relatively large power loss has occurred.

また、シリンダー5に設けられた吸入ポート17の近傍には、シリンダー5の両端面に主軸受け7及び副軸受け8を締結するための締結ボルトが位置するため、シリンダー5の内周面に設けるバイパス溝Xの深さには制限があったし、主軸受け7及び副軸受け8にバイパス溝Xを設ける場合も、主軸受け7及び副軸受け8の端板を厚くすると材料コストが高くなるので、シリンダー室6内の変形が許容される範囲内にバイパス溝Xの深さも制限されていた。   Further, in the vicinity of the suction port 17 provided in the cylinder 5, fastening bolts for fastening the main bearing 7 and the sub-bearing 8 are located on both end faces of the cylinder 5, so that a bypass provided on the inner peripheral surface of the cylinder 5. The depth of the groove X is limited, and even when the bypass groove X is provided in the main bearing 7 and the sub-bearing 8, if the end plates of the main bearing 7 and the sub-bearing 8 are thickened, the material cost increases, so the cylinder The depth of the bypass groove X is also limited within a range in which the deformation in the chamber 6 is allowed.

本発明は前記従来技術の課題を解決するもので、ピストンの外周面及び端面で誘起される吸入室から圧縮室への冷媒ガスの粘性流れを軽減することにより、冷媒ガスの吸入が閉じ切る前の、冷媒ガスの圧縮を抑制して、圧縮容積の変化による能力調整時に生じる動力ロスが小さい回転式圧縮機を提供することを目的とする。   The present invention solves the problems of the prior art, and reduces the viscous flow of refrigerant gas from the suction chamber to the compression chamber induced on the outer peripheral surface and end surface of the piston before the refrigerant gas suction is completely closed. An object of the present invention is to provide a rotary compressor that suppresses the compression of refrigerant gas and has a small power loss that occurs when adjusting the capacity by changing the compression volume.

前記従来技術の課題を解決するために、本発明の回転式圧縮機は、シリンダーと、シリンダーの両端面に締結されてシリンダー室を形成する主軸受け及び副軸受けと、主軸受けと副軸受けとの間に偏心部を設けたシャフトと、シャフトの偏心部に嵌合されてシリンダー室内を公転運動するピストンと、シリンダー室内を吸入ポートが開口する吸入室と圧縮室に仕切るベーンと、シリンダーに形成され、ベーンが往復運動するベーン溝を有し、ベーンの先端部をピストンと揺動自在に嵌合接続して構成されており、吸入ポートより吸入される冷媒ガスの吸入閉じ切り位置を圧縮室側に移動させる冷媒ガスの逃がし手段を設けたことを特徴としたものである。   In order to solve the problems of the prior art, a rotary compressor according to the present invention includes a cylinder, a main bearing and a sub-bearing that are fastened to both end surfaces of the cylinder to form a cylinder chamber, and a main bearing and a sub-bearing. A shaft provided with an eccentric portion therebetween, a piston fitted into the eccentric portion of the shaft and revolving within the cylinder chamber, a vane dividing the cylinder chamber into a suction chamber having a suction port and a compression chamber, and a cylinder are formed. The vane has a vane groove in which the vane reciprocates, and the tip end portion of the vane is swingably fitted and connected to the piston. The suction gas closing position of the refrigerant gas sucked from the suction port is set to the compression chamber side. It is characterized in that a means for escaping the refrigerant gas to be moved is provided.

上記によれば、ピストンの外周面及び端面で誘起される吸入室から圧縮室への冷媒ガスの粘性流れを軽減して、冷媒ガスの吸入が閉じ切る前の、冷媒ガスの圧縮を抑制することができるので、圧縮容積の変化による能力調整時に生じる動力ロスが小さい回転式圧縮機を提供することが可能となる。   According to the above, the viscous flow of the refrigerant gas from the suction chamber to the compression chamber induced by the outer peripheral surface and the end surface of the piston is reduced, and the compression of the refrigerant gas before the refrigerant gas suction is completely closed is suppressed. Therefore, it is possible to provide a rotary compressor with a small power loss that occurs when adjusting the capacity by changing the compression volume.

