JP2000264904A - Polymerization of vinyl-based polymer - Google Patents

Polymerization of vinyl-based polymer

Info

Publication number
JP2000264904A
JP2000264904A JP11067134A JP6713499A JP2000264904A JP 2000264904 A JP2000264904 A JP 2000264904A JP 11067134 A JP11067134 A JP 11067134A JP 6713499 A JP6713499 A JP 6713499A JP 2000264904 A JP2000264904 A JP 2000264904A
Authority
JP
Japan
Prior art keywords
reaction
amount
reaction mixture
qmax
qmin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11067134A
Other languages
Japanese (ja)
Other versions
JP3565736B2 (en
Inventor
Hirotoshi Mizota
浩敏 溝田
Tomonari Murakami
智成 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP06713499A priority Critical patent/JP3565736B2/en
Publication of JP2000264904A publication Critical patent/JP2000264904A/en
Application granted granted Critical
Publication of JP3565736B2 publication Critical patent/JP3565736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing a polymer in slight variations of polymer conversion and polymerization temperature in continuously polymerizing a vinyl-based monomer by using a complete mixing type reaction vessel. SOLUTION: In this method for polymerizing a vinyl-based monomer by using a complete mixing type reaction vessel, the amount of a reaction mixture in the reaction vessel and the amount of a reaction raw material fed to the reaction vessel are adjusted so as to satisfy the equation (1): (Vmax-Vmin)/(Vmax+Vmin)<=0.05 and the equation (2) (qmax-qmin)/(qmax+ qmin)<=0.1 (Vmax and Vmin are the maximum fluid volume and the minimum fluid volume [kg] of the reaction mixture in the reaction vessel, respectively; qmax and qmin are the maximum value and the minimum value [kg/hr] of the reaction raw material fed, respectively) while taking out a fixed flow rate of a reaction mixture from the reaction vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ビニル系単量体を
連続的に塊状重合または溶液重合を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously bulk or solution polymerization of a vinyl monomer.

【0002】[0002]

【従来の技術】ビニル系単量体の連続塊状重合法および
連続溶液重合法は、例えば特公昭52−32665号公
報、特開平3−111408号公報および特公平7−7
2213号公報に開示されているように、完全混合型反
応槽を用いて反応槽内を十分に攪拌混合しながら、連続
的に単量体を含む原料混合物を反応槽に供給しつつ、連
続的に反応混合物を抜き出すことにより実施される。ま
た、これらの先行技術はすべて反応槽内に気相部を有し
ており、気相部を加圧下に維持することにより液相部の
発泡を回避して実施されている。しかしながら、反応槽
内に気相部をもつ完全混合型反応槽において連続的に重
合反応を行う場合には、反応槽に供給する反応原料の供
給流量と反応混合物の抜き出し量が全く同じである場合
を除いては反応槽内の液量は常に変動している。反応混
合物の比重は、通常は反応原料の比重とは一致せず、ま
た経時的に変動するため、反応原料の供給流量と反応混
合物の抜き出し量を全く同じにすることは現実的には不
可能であり、完全混合型反応槽を用いて連続重合を行う
場合、反応槽内の液量は必ず変動する。
2. Description of the Related Art Continuous bulk polymerization and continuous solution polymerization of vinyl monomers are disclosed, for example, in JP-B-52-32665, JP-A-3-111408 and JP-B-7-7.
As disclosed in Japanese Patent No. 2213, while thoroughly stirring and mixing the inside of the reaction tank using a complete mixing type reaction tank, while continuously supplying a raw material mixture containing a monomer to the reaction tank, This is carried out by withdrawing the reaction mixture. Further, all of these prior arts have a gas phase portion in a reaction tank, and are carried out while avoiding foaming of a liquid phase portion by maintaining the gas phase portion under pressure. However, when the polymerization reaction is continuously performed in a complete mixing type reaction vessel having a gas phase portion in the reaction vessel, the supply flow rate of the reaction raw material supplied to the reaction vessel and the withdrawal amount of the reaction mixture are exactly the same. Except for, the amount of liquid in the reaction vessel is constantly changing. Since the specific gravity of the reaction mixture usually does not match the specific gravity of the reaction raw material and varies with time, it is practically impossible to make the supply flow rate of the reaction raw material and the withdrawal amount of the reaction mixture exactly the same. When performing continuous polymerization using a complete mixing type reaction tank, the amount of liquid in the reaction tank always changes.

【0003】反応槽内の液量の変動は、重合反応を行う
にあたっての滞在時間が変動していることを意味してお
り、このような滞在時間の変動は重合体含有率の変動、
共重合体を製造する場合においては共重合組成の変動、
また重合発熱量が常に変化するため重合温度の変動が起
こり、その結果重合体の立体規則性が不均一になるた
め、重合体の品質の低下を招いた。
[0003] Fluctuations in the amount of liquid in the reaction vessel mean that the residence time for performing the polymerization reaction fluctuates. Such fluctuations in the residence time include fluctuations in the polymer content,
In the case of producing a copolymer, the copolymer composition changes,
In addition, since the polymerization heat value constantly changes, the polymerization temperature fluctuates, and as a result, the stereoregularity of the polymer becomes non-uniform, thereby deteriorating the polymer quality.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来技
術においては反応槽内の液量の管理方法および管理幅に
ついて一切言及されておらず、未だ改良の余地が残っ
た。
However, in the prior art, there is no mention of the control method and the control width of the liquid amount in the reaction tank, and there is still room for improvement.