本発明の実施例1における回転式圧縮機を示す縦断面図The longitudinal cross-sectional view which shows the rotary compressor in Example 1 of this invention 本発明の実施例1における回転式圧縮機の圧縮機構部を示す横断面図1 is a cross-sectional view showing a compression mechanism portion of a rotary compressor in Embodiment 1 of the present invention. 本発明の実施例1における回転式圧縮機のシリンダーを示す拡大斜視図The expanded perspective view which shows the cylinder of the rotary compressor in Example 1 of this invention. (A)〜(D)本発明の実施例1における回転式圧縮機の動作を説明するための模式図(A)-(D) The schematic diagram for demonstrating operation | movement of the rotary compressor in Example 1 of this invention. 本発明の実施例2における回転式圧縮機のシリンダーを示す拡大斜視図The expansion perspective view which shows the cylinder of the rotary compressor in Example 2 of this invention. 従来技術のロータリ圧縮機を示す縦断面図Longitudinal sectional view showing a conventional rotary compressor 従来技術のロータリ圧縮機の圧縮機構部を示す横断面図Cross-sectional view showing a compression mechanism of a conventional rotary compressor

第1の発明は、シリンダーと、シリンダーの両端面に締結されてシリンダー室を形成する主軸受け及び副軸受けと、主軸受けと副軸受けとの間に偏心部を設けたシャフトと、シャフトの偏心部に嵌合されてシリンダー室内を公転運動するピストンと、シリンダー室内を吸入ポートが開口する吸入室と圧縮室に仕切るベーンと、シリンダーに形成され、ベーンが往復運動するベーン溝を有し、ベーンの先端部をピストンと揺動自在に嵌合接続して
構成される回転式圧縮機において、吸入ポートより吸入される冷媒ガスの吸入閉じ切り位置を、圧縮室側に移動させる冷媒ガスの逃がし手段を設けたものである。これにより、ベーンの先端部をピストンと揺動自在に嵌合接続しているので、シャフトの回転に伴ってシリンダー室内を公転運動するピストンの自転運動をベーンによって制限することができる。従って、吸入ポートより吸入される冷媒ガスの吸入閉じ切り位置を圧縮室側へ移動させる冷媒ガスの逃がし手段が、ピストンの外周面がシリンダーの内周面と接触する接触点に位置して、吸入室と圧縮室とが連通しているときの、ピストンの外周面及び端面で誘起される吸入室から圧縮室への冷媒ガスの粘性流れを軽減して、冷媒ガスの吸入が閉じ切る前の、冷媒ガスの圧縮を抑制することにより、圧縮容積の変化による能力調整時に生じる動力ロスを低減することができる。
A first invention includes a cylinder, a main bearing and a sub-bearing that are fastened to both end surfaces of the cylinder to form a cylinder chamber, a shaft having an eccentric portion between the main bearing and the sub-bearing, and an eccentric portion of the shaft And a piston that revolves in the cylinder chamber, a vane that divides the cylinder chamber into a suction chamber in which a suction port opens and a compression chamber, and a vane groove that is formed in the cylinder and reciprocally moves the vane. In a rotary compressor configured such that the tip portion is slidably fitted and connected to a piston, a refrigerant gas escape means for moving the suction closed position of the refrigerant gas sucked from the suction port to the compression chamber side is provided. It is provided. As a result, since the tip end of the vane is slidably fitted and connected to the piston, the rotation of the piston that revolves in the cylinder chamber as the shaft rotates can be limited by the vane. Therefore, the refrigerant gas escape means for moving the suction closed position of the refrigerant gas sucked from the suction port to the compression chamber side is located at a contact point where the outer peripheral surface of the piston is in contact with the inner peripheral surface of the cylinder. Reducing the viscous flow of refrigerant gas from the suction chamber to the compression chamber induced on the outer peripheral surface and end surface of the piston when the chamber and the compression chamber are in communication, before the refrigerant gas suction is completely closed, By suppressing the compression of the refrigerant gas, it is possible to reduce power loss that occurs during capacity adjustment due to a change in the compression volume.

第2の発明は、特に第1の発明の回転式圧縮機において、上記逃がし手段として、シリンダーの内周面に、吸入ポートに連通して、シャフトの回転方向に延びる切欠きを設けたものである。従って、ベーンの先端部との厳しい摺動のために高い硬度が要求されるピストンに加工を追加せずに、比較的硬度も低く、加工性によいシリンダーの内周面にエンドミル加工やTスロットカッター加工により切欠きを設けて、第1の発明の効果を得ることができる。   According to a second aspect of the invention, in the rotary compressor of the first aspect of the invention, as the escape means, a notch extending in the rotational direction of the shaft is provided on the inner peripheral surface of the cylinder so as to communicate with the suction port. is there. Therefore, end milling and T-slots are applied to the inner peripheral surface of the cylinder with relatively low hardness and good workability without adding processing to the piston that requires high hardness due to severe sliding with the tip of the vane. The effect of 1st invention can be acquired by providing a notch by cutter processing.

第3の発明は、特に第2の発明の回転式圧縮機において、上記逃がし手段として設けた切欠きは前記シリンダーの厚み方向全体にわたり、前記主軸受けと前記副軸受けの端面に対し、開放しているものである。これにより、吸入ポートがシリンダーの厚み方向の如何なる箇所や主軸受けや副軸受けに設けられている場合にも、吸入ポートを上記切欠きに開口することができる。   According to a third aspect of the invention, in the rotary compressor of the second aspect of the invention, the notch provided as the escape means is open to the end surfaces of the main bearing and the sub-bearing over the entire thickness direction of the cylinder. It is what. As a result, the suction port can be opened in the notch regardless of the location in the thickness direction of the cylinder, the main bearing, or the sub-bearing.

第4の発明は、特に第2の発明の回転式圧縮機において、上記逃がし手段として設けた切欠きは前記シリンダーの厚み方向の中間部のみに限定され、前記主軸受けと前記副軸受けの端面に対し、閉塞したものである。これにより、シリンダーの厚み方向端面に所定の肉厚を確保できるので、シリンダーの内周面の精密加工時に加工抵抗を内周面全周に亘ってほぼ均一にでき、シリンダーの内周面の真円度を確保できる。従って、シリンダー室内を公転運動するピストンの外周面とシリンダーの内周面との間に構成される隙間を小さくできるので、圧縮を開始した冷媒ガスの、圧縮室から吸入室への漏れを小さくし、体積効率を低下させることなく、第2の発明の効果を得ることができる。   According to a fourth aspect of the invention, in the rotary compressor of the second aspect of the invention, the notch provided as the escape means is limited to only an intermediate portion in the thickness direction of the cylinder, and is provided at end faces of the main bearing and the sub-bearing. On the other hand, it is blocked. As a result, a predetermined thickness can be secured on the end surface of the cylinder in the thickness direction, so that the machining resistance can be made substantially uniform over the entire inner peripheral surface during precision machining of the inner peripheral surface of the cylinder. A roundness can be secured. Therefore, since the gap formed between the outer peripheral surface of the piston that revolves in the cylinder chamber and the inner peripheral surface of the cylinder can be reduced, leakage of refrigerant gas that has started compression from the compression chamber to the suction chamber is reduced. The effects of the second invention can be obtained without reducing the volumetric efficiency.

第5の発明は、特に第2から4のいずれか1つの発明の回転式圧縮機において、上記逃がし手段として設けた切欠きの終わり部は、ベーンがベーン溝に最も収納された時点のシリンダーの内周面とベーンの厚み方向中心線との交点のうち、ベーンに近い方を基点とし、シャフトの回転方向に90度までの範囲内に構成されているものである。これにより、ピストンの外周面がシリンダーの内周面に設けた切欠きと対向するときに、ピストンは常にシャフトの回転と反対方向に自転するので、ピストンの外周面で誘起される圧縮室から吸入室への冷媒ガスの粘性流れを利用して切欠きを通過する冷媒ガスの流れを促進することにより、より効果的に動力ロスを低減することができる。   In the fifth aspect of the invention, in particular, in the rotary compressor according to any one of the second to fourth aspects of the invention, the end of the notch provided as the escape means is the cylinder at the time when the vane is most housed in the vane groove. Of the intersections between the inner peripheral surface and the vane thickness direction center line, a point closer to the vane is used as a base point, and is configured within a range of 90 degrees in the rotation direction of the shaft. As a result, when the outer peripheral surface of the piston faces the notch provided on the inner peripheral surface of the cylinder, the piston always rotates in the direction opposite to the rotation of the shaft, so that the suction from the compression chamber induced on the outer peripheral surface of the piston. By promoting the flow of the refrigerant gas passing through the notch using the viscous flow of the refrigerant gas to the chamber, the power loss can be reduced more effectively.