【0005】本発明の目的は、このような従来技術の問
題点に鑑み、気相部を有する完全混合型反応槽を用いて
ビニル系単量体を連続的に重合反応を行うに際し、工業
的に有利な方法で、安定にかつ均一な重合体の製造方法
を提供することにある。
[0005] In view of the problems of the prior art described above, an object of the present invention is to use a complete mixing type reaction vessel having a gas phase part to continuously polymerize a vinyl-based monomer. It is an object of the present invention to provide a method for producing a stable and uniform polymer by a method advantageous to the above.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、気
相部を有する完全混合型反応槽を用いて、ビニル系単量
体をラジカル重合開始剤の存在下、連続的に塊状重合法
または溶液重合法で重合するに際し、反応槽から反応混
合物を一定流量で抜き出しつつ、反応原料の反応槽への
供給量を、下記式(1)および式(2)を満足するよう
に調整することにより、反応槽内における反応混合物の
液量を管理することを特徴とするビニル系単量体の重合
方法である。 (Vmax−Vmin)/(Vmax+Vmin)≦0.05 (1) Vmax:反応槽内の反応混合物の最大液量[kg] Vmin:反応槽内の反応混合物の最小液量[kg] (qmax−qmin)/(qmax+qmin)≦0.1 (2) qmax:反応原料供給量の最大値[kg/hr] qmin:反応原料供給量の最小値[kg/hr]また、
もう一つの本発明は、気相部を有する完全混合型反応槽
を用いて、ビニル系単量体をラジカル重合開始剤の存在
下、連続的に塊状重合法または溶液重合法で重合するに
際し、反応原料を一定流量で反応槽に供給しつつ、反応
槽からの反応混合物の抜き出し量を、前記式(1)およ
び下記式(3)を満足するように調整することにより、
反応槽における反応混合物の液量を管理することを特徴
とするビニル系単量体の重合方法である。 (Qmax−Qmin)/(Qmax+Qmin)≦0.15 (3) Qmax:反応混合物抜き出し量の最大値[kg/hr] Qmin:反応混合物抜き出し量の最小値[kg/hr]
That is, the present invention provides a complete mixing type reaction vessel having a gaseous phase portion, and continuously polymerizes a vinyl monomer in the presence of a radical polymerization initiator by a bulk polymerization method or During the polymerization by the solution polymerization method, the reaction mixture is extracted from the reaction vessel at a constant flow rate, and the amount of the reaction raw materials supplied to the reaction vessel is adjusted so as to satisfy the following formulas (1) and (2). A method for polymerizing a vinyl monomer, wherein the amount of a reaction mixture in a reaction tank is controlled. (Vmax−Vmin) / (Vmax + Vmin) ≦ 0.05 (1) Vmax: Maximum liquid amount of the reaction mixture in the reaction tank [kg] Vmin: Minimum liquid amount of the reaction mixture in the reaction tank [kg] (qmax−qmin ) / (Qmax + qmin) ≦ 0.1 (2) qmax: maximum value of supply amount of reaction raw material [kg / hr] qmin: minimum value of supply amount of reaction raw material [kg / hr]
Another embodiment of the present invention is to use a complete mixing type reaction vessel having a gas phase part and continuously polymerize a vinyl monomer by a bulk polymerization method or a solution polymerization method in the presence of a radical polymerization initiator. By supplying the reaction raw material to the reaction vessel at a constant flow rate and adjusting the amount of the reaction mixture withdrawn from the reaction vessel so as to satisfy the above formula (1) and the following formula (3),
This is a method for polymerizing a vinyl monomer, which comprises controlling the amount of a reaction mixture in a reaction tank. (Qmax−Qmin) / (Qmax + Qmin) ≦ 0.15 (3) Qmax: Maximum value of withdrawal amount of reaction mixture [kg / hr] Qmin: Minimum value of withdrawal amount of reaction mixture [kg / hr]

【0007】[0007]

【発明の実施の形態】以下、本発明の重合方法をさらに
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the polymerization method of the present invention will be described in more detail.

【0008】本発明の方法は、ビニル系単量体をラジカ
ル重合開始剤の存在下で重合を行う場合に適用される。
ビニル系単量体以外の単量体の重合反応においては、反
応速度における取り扱いが異なることから必ずしも本発
明の方法により制御できるとは限らない。本発明の方法
が適用できるビニル系単量体としては、例えばアルキル
(メタ)アクリレート、スチレン、アクリロニトリル等
が挙げられる。本発明の方法により、単量体を単独で用
いて単独重合体を製造し、あるいは2種類以上の単量体
を混合して用いて共重合体を製造することが可能であ
る。また、本発明の方法は、連続的に塊状重合または溶
液重合を行う場合に適用できる。溶液重合の場合は、単
量体および重合体と相溶性がよい溶媒を用い均一系で重
合反応を行う。用いる溶媒は単量体によって異なるが、
例えば単量体がメチルメタクリレートの場合、トルエ
ン、キシレン、アセトン、メチルエチルケトン、メタノ
ール、エタノール、エチルベンゼン、メチルイソブチル
ケトン、酢酸n−ブチルなどが使用可能である。溶媒の
使用量は特に制限されない。
The method of the present invention is applied to the case where a vinyl monomer is polymerized in the presence of a radical polymerization initiator.
In the polymerization reaction of a monomer other than the vinyl monomer, the method cannot be necessarily controlled by the method of the present invention because handling at a reaction rate is different. Examples of the vinyl monomer to which the method of the present invention can be applied include alkyl (meth) acrylate, styrene, acrylonitrile and the like. According to the method of the present invention, it is possible to produce a homopolymer by using a single monomer or to produce a copolymer by using a mixture of two or more monomers. Further, the method of the present invention can be applied to the case where bulk polymerization or solution polymerization is performed continuously. In the case of solution polymerization, the polymerization reaction is carried out in a homogeneous system using a solvent having good compatibility with the monomer and the polymer. The solvent used depends on the monomer,
For example, when the monomer is methyl methacrylate, toluene, xylene, acetone, methyl ethyl ketone, methanol, ethanol, ethylbenzene, methyl isobutyl ketone, n-butyl acetate and the like can be used. The amount of the solvent used is not particularly limited.

【0009】本発明の方法は、ラジカル重合開始剤の存
在下において重合反応を行うことにより実施される。ラ
ジカル重合開始剤としては有機過酸化物あるいはアゾ化
合物を用いることが可能であり、例えば日本油脂
(株)、和光純薬(株)の製品カタログに掲載されてい
る有機過酸化物、アゾ化合物が挙げられる。ラジカル開
始剤は一種を単独で使用してもよいし、二種以上を併用
してもよい。
The method of the present invention is carried out by performing a polymerization reaction in the presence of a radical polymerization initiator. As the radical polymerization initiator, an organic peroxide or an azo compound can be used. For example, organic peroxides and azo compounds listed in product catalogs of NOF Corporation and Wako Pure Chemical Industries, Ltd. can be used. No. One radical initiator may be used alone, or two or more radical initiators may be used in combination.

【0010】また、本発明では重合体の分子量を調整す
る目的で連鎖移動剤としてメルカプタン化合物を添加し
て重合反応を行うことができる。メルカプタン化合物と
しては特に限定されるものではないが、例えばn−ブチ
ルメルカプタン、t−ブチルメルカプタン、n−オクチ
ルメルカプタン、n−ドデシルメルカプタン等が好適で
ある。
In the present invention, a polymerization reaction can be carried out by adding a mercaptan compound as a chain transfer agent for the purpose of adjusting the molecular weight of the polymer. Although the mercaptan compound is not particularly limited, for example, n-butyl mercaptan, t-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and the like are preferable.