以下、本発明の実施形態について図面に従って説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の回転式圧縮機の実施例として、一つの圧縮機構部101を備えた単段圧縮回転式圧縮機100の縦断面図、図2は圧縮機構部101の横断面図を示している。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a single-stage compression rotary compressor 100 having one compression mechanism 101 as an embodiment of the rotary compressor of the present invention, and FIG. 2 is a transverse sectional view of the compression mechanism 101. ing.

図1に示した回転式圧縮機100は円筒状の密閉容器1と、この密閉容器1の内部上側
に配置された電動機部102、及びこの電動機部102の下側に配置され、この電動機部102によって駆動される圧縮機構部101によって構成されており、密閉容器1の底部をオイル溜りとしている。
A rotary compressor 100 shown in FIG. 1 is arranged in a cylindrical hermetic container 1, an electric motor unit 102 disposed on the upper side inside the hermetic container 1, and a lower side of the electric motor unit 102. And the bottom of the closed container 1 is used as an oil reservoir.

電動機部102は、密閉容器1の内部上側の内周面に沿って環状に取り付けられたステータ2と、このステータ2の内側に若干の隙間を設けて挿入されるロータ3からなっており、このロータ3は中心部で鉛直方向にシャフト4に固定されている。   The electric motor unit 102 includes a stator 2 that is annularly attached along the inner peripheral surface on the inner upper side of the sealed container 1, and a rotor 3 that is inserted with a slight gap inside the stator 2. The rotor 3 is fixed to the shaft 4 in the vertical direction at the center.

図1及び図2に示すように、圧縮機構部101は、シリンダー5と、このシリンダー5の両端面に締結されてシリンダー室6を形成する主軸受け7及び副軸受け8と、この主軸受け7と副軸受け8との間に位置するシャフト4の偏心部に嵌合されるピストン9と、シリンダー5に半径方向に形成されるベーン溝10内を往復運動するベーン11を有しており、ベーン11の先端部を円弧形状として、ピストン9に形成された嵌合部に揺動自在に嵌合接続することにより、シリンダー室6内にベーン11によって仕切られた吸入室12と圧縮室13を形成する。   As shown in FIGS. 1 and 2, the compression mechanism unit 101 includes a cylinder 5, a main bearing 7 and a sub-bearing 8 that are fastened to both end surfaces of the cylinder 5 to form a cylinder chamber 6, and the main bearing 7. A piston 9 fitted to an eccentric portion of the shaft 4 positioned between the auxiliary bearing 8 and a vane 11 reciprocating in a vane groove 10 formed in the radial direction of the cylinder 5 is provided. The suction chamber 12 and the compression chamber 13 partitioned by the vane 11 are formed in the cylinder chamber 6 by swinging and connecting to a fitting portion formed on the piston 9 in a circular arc shape. .

前述のように構成された本実施の形態による回転式圧縮機のシリンダー5について図3を用いて説明する。図3は本発明の実施例1における回転式圧縮機のシリンダー5を示す拡大斜視図である。図3に示すように、シリンダー5の内周面には、吸入ポート17に連通して、シャフト4の回転方向に延びる切欠きYを設けており、シリンダー5の厚み方向全体にわたり、主軸受け7と副軸受け8の端面に対し、開放している。また、この切欠きYの終わり部は、ベーン11がベーン溝10に最も収納された時点のシリンダー5の内周面とベーン11の厚み方向中心線との交点のうち、ベーン11に近い方を基点として、シャフト4の回転方向に90度までの範囲内に構成されている。この角度範囲に設ける理由を図4に基づき説明する。   The cylinder 5 of the rotary compressor according to this embodiment configured as described above will be described with reference to FIG. FIG. 3 is an enlarged perspective view showing the cylinder 5 of the rotary compressor according to the first embodiment of the present invention. As shown in FIG. 3, the inner peripheral surface of the cylinder 5 is provided with a notch Y that communicates with the suction port 17 and extends in the rotational direction of the shaft 4. And open to the end face of the secondary bearing 8. Further, the end portion of the notch Y is the intersection of the inner peripheral surface of the cylinder 5 and the center line in the thickness direction of the vane 11 when the vane 11 is most accommodated in the vane groove 10, which is closer to the vane 11. As a base point, it is configured within a range of up to 90 degrees in the rotation direction of the shaft 4. The reason for providing this angle range will be described with reference to FIG.

図4は本発明の実施例1における回転式圧縮機の動作を示す模式図である。図4に示すように、ピストン9を90度ずつ公転運動させた時のピストン9とベーン11との位置関係を図4(A)、(B)、(C)、(D)の順に示している。図4(A)、(B)、(C)、(D)の順に、シリンダー5に設けられた吸入ポート17から冷媒ガスが吸入され、シリンダー室6内を公転運動するピストン9の外周面がシリンダー5の内周面と接触する接触点201が上記切欠きYに位置している間は吸入室12と圧縮室13は連通した状態で吸入された冷媒ガスは閉じ切られず、切欠きYを通過した後に、冷媒ガスの吸入が閉じ切られて圧縮室13が密閉空間となり、冷媒ガスはピストン9の公転運動とベーン11の往復運動による容積変化で圧縮されて高温高圧となり、図4(D)のタイミングで圧縮室13より図示しない吐出ポート18、吐出マフラー室19を経て、密閉容器1内に吐出される。即ち、シリンダー5の内周面に設けた切欠きYによって、吸入ポート17より吸入された冷媒ガスの吸入閉じ切り位置を圧縮室13側に移動させることにより、吸入閉じ切り位置での圧縮容積を変化させて、能力の調整を行うのである。   FIG. 4 is a schematic diagram illustrating the operation of the rotary compressor according to the first embodiment of the present invention. As shown in FIG. 4, the positional relationship between the piston 9 and the vane 11 when the piston 9 is revolved by 90 degrees is shown in the order of FIGS. 4 (A), (B), (C), (D). Yes. 4A, 4B, 4C, and 4D, refrigerant gas is sucked from a suction port 17 provided in the cylinder 5, and the outer peripheral surface of the piston 9 that revolves in the cylinder chamber 6 is While the contact point 201 in contact with the inner peripheral surface of the cylinder 5 is located in the notch Y, the suctioned refrigerant gas is not closed while the suction chamber 12 and the compression chamber 13 are in communication with each other. After the passage, the suction of the refrigerant gas is closed and the compression chamber 13 becomes a sealed space, and the refrigerant gas is compressed by the volume change due to the revolving motion of the piston 9 and the reciprocating motion of the vane 11 to become high temperature and high pressure. ) Is discharged into the sealed container 1 from the compression chamber 13 through a discharge port 18 and a discharge muffler chamber 19 (not shown). That is, by moving the suction closed position of the refrigerant gas sucked from the suction port 17 to the compression chamber 13 side by the notch Y provided on the inner peripheral surface of the cylinder 5, the compression volume at the suction closed position is increased. Change and adjust your abilities.

図4(A)の状態から図4(C)の状態に至るまでのピストン9の公転運動中は、ベーン11の先端部をピストン9と揺動自在に嵌合接続しているので、ピストン9はシリンダー室6内をベーン11の先端部を中心に揺動運動しながら、図4(C)の状態で図4(A)と同じ角度位置に戻る。従って、ピストン9の公転運動中に、ピストン9がシャフト4の回転方向に自転する先行従来技術のロータリ圧縮機に比べてピストン9の自転する角度が小さくなり、ピストン9の外周面での周速を低減できるので、ピストン9の外周面で誘起される冷媒ガスの流れを軽減できるのである。特に、図4(A)の状態から図4(B)の状態に至るまでのピストン9の公転運動中は、シャフト4の回転に伴ってピストン9はシャフト4の回転と反対方向に自転し、ピストン9の外周面で誘起される圧縮室13から吸入室12への冷媒ガスの粘性流れが生じる。したがって、この粘性流れを利用できるの
で、シリンダー5の内周面に設けた切欠きYを通過する冷媒ガスの流れを促進することにより、冷媒ガスの吸入が閉じ切る前の、冷媒ガスの圧縮を抑制して、より効果的に動力ロスを低減することができるので、この角度範囲に切欠きYの終わり部を構成するのである。
During the revolution movement of the piston 9 from the state of FIG. 4A to the state of FIG. 4C, the tip end portion of the vane 11 is slidably fitted and connected to the piston 9. 4 returns to the same angular position as in FIG. 4 (A) in the state of FIG. 4 (C) while swinging in the cylinder chamber 6 around the tip of the vane 11. Therefore, during the revolution movement of the piston 9, the rotation angle of the piston 9 becomes smaller than that of the prior art rotary compressor in which the piston 9 rotates in the rotation direction of the shaft 4, and the peripheral speed on the outer peripheral surface of the piston 9 is reduced. Therefore, the flow of the refrigerant gas induced on the outer peripheral surface of the piston 9 can be reduced. In particular, during the revolution movement of the piston 9 from the state of FIG. 4A to the state of FIG. 4B, the piston 9 rotates in the opposite direction to the rotation of the shaft 4 as the shaft 4 rotates. A viscous flow of refrigerant gas from the compression chamber 13 to the suction chamber 12 is induced on the outer peripheral surface of the piston 9. Therefore, since this viscous flow can be utilized, the refrigerant gas is compressed before the suction of the refrigerant gas is closed by promoting the flow of the refrigerant gas passing through the notch Y provided on the inner peripheral surface of the cylinder 5. Since the power loss can be reduced more effectively by suppressing, the end portion of the notch Y is formed in this angular range.