【0011】本発明の第一の重合方法では、反応槽から
反応混合物を一定流量で抜き出しつつ、単量体およびラ
ジカル重合開始剤に所望により溶媒が加えられてなる反
応原料の反応槽への供給量を、下記式(1)および式
(2)を満足するように調整することにより反応槽内に
おける反応混合物の液量(以下、反応混合物の液量を適
宜「液量」という。)を管理することが重要である。 (Vmax−Vmin)/(Vmax+Vmin)≦0.05 (1) (qmax−qmin)/(qmax+qmin)≦0.1 (2) ここで、qmax及びqminの値としては、1分間の積算流
量から求められる反応原料の供給量q[kg/hr]の
うち、対象とする反応槽運転期間中の最大値、および最
小値を用いた。
In the first polymerization method of the present invention, a reaction mixture obtained by adding a solvent to a monomer and a radical polymerization initiator as required is supplied to the reaction tank while extracting the reaction mixture from the reaction tank at a constant flow rate. The amount of the reaction mixture in the reaction tank (hereinafter, the amount of the reaction mixture is appropriately referred to as “liquid amount”) is controlled by adjusting the amount so as to satisfy the following formulas (1) and (2). It is important to. (Vmax−Vmin) / (Vmax + Vmin) ≦ 0.05 (1) (qmax−qmin) / (qmax + qmin) ≦ 0.1 (2) Here, the values of qmax and qmin are obtained from the integrated flow rate for one minute. Among the supply amounts q [kg / hr] of the reaction raw materials to be obtained, the maximum value and the minimum value during the operation period of the target reaction tank were used.

【0012】一般に、完全混合型反応槽を含む重合工程
で得られた反応混合物は、連続的に熱交換器等を通して
200〜270℃に加熱した後、揮発成分分離工程に送
られ、揮発成分を除去した後、重合体として製品とされ
る。また、通常は重合工程と揮発成分分離工程は直結し
たプロセスとして構成され、反応原料の供給から重合体
の取り出しまでを一貫して連続的に運転される。こうし
た製造プロセスを安定に運転するには、重合工程のみな
らず揮発成分分離工程を安定に運転することが極めて重
要である。
In general, a reaction mixture obtained in a polymerization step including a complete mixing type reaction vessel is continuously heated to 200 to 270 ° C. through a heat exchanger or the like, and then sent to a volatile component separation step to remove volatile components. After removal, the product is obtained as a polymer. Further, usually, the polymerization step and the volatile component separation step are configured as a directly connected process, and are continuously and continuously operated from supply of the reaction raw material to removal of the polymer. In order to stably operate such a production process, it is extremely important to stably operate not only the polymerization step but also the volatile component separation step.

【0013】揮発成分分離工程を安定に運転するに際し
ての留意事項は、常に同じ状態で反応混合物を揮発成分
分離工程に供給することである。同じ条件として管理す
べきは、重合体含有率、反応混合物の供給流量および反
応混合物の供給温度の3つが挙げられる。
A point to be noted when operating the volatile component separation step stably is that the reaction mixture is always supplied to the volatile component separation step in the same state. The three conditions that should be managed as the same conditions are the polymer content, the supply flow rate of the reaction mixture, and the supply temperature of the reaction mixture.

【0014】この重合方法では、完全混合型反応槽から
反応混合物を例えば抜き出しポンプを用いて常に一定流
量で抜き出している。このため、揮発成分分離工程に反
応混合物が常に一定流量で供給される。また、揮発成分
分離工程への供給流量が一定であることから熱交換器に
よる到達温度がほぼ一定となり、揮発成分分離工程に供
給される反応混合物の温度を一定にして運転することが
可能となる。
In this polymerization method, the reaction mixture is constantly drawn out from the complete mixing type reaction tank at a constant flow rate using, for example, a drawing pump. Therefore, the reaction mixture is always supplied at a constant flow rate to the volatile component separation step. In addition, since the supply flow rate to the volatile component separation step is constant, the temperature reached by the heat exchanger becomes almost constant, and it is possible to operate the reaction with the temperature of the reaction mixture supplied to the volatile component separation step constant. .

【0015】さらに、前記式(1)および式(2)を満
足するように重合工程を運転管理することにより、反応
槽内の液量変動が小さいので重合体含有率の変動を最小
限に抑制することが可能となる。
Furthermore, by controlling the operation of the polymerization step so as to satisfy the above-mentioned formulas (1) and (2), fluctuations in the polymer content are suppressed to a minimum since fluctuations in the liquid volume in the reaction tank are small. It is possible to do.

【0016】反応槽の液量の変動幅が式(1)の範囲を
超えて大きい場合には、重合体含有率の変動が大きくな
るため揮発成分分離工程の運転が不安定になるばかり
か、重合温度の維持も困難となり、共重合の場合には共
重合組成の安定した重合体が得にくい。さらに立体規則
性が崩れやすく光学性能が低下するといった品質低下を
もたらしやすい。(Vmax−Vmin)/(Vmax+Vmin)
≦0.03であることが好ましい。
If the fluctuation range of the liquid volume in the reaction tank is larger than the range of the formula (1), the fluctuation of the polymer content becomes large, so that the operation of the volatile component separation step becomes unstable, It is also difficult to maintain the polymerization temperature, and in the case of copolymerization, it is difficult to obtain a polymer having a stable copolymer composition. Further, the stereoregularity is easily broken, and the quality is easily deteriorated such that the optical performance is deteriorated. (Vmax-Vmin) / (Vmax + Vmin)
It is preferred that ≦ 0.03.