以上の構成により、本実施例はベーン11の先端部をピストン9と揺動自在に嵌合接続していて、更に、シリンダー5の内周面に設けた切欠きYはシリンダー5の厚み方向全体にわたり、主軸受け7と副軸受け8の端面に対し、開放していて、その切欠きYの終わり部は、ベーン11がベーン溝10に最も収納された時点のシリンダー5の内周面とベーン11の厚み方向中心線との交点のうち、ベーン11に近い方を基点とし、シャフト4の回転方向に90度までの範囲内に構成されているので、ピストン9の外周面で誘起される圧縮室13から吸入室12らの冷媒ガスの粘性流れを利用して、シリンダー5の内周面に設けた切欠きYを通過する冷媒ガスの流れを促進することにより、冷媒ガスの吸入が閉じ切る前の、冷媒ガスの圧縮を抑制して、圧縮容積の変化による能力調整時に生じる動力ロスが小さい回転式圧縮機を提供することが可能となる。   With the above configuration, in this embodiment, the tip of the vane 11 is slidably fitted and connected to the piston 9, and the notch Y provided on the inner peripheral surface of the cylinder 5 is the entire thickness direction of the cylinder 5. The end of the notch Y is open to the end surfaces of the main bearing 7 and the sub-bearing 8, and the end of the notch Y and the inner peripheral surface of the cylinder 5 when the vane 11 is most accommodated in the vane groove 10 Of the intersections with the center line in the thickness direction, the compression chamber is induced on the outer peripheral surface of the piston 9 because it is configured within a range of up to 90 degrees in the rotation direction of the shaft 4 with the one closer to the vane 11 as the base point. Before the suction of the refrigerant gas is closed, the viscous flow of the refrigerant gas from the suction chamber 13 to the suction chamber 12 is utilized to promote the flow of the refrigerant gas passing through the notch Y provided on the inner peripheral surface of the cylinder 5. Suppresses refrigerant gas compression Te, the power loss occurring at the time of capacity adjustment by variation of compression volume it is possible to provide a small rotary compressor.

(実施の形態2)
次に、図5に本発明の他の実施例を示している。図5のように、シリンダー5の内周面には、吸入ポート17に連通して、シャフト4の回転方向に延びる切欠きYを設けており、シリンダー5の厚み方向の中間部のみに限定され、主軸受け7と副軸受け8の端面に対し、閉塞しており、シリンダー5の厚み方向端面に所定の肉厚を確保できるので、シリンダー5の内周面の精密加工時に加工抵抗を内周面全周に亘ってほぼ均一にでき、シリンダー5の内周面の真円度を確保できる。従って、シリンダー室6内を公転運動するピストン9の外周面とシリンダー5の内周面との間に構成される隙間を小さくできるので、圧縮を開始した冷媒ガスの、圧縮室13から吸入室12への漏れを小さくし、体積効率を低下させることなく、実施例1と同様の効果が得られる。
(Embodiment 2)
Next, FIG. 5 shows another embodiment of the present invention. As shown in FIG. 5, the inner peripheral surface of the cylinder 5 is provided with a notch Y that communicates with the suction port 17 and extends in the rotational direction of the shaft 4, and is limited to only the middle portion in the thickness direction of the cylinder 5. The end surfaces of the main bearing 7 and the sub-bearing 8 are closed, and a predetermined thickness can be secured on the end surface in the thickness direction of the cylinder 5, so that the machining resistance is reduced when the inner peripheral surface of the cylinder 5 is precisely machined. It can be made substantially uniform over the entire circumference, and the roundness of the inner circumferential surface of the cylinder 5 can be secured. Accordingly, the gap formed between the outer peripheral surface of the piston 9 that revolves in the cylinder chamber 6 and the inner peripheral surface of the cylinder 5 can be reduced, so that the compressed refrigerant gas from the compression chamber 13 to the suction chamber 12 can be compressed. The same effects as those of the first embodiment can be obtained without reducing leakage to the volume and lowering the volumetric efficiency.