【0017】また、反応原料の供給量の変動幅が式
(2)を超えて大きい場合には、重合温度の変動が大き
くなり好ましくない。反応原料の供給量の変動は、反応
槽に流入する熱量の変動を意味する。このために重合温
度を一定にするための制御が複雑になり、困難を極め
る。一般に重合温度の制御は、反応槽のジャケット、反
応槽内に設置したドラフトチューブあるいはコイル等へ
の熱媒循環による伝熱除熱あるいは加熱、反応原料の温
度調整、単量体蒸気の環流冷却等の方法が用いられる。
重合温度の変動が重合発熱量の変動に起因するものであ
れば重合温度の制御は上記方法で可能であるが、重合温
度の変動が重合発熱量の変動と反応原料の供給量の2つ
に起因するものであるとき、変動の周期性が複雑化し管
理するのが難しくなる。したがって、反応原料の供給量
の変動は可能な限り小さいことが好ましい。(qmax−
qmin)/(qmax+qmin)≦0.05であることがよ
り好ましい。
On the other hand, if the fluctuation range of the supply amount of the reaction raw material exceeds the formula (2), the fluctuation of the polymerization temperature is undesirably large. The fluctuation in the supply amount of the reaction raw material means a fluctuation in the amount of heat flowing into the reaction tank. For this reason, the control for keeping the polymerization temperature constant is complicated, and is extremely difficult. Generally, the polymerization temperature is controlled by heat transfer heat removal or heating by circulating a heating medium to a jacket of a reaction tank, a draft tube or a coil installed in the reaction tank, temperature adjustment of reaction raw materials, reflux cooling of monomer vapor, etc. Is used.
If the change in the polymerization temperature is caused by the change in the amount of heat generated by the polymerization, the control of the polymerization temperature can be performed by the above-described method. If it is the cause, the periodicity of the fluctuations becomes complicated and difficult to manage. Therefore, it is preferable that the fluctuation of the supply amount of the reaction raw material is as small as possible. (Qmax-
(qmin) / (qmax + qmin) ≦ 0.05 is more preferable.

【0018】式(2)を満足するように運転する方法と
しては、反応槽の液量の経時変化、及び反応原料の供給
量の経時変化を記録し、まず、目標とする反応槽の液量
を維持するための反応原料の供給量の平均値を求めるこ
とが必要である。該平均値流量値を求めた後は、該平均
流量値を基準として式(2)の範囲内で供給することが
可能となる。
As a method of operating so as to satisfy the equation (2), the change over time in the amount of liquid in the reaction tank and the change over time in the supply amount of the reaction raw material are recorded, and first the amount of liquid in the target reaction tank is recorded. It is necessary to determine the average value of the supply amounts of the reaction raw materials for maintaining the value. After obtaining the average flow rate value, it is possible to supply the average flow rate value within the range of Expression (2) based on the average flow rate value.

【0019】本発明のもう一つの重合方法においては、
反応原料を一定流量で反応槽に供給しつつ、反応槽から
の反応混合物の抜き出し量を、下記式(1)および式
(3)を満足するように調整することにより、反応槽に
おける反応混合物の液量を管理することが重要である。 (Vmax−Vmin)/(Vmax+Vmin)≦0.05 (1) (Qmax−Qmin)/(Qmax+Qmin)≦0.15 (3) ここで、Qmax及びQminの値としては、反応原料の供給
量qが一定の条件で、反応槽の極大液量及び極小液量
と、極大液量及び極小液量を記録した時刻から反応混合
物の抜き出し量をそれぞれ求め、対象とする反応槽運転
期間中における最も多い抜き出し量及び最も少ない抜き
出し量を、それぞれ最大値及び最小値として用いた。
In another polymerization method of the present invention,
By adjusting the amount of the reaction mixture withdrawn from the reaction tank so as to satisfy the following formulas (1) and (3) while supplying the reaction raw materials to the reaction tank at a constant flow rate, the reaction mixture in the reaction tank is adjusted. It is important to control the liquid volume. (Vmax−Vmin) / (Vmax + Vmin) ≦ 0.05 (1) (Qmax−Qmin) / (Qmax + Qmin) ≦ 0.15 (3) Here, as the values of Qmax and Qmin, the supply amount q of the reaction raw material is Under certain conditions, the maximum liquid volume and the minimum liquid volume of the reaction tank, and the amount of the reaction mixture withdrawn from the time when the maximum liquid volume and the minimum liquid volume were recorded, respectively, were obtained, and the most withdrawal during the target reactor operation period was determined. The volume and the least withdrawal volume were used as the maximum and minimum values, respectively.

【0020】この重合方法を重合反応速度論的に考察す
ると以下のようなことが導き出せる。すなわち、反応槽
内は攪拌翼によって十分に攪拌混合が達成されて完全混
合モデルが成り立つと考えると下記式(4)および式
(5)が成立する。 dV/dt=q−Q (4) V・d(1−φ)/dt=q−Q・(1−φ)−V・Kp・CI 0.5・(1−φ) (5) V:反応槽内の液量[m3] q:反応原料の供給量[m3/hr] Q:反応液の抜き出し量[m3/hr] φ:反応液の重合体転化率[−] Kp:重合速度係数[1/(mol/m30.5/hr] CI:反応液中のラジカル開始剤濃度[mol/m3] 式(4)および式(5)中のdV/dt、d(1−φ)
/dtは、それぞれ反応槽における液量の変化速度、重
合体転化率の変化速度を表している。ここで、q=Qを
仮定すれば、式(4)中のdV/dt=0であり、液量
は一定である。しかしながら、実際の運転ではq≠Qで
あり液量は変動している。
Considering the polymerization method kinematically, the following can be derived. That is, when it is considered that the stirring and mixing is sufficiently achieved in the reaction tank by the stirring blade and a complete mixing model is established, the following equations (4) and (5) are established. dV / dt = q−Q (4) V · d (1−φ) / dt = q−Q · (1−φ) −V · Kp · C I 0.5 · (1−φ) (5) V: reaction Liquid amount in tank [m 3 ] q: supply amount of reaction raw material [m 3 / hr] Q: withdrawal amount of reaction liquid [m 3 / hr] φ: conversion of polymer of reaction liquid [−] Kp: polymerization Rate coefficient [1 / (mol / m 3 ) 0.5 / hr] C I : Concentration of radical initiator in reaction solution [mol / m 3 ] dV / dt, d (1) in equations (4) and (5) -Φ)
/ Dt represents the rate of change of the liquid volume and the rate of change of the polymer conversion rate in the reaction tank, respectively. Here, assuming that q = Q, dV / dt = 0 in equation (4), and the liquid amount is constant. However, in actual operation, q ≠ Q, and the liquid amount fluctuates.

【0021】そこで、q=一定の条件下で、液量を管理
するためにQを変動させる場合を考える。すなわち、式
(5)においては、右辺第一項は一定で第二項が変動し
ている場合である。定常運転下においては式(5)中Q
はqに等しくはないもののqにかなり近い値であること
は間違いない。また、重合体転化率φも変動しているが
平均値を例えば0.5とすれば0.5±0.1の範囲に
存在すると考えて差し支えない。ここでQの変動幅ΔQ
が重合体転化率の変化に与える影響を考えると、qに同
じ変動幅ΔQを与えた場合、ΔQ全量が重合体転化率の
変動に影響するのに対して、Qに与えた場合はΔQ(1
−φ)でしか変動を与えないことになる。φ=0.5と
すれば、qを変動させる場合に比べると、Qを変動させ
る場合は重合体転化率の変動は半分になることが示され
る。重合体転化率の変動が小さくなれば、重合体含有率
の変動も小さくなる。
Therefore, a case where Q is varied under the condition of q = constant to control the liquid amount will be considered. That is, in the equation (5), the first term on the right side is constant and the second term fluctuates. Under steady operation, Q in equation (5)
Is not quite equal to q, but is definitely close to q. Also, the polymer conversion rate φ varies, but if the average value is, for example, 0.5, it can be considered that the polymer conversion rate is in the range of 0.5 ± 0.1. Here, the variation width ΔQ of Q
When the same variation width ΔQ is given to q, when the same variation width ΔQ is given to q, the total amount of ΔQ affects the variation of the polymer conversion rate. 1
−φ), the variation is only given. If φ = 0.5, it is shown that when Q is changed, the change in polymer conversion is halved compared to when q is changed. The smaller the variation in polymer conversion, the smaller the variation in polymer content.

【0022】このことから、反応原料の供給速度を一定
にしたままで、反応混合物の抜き出し量によって反応槽
の液量を管理することの方がさらに有利であることが解
る。しかし、反応槽の液量を抜き出し量をもって管理す
れば重合体含有率の変動は小さくなるが、この液量およ
び抜き出し量の変動がいくら大きくても良いということ
ではない。変化量が大きければ本発明の効果は意味のな
いものとなる。したがって本発明の効果を十分に発現す
るためには式(1)および式(3)を満たす範囲をもっ
て管理することが重要である。
From this, it is understood that it is more advantageous to control the liquid amount in the reaction tank based on the amount of the reaction mixture withdrawn while keeping the supply rate of the reaction raw material constant. However, if the amount of liquid in the reaction tank is controlled by the amount of withdrawal, the fluctuation of the polymer content becomes small, but this does not mean that the fluctuation of this amount of liquid and the amount of withdrawal may be large. The effect of the present invention becomes meaningless if the amount of change is large. Therefore, in order to sufficiently exhibit the effects of the present invention, it is important to manage within a range satisfying the expressions (1) and (3).

【0023】式(1)は、反応槽の液量の平均値に対し
て変動幅が10%以内であることを意味している。ま
た、式(3)は、反応混合物の抜き出し量の平均値に対
して変動幅が30%以内であることを意味している。反
応槽の液量管理に集中するあまり、抜き出し量に急激な
変動を与えると次の揮発成分分離工程に変動を与え運転
上支障を与える危険が大きくなるためである。(Qmax
−Qmin)/(Qmax+Qmin)≦0.1であることが好
ましい。
Equation (1) means that the fluctuation range is within 10% of the average value of the liquid volume in the reaction tank. The expression (3) means that the fluctuation range is within 30% with respect to the average value of the amount of the reaction mixture extracted. This is because if the amount of extraction is suddenly changed so much that the concentration of the liquid in the reaction tank is concentrated too much, the next volatile component separation process will be changed and the risk of operation will be increased. (Qmax
It is preferable that (−Qmin) / (Qmax + Qmin) ≦ 0.1.

【0024】式(3)を満足するように運転する方法と
しては、反応槽の液量の経時変化、及び反応混合物の抜
き出し用のギアポンプ回転数の経時変化を記録し、ま
ず、目標とする反応槽の液量を維持するためのギアポン
プ回転数の平均値、並びにギアポンプ1回転あたりの抜
き出し量を求めることが必要である。該平均回転数を求
めた後は、該平均回転数と1回転あたりの抜き出し量を
基準として式(3)の範囲内で反応混合物を抜き出すこ
とが可能となる。
As a method of operating so as to satisfy the expression (3), a time-dependent change in the amount of liquid in the reaction tank and a time-dependent change in the number of rotations of the gear pump for extracting the reaction mixture are recorded. It is necessary to determine the average value of the gear pump rotation speed for maintaining the liquid amount in the tank, and the amount of extraction per rotation of the gear pump. After obtaining the average rotation speed, it becomes possible to extract the reaction mixture within the range of the formula (3) based on the average rotation speed and the extraction amount per rotation.

【0025】本発明の重合方法は、いずれも使用する単
量体に応じた適切な重合温度を選択して実施されるが、
一般に110℃〜170℃の範囲の温度で実質的に一定
温度となるように行うことが好ましい。また、好ましい
重合体含有率は30重量%〜70重量%である。重合体
含有率が低すぎると生産性が低下し工業的に不利とな
る。また重合体含有率が高すぎるとゲル効果による重合
反応の加速現象が著しく反応の制御は困難である。
The polymerization method of the present invention is carried out by selecting an appropriate polymerization temperature according to the monomers used.
In general, it is preferable to perform the treatment so that the temperature is substantially constant at a temperature in the range of 110 ° C to 170 ° C. The preferred polymer content is 30% by weight to 70% by weight. If the polymer content is too low, the productivity will be reduced, which is industrially disadvantageous. On the other hand, if the polymer content is too high, the acceleration of the polymerization reaction due to the gel effect is remarkable, and it is difficult to control the reaction.

【0026】本発明を実施するのに用いられる反応槽は
反応原料の供給口および反応混合物の抜き出し口が設け
られ、攪拌装置を備えた反応槽であり、攪拌装置は反応
域全体にわたる混合性能を持つことが必要である。反応
槽内は不活性ガスを用いて加圧状態とし、反応混合物の
発泡を抑制する。この操作により、反応槽内の液量の検
出が可能となる。液量の検出には、反応槽底部中央にD/
Pセルを設置して液高さの差圧を測定することにより管
理する方法が好ましい。
The reaction vessel used for carrying out the present invention is a reaction vessel provided with a supply port for a reaction raw material and a discharge port for a reaction mixture, and is provided with a stirrer. The stirrer has a mixing performance over the entire reaction zone. It is necessary to have. The inside of the reaction vessel is pressurized using an inert gas to suppress foaming of the reaction mixture. By this operation, the amount of the liquid in the reaction tank can be detected. To detect the liquid volume, D /
A method of controlling by installing a P cell and measuring the differential pressure of the liquid height is preferable.