以上のように、本発明にかかる回転式圧縮機は、動力ロスを小さくすることができるため、給湯器用圧縮機、空気圧縮の用途にも適用できる。   As described above, since the rotary compressor according to the present invention can reduce power loss, it can be applied to a hot water compressor and an air compression application.

1 密閉容器
2 ステータ
3 ロータ
4 シャフト
5 シリンダー
6 シリンダー室
7 主軸受け
8 副軸受け
9 ピストン
10 ベーン溝
11 ベーン
12 吸入室
13 圧縮室
17 吸入ポート
18 吐出ポート
19 吐出マフラー室
100 回転式圧縮機
101 圧縮機構部
102 電動機部
201 接触点
X バイパス溝
Y 切欠き
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Stator 3 Rotor 4 Shaft 5 Cylinder 6 Cylinder chamber 7 Main bearing 8 Sub bearing 9 Piston 10 Vane groove 11 Vane 12 Suction chamber 13 Compression chamber 17 Suction port 18 Discharge port 19 Discharge muffler chamber 100 Rotary compressor 101 Compression Mechanism part 102 Electric motor part 201 Contact point X Bypass groove Y Notch

Claims (5)

シリンダーと、
該シリンダーの両端面に締結されてシリンダー室を形成する主軸受け及び副軸受けと、前記主軸受けと前記副軸受けとの間に偏心部を設けたシャフトと、該シャフトの偏心部に嵌合されて前記シリンダー室内を公転運動するピストンと、前記シリンダー室内を吸入ポートが開口する吸入室と圧縮室に仕切るベーンと、前記シリンダーに形成され前記ベーンが往復運動するベーン溝とを有し、前記ベーンの先端部を前記ピストンと揺動自在に嵌合接続して構成される回転式圧縮機であって、
前記吸入ポートより吸入される冷媒ガスの吸入閉じ切り位置を前記圧縮室側に移動させる冷媒ガスの逃がし手段を設けたことを特徴とする回転式圧縮機。
A cylinder,
A main bearing and a sub-bearing fastened to both end faces of the cylinder to form a cylinder chamber, a shaft provided with an eccentric portion between the main bearing and the sub-bearing, and fitted to the eccentric portion of the shaft; A piston that revolves in the cylinder chamber; a vane that divides the cylinder chamber into a suction chamber in which a suction port opens; and a compression chamber; and a vane groove that is formed in the cylinder and reciprocates in the vane. It is a rotary compressor configured by fitting and connecting a tip portion with the piston in a swingable manner,
A rotary compressor having a refrigerant gas escape means for moving a refrigerant gas suction closed position from the suction port to the compression chamber side.
前記逃がし手段として、前記シリンダーの内周面に、前記吸入ポートに連通して前記シャフトの回転方向に延びる切欠きを設けたことを特徴とする請求項1に記載の回転式圧縮機。 2. The rotary compressor according to claim 1, wherein as the escape means, a notch that communicates with the suction port and extends in a rotation direction of the shaft is provided on an inner peripheral surface of the cylinder. 前記逃がし手段として設けた切欠きは、前記シリンダーの厚み方向全体にわたっており、前記主軸受けと前記副軸受けの端面に対して開放していることを特徴とする請求項2に記載の回転式圧縮機。 3. The rotary compressor according to claim 2, wherein the notch provided as the escape means extends over the entire thickness direction of the cylinder and is open to the end surfaces of the main bearing and the auxiliary bearing. . 前記逃がし手段として設けた切欠きは、前記シリンダーの厚み方向の中間部のみに限定され、前記主軸受けと前記副軸受けの端面に対して閉塞していることを特徴とする請求項2に記載の回転式圧縮機。 The notch provided as the escape means is limited to only an intermediate portion in the thickness direction of the cylinder, and is closed with respect to end faces of the main bearing and the sub-bearing. Rotary compressor. 前記逃がし手段として設けた切欠きの終わり部は、前記ベーンが前記ベーン溝に最も収納された時点の前記シリンダーの内周面と前記ベーンの厚み方向中心線との交点のうち、前記ベーンに近い方を基点として前記シャフトの回転方向に90度までの範囲内に構成されることを特徴とする請求項2〜4のいずれか1項に記載の回転式圧縮機。 The end portion of the notch provided as the escape means is close to the vane at the intersection of the inner peripheral surface of the cylinder and the center line in the thickness direction of the vane when the vane is most housed in the vane groove. The rotary compressor according to any one of claims 2 to 4, wherein the rotary compressor is configured within a range of up to 90 degrees in a rotation direction of the shaft with the direction as a base point.
JP2011013611A 2011-01-26 2011-01-26 Rotary compressor Pending JP2012154235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013611A JP2012154235A (en) 2011-01-26 2011-01-26 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013611A JP2012154235A (en) 2011-01-26 2011-01-26 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2012154235A true JP2012154235A (en) 2012-08-16