【0027】また、反応原料の供給および反応混合物の
抜き出しはポンプを用いて行い、反応原料の流路には流
量計を設け、供給量を管理する。抜き出し用のポンプは
ギアポンプが好ましい。重合反応においては、一般に反
応混合物は粘調体であり流量計によって流量を検出する
ことが困難である。
The supply of the reaction raw materials and the withdrawal of the reaction mixture are carried out using a pump, and a flow meter is provided in the flow path of the reaction raw materials to control the supply amount. The pump for withdrawal is preferably a gear pump. In a polymerization reaction, the reaction mixture is generally a viscous body and it is difficult to detect the flow rate with a flow meter.

【0028】また、本発明では、反応原料の供給量、又
は反応混合物の抜き出し量は、反応槽の液量を監視しな
がら手動で設定値を変更してもよく、反応槽の液量のD
/Pセル出力値等を該供給量、または抜き出し用のギア
ポンプ回転数にフィードバックすることにより自動制御
してもよい。
In the present invention, the supply amount of the reaction raw material or the withdrawal amount of the reaction mixture may be manually changed while monitoring the liquid amount in the reaction tank.
Automatic control may be performed by feeding back the / P cell output value or the like to the supply amount or the rotation speed of the extraction gear pump.

【0029】本発明の方法により重合された反応混合物
は、通常、未反応単量体、又は更に溶媒を含む未反応単
量体を主成分とする揮発成分分離工程へ連続的に送ら
れ、170〜290℃に加熱した後、揮発成分の大部分
を減圧下で連続的に分離除去する。重合体中の残存揮発
成分の含有量は、最終的に1重量%以下、好ましくは
0.3重量%以下とされる。
The reaction mixture polymerized by the method of the present invention is usually continuously sent to a volatile component separation step containing unreacted monomers or unreacted monomers containing a solvent as a main component. After heating to 90290 ° C., most of the volatile components are continuously separated off under reduced pressure. The content of the remaining volatile components in the polymer is finally adjusted to 1% by weight or less, preferably 0.3% by weight or less.

【0030】このようにして製造したビニル系重合体を
成形材料として用いる際には、高級アルコール類、高級
脂肪酸エステル類等の滑剤を添加することができる。ま
た、必要に応じて紫外線吸収剤、熱安定剤、着色剤、帯
電防止剤等を添加することができる。
When the vinyl polymer thus produced is used as a molding material, a lubricant such as higher alcohols or higher fatty acid esters can be added. Further, if necessary, an ultraviolet absorber, a heat stabilizer, a coloring agent, an antistatic agent and the like can be added.

【0031】[0031]

【実施例】以下、本発明を実施例によってさらに詳しく
説明するが、本発明はこれらにより限定されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0032】[実施例1]精製されたメチルメタクリレ
ート98wt%およびメチルアクリレート2wt%とか
らなる単量体混合物に対し、n−オクチルメルカプタン
0.15モル%(0.22wt%)およびラジカル重合
開始剤としてtert−ブチルパーオキシ−3,5,5
−トリメチルヘキサノエート1.8×10-3モル%
(0.0040wt%)を混合した反応原料を重合温度
135℃の攪拌混合されている反応槽に連続的に19〜
21kg/hrの流量で供給した。反応混合物の抜き出
しは反応槽底部からギアポンプを用いて抜き出し、ポン
プの回転数は40rpmで一定とした。反応槽内の液量
が80kgとなった時点から反応原料供給量を21kg
/hrで2時間運転し、以後、反応原料供給を19kg
/hrと21kg/hrでそれぞれ4時間ずつ交互に運
転し、100時間連続で運転した。この間の反応槽内の
反応混合物の最大液量は82kg、最小液量は78kg
であった。
Example 1 0.15 mol% (0.22 wt%) of n-octyl mercaptan and a radical polymerization initiator based on a monomer mixture consisting of 98 wt% of purified methyl methacrylate and 2 wt% of methyl acrylate Tert-butylperoxy-3,5,5
-Trimethylhexanoate 1.8 × 10 -3 mol%
(0.0040 wt%) is continuously added to a reaction vessel having a polymerization temperature of 135 ° C. and stirring and mixing.
It was supplied at a flow rate of 21 kg / hr. The reaction mixture was withdrawn from the bottom of the reaction tank using a gear pump, and the rotation speed of the pump was kept constant at 40 rpm. When the amount of liquid in the reaction tank reaches 80 kg, the supply amount of the reaction raw material is reduced to 21 kg.
/ Hr for 2 hours.
/ Hr and 21 kg / hr alternately for 4 hours each, and continuously operated for 100 hours. During this period, the maximum liquid volume of the reaction mixture in the reaction tank was 82 kg, and the minimum liquid volume was 78 kg.
Met.

【0033】連続的に抜き出した反応混合物は引き続き
ベントエクストルーダに供給して未反応単量体を主成分
とする揮発成物を分離除去し、ベントエクストルーダの
先端より重合体をストランド状で取り出しペレタイザー
に通して重合体ペレットを得た。ベントエクストルーダ
を通して回収される重合体と揮発成分量から重合体含有
率を求め、100時間の運転において20時間おきに測
定した結果を表1に示した。また、運転期間中重合温度
は反応槽のジャケット温度によって調整を行い、重合温
度は135℃±1.5℃で管理することが可能であっ
た。ベントエクストルーダは常時安定に運転することが
可能であり、ストランド切れを起こすこともなかった。
The reaction mixture continuously withdrawn is continuously supplied to a vent extruder to separate and remove volatile substances mainly composed of unreacted monomers. To obtain polymer pellets. The polymer content was determined from the polymer recovered through the vent extruder and the amount of volatile components, and the results of measurement at intervals of 20 hours during 100 hours of operation are shown in Table 1. Further, during the operation period, the polymerization temperature was adjusted by the jacket temperature of the reaction tank, and the polymerization temperature could be controlled at 135 ° C. ± 1.5 ° C. The vent extruder was able to operate stably at all times, and did not break the strand.

【0034】[比較例1]反応原料供給量を最初の2時
間は24kg/hr、以後、16kg/hrと24kg
/hrでそれぞれ4時間ずつ交互に運転した以外は実施
例1と同じく100時間連続で運転した。この間の反応
槽内の反応混合物の最大液量は88kg、最小液量は7
2kgであった。20時間おきの測定結果を表1に示し
た。重合体含有率の変動が大きいのと合わせて、重合温
度の変動が大きく、ジャケット温度の調整によっても一
定に管理することは難しかった。また、運転期間中ベン
トエクストルーダ出口におけるストランド切れが10回
と多発し、運転継続に苦労した。
[Comparative Example 1] The supply amount of the reaction raw material was set to 24 kg / hr for the first two hours, and thereafter to 16 kg / hr and 24 kg / hr.
The operation was continued for 100 hours in the same manner as in Example 1 except that the operation was alternately performed for 4 hours each at / hr. During this time, the maximum liquid volume of the reaction mixture in the reaction tank was 88 kg, and the minimum liquid volume was 7 kg.
It was 2 kg. Table 1 shows the measurement results every 20 hours. In addition to the large fluctuations in the polymer content, the fluctuations in the polymerization temperature were large, and it was difficult to control the polymerization temperature constantly even by adjusting the jacket temperature. In addition, the number of strand breaks at the outlet of the vent extruder during the operation was as many as 10 times, and it was difficult to continue the operation.

【0035】[0035]

【表1】 [実施例2]精製されたメチルメタクリレート98wt
%およびメチルアクリレート2wt%からなる単量体混
合物に対し、n−オクチルメルカプタン0.15モル%
(0.22wt%)およびラジカル重合開始剤としてt
ert−ブチルパーオキシ−3,5,5−トリメチルヘ
キサノエート1.8×10-3モル(0.0040wt
%)を混合した反応原料を重合温度135℃の攪拌混合
されている反応槽に連続的に20kg/hrの一定速度
で供給した。
[Table 1] [Example 2] 98 wt% of purified methyl methacrylate
% And n-octyl mercaptan 0.15 mol% with respect to a monomer mixture consisting of
(0.22 wt%) and t as a radical polymerization initiator
ert-butylperoxy-3,5,5-trimethylhexanoate 1.8 × 10 -3 mol (0.0040 wt.
%) Was continuously supplied at a constant rate of 20 kg / hr to a reaction tank having a polymerization temperature of 135 ° C. and being stirred and mixed.

【0036】反応槽内の液量が80kgとなった時点か
らギアポンプ回転数38rpmで反応液の抜き出しを2
時間行い、以後、42rpmと38rpmでそれぞれ4
時間ずつ交互に100時間連続で運転した。この間の反
応槽内の反応混合物の最大液量は82kg、最小液量は
78kgであった。同じくこの間の反応槽内の反応混合
物の極大液量は82kg、4時間後に極小液量が78k
gとなり、再び4時間後の極大液量が82kgとなり、
以降同様の変化を繰り返したため、反応混合物抜き出し
量の最小値を19kg/hr、最大値を21kg/hr
とした。
When the liquid volume in the reaction tank reached 80 kg, the reaction liquid was withdrawn at a gear pump rotation speed of 38 rpm for 2 seconds.
Time, then 4 rpm at 42 rpm and 38 rpm respectively
The operation was continued for 100 hours alternately every hour. During this time, the maximum amount of the reaction mixture in the reaction tank was 82 kg, and the minimum amount was 78 kg. Similarly, the maximum liquid volume of the reaction mixture in the reaction tank during this period was 82 kg, and the minimum liquid volume after 78 hours was 78 k.
g, and the maximum liquid amount after 4 hours becomes 82 kg again.
Since the same change was repeated thereafter, the minimum value of the reaction mixture withdrawal amount was 19 kg / hr and the maximum value was 21 kg / hr.
And

【0037】連続的に抜き出した反応混合物は引き続き
ベントエクストルーダに供給して未反応単量体を主成分
とする揮発成物を分離除去し、重合体を得た。ベントエ
クストルーダを通して回収される重合体と揮発成分量か
ら重合体含有率を求め、100時間の運転において20
時間おきに測定した結果を表1に示した。また、運転期
間中重合温度は反応槽のジャケット温度によって調整し
たが、ジャケット温度は135±2℃でほとんど操作す
る必要がなかった。
The reaction mixture continuously withdrawn was continuously supplied to a vent extruder to separate and remove volatile substances mainly composed of unreacted monomers to obtain a polymer. The polymer content was determined from the amount of the polymer recovered through the vent extruder and the amount of the volatile component, and the polymer content was determined to be 20 in 100 hours of operation.
Table 1 shows the results measured at intervals. Further, during the operation period, the polymerization temperature was adjusted by the jacket temperature of the reaction tank, but the jacket temperature was 135 ± 2 ° C., and almost no operation was required.