Family

ID=46836227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013611A Pending JP2012154235A (en) 2011-01-26 2011-01-26 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2012154235A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104343686A (en) * 2013-07-30 2015-02-11 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor pump body assembly, and rotary compressor provided with assembly
CN105971878A (en) * 2016-06-15 2016-09-28 珠海格力节能环保制冷技术研究中心有限公司 Rotor type compressor pump body
EP3889432A1 (en) 2020-04-02 2021-10-06 LG Electronics Inc. Rotary compressor
KR102481674B1 (en) 2021-06-23 2022-12-27 엘지전자 주식회사 Rotary compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264897U (en) * 1985-10-14 1987-04-22
JPH07229498A (en) * 1994-02-21 1995-08-29 Hitachi Ltd Rotary compressor
JP2000120572A (en) * 1998-10-12 2000-04-25 Sanyo Electric Co Ltd Rotary compressor
JP2001263278A (en) * 2000-03-14 2001-09-26 Mitsubishi Electric Corp Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264897U (en) * 1985-10-14 1987-04-22
JPH07229498A (en) * 1994-02-21 1995-08-29 Hitachi Ltd Rotary compressor
JP2000120572A (en) * 1998-10-12 2000-04-25 Sanyo Electric Co Ltd Rotary compressor
JP2001263278A (en) * 2000-03-14 2001-09-26 Mitsubishi Electric Corp Rotary compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104343686A (en) * 2013-07-30 2015-02-11 珠海格力节能环保制冷技术研究中心有限公司 Rotary compressor pump body assembly, and rotary compressor provided with assembly
CN105971878A (en) * 2016-06-15 2016-09-28 珠海格力节能环保制冷技术研究中心有限公司 Rotor type compressor pump body
EP3889432A1 (en) 2020-04-02 2021-10-06 LG Electronics Inc. Rotary compressor
KR20210123104A (en) 2020-04-02 2021-10-13 엘지전자 주식회사 Rotary compressor
KR102481674B1 (en) 2021-06-23 2022-12-27 엘지전자 주식회사 Rotary compressor
EP4108926A1 (en) 2021-06-23 2022-12-28 LG Electronics Inc. Rotary compressor
US11655817B2 (en) 2021-06-23 2023-05-23 Lg Electronics Inc. Rotary compressor

Similar Documents

Publication Publication Date Title
JP5743019B1 (en) Compressor
US7563084B2 (en) Rotary fluid machine
KR100812934B1 (en) Rotary fluid machine
WO2012001966A1 (en) Rotary compressor
JPWO2013105386A1 (en) Vane type compressor
JP2012154235A (en) Rotary compressor
WO2005111427A1 (en) Rotary compressor
CN103591022A (en) Slipper-type radial flexible compensation mechanism of rolling piston-like fluid machine
KR20040097822A (en) rotary compressor
JP2009167976A (en) Rotary fluid machine
JP2020084821A (en) Rotary compressor
CN103591023B (en) A kind of eccentric block type radial flexible compensating mechanism of rolling piston class fluid machinery
JP6019669B2 (en) Rotary compressor
JP5861456B2 (en) Rotary compressor
JP4807209B2 (en) Compressor
JP5861458B2 (en) Swing piston compressor
JP2008082267A (en) Compressor
JP2015113801A (en) Compressor
JP2993299B2 (en) Rotary compressor
JP2017066919A (en) Compressor
JP3744533B2 (en) Rotary compressor
CN117145769A (en) Fluid machine and heat exchange device
JP5011963B2 (en) Rotary fluid machine
JP5760786B2 (en) Rotary fluid machine
JP2020084822A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407