【0038】[比較例2]ギアポンプ回転数を最初の2
時間は32rpm、以後、48rpmと32rpmでそ
れぞれ4時間ずつ交互に運転した以外は実施例1と同じ
く100時間連続で運転した。この間の反応槽内の反応
混合物の最大液量は88kg、最小液量は72kgであ
った。同じくこの間の反応槽内の反応混合物の極大液量
は88kg、4時間後に極小液量が72kgとなり、再
び4時間後に極大液量が88kgとなり、以降同様の変
動を繰り返したため、反応混合物抜き出し量の最小値を
16kg/hr、最大値を24kg/hrとした。20
時間おきの測定結果を表2に示した。重合体含有率の変
動が大きいのと合わせて、重合温度の変動が大きく、ジ
ャケット温度の調整によっても一定に管理することは難
しかった。また、運転期間中ベントエクストルーダのベ
ントアップが7回発生し、運転継続に苦労した。
[Comparative Example 2] The gear pump speed was set to the first 2
The operation was continued for 100 hours in the same manner as in Example 1 except that the operation was performed at 32 rpm, and thereafter, the operation was alternately performed at 48 rpm and 32 rpm for 4 hours each. During this time, the maximum amount of the reaction mixture in the reaction tank was 88 kg, and the minimum amount was 72 kg. Similarly, the maximum liquid amount of the reaction mixture in the reaction tank during this period was 88 kg, the minimum liquid amount was 72 kg after 4 hours, the maximum liquid amount was 88 kg again after 4 hours, and the same fluctuation was repeated thereafter. The minimum value was 16 kg / hr, and the maximum value was 24 kg / hr. 20
Table 2 shows the measurement results every hour. In addition to the large fluctuations in the polymer content, the fluctuations in the polymerization temperature were large, and it was difficult to control the polymerization temperature constantly even by adjusting the jacket temperature. In addition, vent up of the vent extruder occurred seven times during the operation period, and it was difficult to continue operation.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】本発明によれば、気相部を有する完全混
合型反応槽を用いてビニル系単量体を連続的に重合を行
うに際し、重合体含有率、重合温度の変動が小さく安定
にかつ均一な重合体を製造することができる。
According to the present invention, when a vinyl monomer is continuously polymerized using a complete mixing type reaction vessel having a gas phase, fluctuations in polymer content and polymerization temperature are small and stable. And a uniform polymer can be produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相部を有する完全混合型反応槽を用い
て、ビニル系単量体をラジカル重合開始剤の存在下、連
続的に塊状重合法または溶液重合法で重合するに際し、
反応槽から反応混合物を一定流量で抜き出しつつ、反応
原料の反応槽への供給量を、下記式(1)および式
(2)を満足するように調整することにより、反応槽内
における反応混合物の液量を管理することを特徴とする
ビニル系単量体の重合方法。 (Vmax−Vmin)/(Vmax+Vmin)≦0.05 (1) Vmax:反応槽内の反応混合物の最大液量[kg] Vmin:反応槽内の反応混合物の最小液量[kg] (qmax−qmin)/(qmax+qmin)≦0.1 (2) qmax:反応原料供給量の最大値[kg/hr] qmin:反応原料供給量の最小値[kg/hr]
When a vinyl monomer is continuously polymerized by a bulk polymerization method or a solution polymerization method in the presence of a radical polymerization initiator using a complete mixing type reaction vessel having a gas phase part,
While extracting the reaction mixture at a constant flow rate from the reaction tank, the supply amount of the reaction raw materials to the reaction tank is adjusted so as to satisfy the following equations (1) and (2), whereby the reaction mixture in the reaction tank is adjusted. A method for polymerizing a vinyl monomer, comprising controlling a liquid amount. (Vmax−Vmin) / (Vmax + Vmin) ≦ 0.05 (1) Vmax: Maximum liquid amount of the reaction mixture in the reaction tank [kg] Vmin: Minimum liquid amount of the reaction mixture in the reaction tank [kg] (qmax−qmin ) / (Qmax + qmin) ≦ 0.1 (2) qmax: maximum value [kg / hr] of reaction material supply amount qmin: minimum value [kg / hr] of reaction material supply amount
【請求項2】 気相部を有する完全混合型反応槽を用い
て、ビニル系単量体をラジカル重合開始剤の存在下、連
続的に塊状重合法または溶液重合法で重合するに際し、
反応原料を一定流量で反応槽に供給しつつ、反応槽から
の反応混合物の抜き出し量を、前記式(1)および下記
式(3)を満足するように調整することにより、反応槽
における反応混合物の液量を管理することを特徴とする
ビニル系単量体の重合方法。 (Qmax−Qmin)/(Qmax+Qmin)≦0.15 (3) Qmax:反応混合物抜き出し量の最大値[kg/hr] Qmin:反応混合物抜き出し量の最小値[kg/hr]
2. When a vinyl monomer is continuously polymerized by a bulk polymerization method or a solution polymerization method in the presence of a radical polymerization initiator using a complete mixing type reaction vessel having a gas phase part,
By supplying the reaction raw material to the reaction tank at a constant flow rate and adjusting the amount of the reaction mixture withdrawn from the reaction tank so as to satisfy the above formula (1) and the following formula (3), the reaction mixture in the reaction tank is adjusted. A method for polymerizing a vinyl monomer, comprising controlling the amount of a liquid. (Qmax−Qmin) / (Qmax + Qmin) ≦ 0.15 (3) Qmax: Maximum value of withdrawal amount of reaction mixture [kg / hr] Qmin: Minimum value of withdrawal amount of reaction mixture [kg / hr]
JP06713499A 1999-03-12 1999-03-12 Polymerization method of vinyl polymer Expired - Lifetime JP3565736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06713499A JP3565736B2 (en) 1999-03-12 1999-03-12 Polymerization method of vinyl polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06713499A JP3565736B2 (en) 1999-03-12 1999-03-12 Polymerization method of vinyl polymer

Publications (2)

Publication Number Publication Date
JP2000264904A true JP2000264904A (en) 2000-09-26
JP3565736B2 JP3565736B2 (en) 2004-09-15

Family

ID=13336135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06713499A Expired - Lifetime JP3565736B2 (en) 1999-03-12 1999-03-12 Polymerization method of vinyl polymer

Country Status (1)

Country Link
JP (1) JP3565736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130264A1 (en) * 2018-12-18 2020-06-25 (주) 엘지화학 Manufacturing method and device for aromatic vinyl compound-vinyl cyanide compound polymer
US11512153B2 (en) 2018-12-18 2022-11-29 Lg Chem, Ltd. Method of preparing aromatic vinyl compound-vinyl cyanide compound polymer and apparatus for preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130264A1 (en) * 2018-12-18 2020-06-25 (주) 엘지화학 Manufacturing method and device for aromatic vinyl compound-vinyl cyanide compound polymer
US11512153B2 (en) 2018-12-18 2022-11-29 Lg Chem, Ltd. Method of preparing aromatic vinyl compound-vinyl cyanide compound polymer and apparatus for preparing the same

Also Published As

Publication number Publication date
JP3565736B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP3628518B2 (en) Methacrylic polymer and process for producing the same
KR101252299B1 (en) Apparatus for continuous polymerization and method for continuous polymerizing using the same
JP5581288B2 (en) Process for the production of peroxydicarbonate and its use in radical polymerization of monomers
Nomura et al. Continuous flow operation in emulsion polymerization of styrene
US3451985A (en) Method of polymerizing vinyl monomers
JPH07126308A (en) Production of methacrylic polymer
US5728793A (en) Process for production of methacrylate polymers
SG184487A1 (en) Apparatus and process for producing methacrylic polymer
US4388447A (en) Process for producing rubber modified styrene resins
JP4508644B2 (en) Continuous addition of very fast initiator during the polymerization reaction
JP3565736B2 (en) Polymerization method of vinyl polymer
JP5340910B2 (en) Continuous production method of vinyl chloride (co) polymer
JP3453510B2 (en) Method for producing methacrylic polymer
JP3565229B2 (en) Method for producing methacrylic resin
JP3434225B2 (en) Method for producing methacrylic polymer
JP6007896B2 (en) Method for producing methacrylic polymer
JP2001233912A (en) Manufacturing method of methacrylic polymer
SE457448B (en) DIALKYL ESTERS OF MONOPEROXYOXAL ACID, THEIR PREPARATION AND APPLICATION AS POLYMERIZATION INITIATORS
JPH09268202A (en) Syrup and production of the same
KR100653502B1 (en) Method for Preparing Poly methacrylate Using Static Mixer
JPH07206906A (en) Methacrylic resin having resistance to thermal decomposition and its production
EP0064259A1 (en) Process for polymerization of vinyl monomers with improved kinetic rate profile
JP3319483B2 (en) Methacrylic resin having thermal decomposition resistance and method for producing the same
JP2006188612A (en) Method for producing methacrylic resin
JPS631321B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term