JP2000262907A - Integrated catalyst and its production - Google Patents

Integrated catalyst and its production

Info

Publication number
JP2000262907A
JP2000262907A JP11073129A JP7312999A JP2000262907A JP 2000262907 A JP2000262907 A JP 2000262907A JP 11073129 A JP11073129 A JP 11073129A JP 7312999 A JP7312999 A JP 7312999A JP 2000262907 A JP2000262907 A JP 2000262907A
Authority
JP
Japan
Prior art keywords
catalyst
aqueous solution
metal
integrated
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11073129A
Other languages
Japanese (ja)
Other versions
JP3932335B2 (en
Inventor
Masaki Haruta
正毅 春田
Mitsutaka Okumura
光隆 奥村
Osamu Kajikawa
修 梶川
Osamu Okada
治 岡田
Keiichi Den
慶一 傳
Yoshio O
祥生 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Osaka Gas Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Osaka Gas Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP07312999A priority Critical patent/JP3932335B2/en
Publication of JP2000262907A publication Critical patent/JP2000262907A/en
Application granted granted Critical
Publication of JP3932335B2 publication Critical patent/JP3932335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst which effectively develops activity for a plurality of substances of different kinds at a time. SOLUTION: This integrated catalyst consists of catalyst unit groups containing a large number of catalyst units of a plurality of kinds. The catalyst units aggregate in a nanometer level to form the catalyst unit group. Each catalyst unit of a plurality of kinds has the individual catalytic function, and at least one kind of catalyst unit is selected to be able to complement the catalytic function of at least one of other kinds of catalytic units. Further, each catalyst unit of the plurality of kinds consists of, for example, a metal oxide and a metal element. In this method, the metal oxide and the metal element in at least one kind of the plurality kinds of catalytic units are determined as a combination which can synergically enhance the catalytic function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、触媒、特に集積化触媒
に関する。
The present invention relates to catalysts, and more particularly to integrated catalysts.

【0002】[0002]

【従来の技術とその課題】廃棄物焼却施設や自動車から
排出される排気ガス中には、一酸化炭素、アルデヒド
類、硫化物、炭化水素類、窒素化合物および有機塩素化
合物などをはじめとする多種類の有害物質が含まれてい
る。このため、廃棄物焼却施設等においては、触媒を用
いて排気ガスを処理し、そこに含まれる有害物質の濃度
を低減するよう試みられている。
2. Description of the Related Art Exhaust gas emitted from waste incineration facilities and automobiles contains many substances including carbon monoxide, aldehydes, sulfides, hydrocarbons, nitrogen compounds and organic chlorine compounds. Contains various types of harmful substances. For this reason, in waste incineration facilities and the like, attempts have been made to treat exhaust gas using a catalyst to reduce the concentration of harmful substances contained therein.

【0003】ところで、触媒は、通常、特定の種類の有
害物質に対してのみ特有の分解活性を示し、あらゆる種
類の有害物質に対して普遍的な分解活性を示すものでは
ない。また、有害物質のうちのある種のものは、特定の
触媒を不活性化してしまうことさえある。例えば、二酸
化ズスに白金元素を担持させた触媒は、高温領域におい
て炭化水素類に対して高い酸化分解活性を示すが、低温
領域においては一酸化炭素により被毒され、不活性化さ
れ易い。このため、多種類の有害物質を含む排気ガスを
効果的に処理する必要がある場合は、有害物質の種類に
応じた多種類の触媒を組合せて用いる方法、例えば、多
種類の既存の触媒を均一に混合して用いる方法が考えら
れる。
[0003] Incidentally, the catalyst usually shows a peculiar decomposition activity only for a specific kind of harmful substance, and does not show a universal decomposition activity for all kinds of harmful substances. Also, some of the harmful substances may even deactivate certain catalysts. For example, a catalyst in which platinum element is supported on soot has high oxidative decomposition activity for hydrocarbons in a high temperature range, but is easily poisoned and inactivated by carbon monoxide in a low temperature range. For this reason, when it is necessary to effectively treat exhaust gas containing many kinds of harmful substances, a method using a combination of many kinds of catalysts according to the kind of harmful substances, for example, using many kinds of existing catalysts A method of uniformly mixing and using is considered.

【0004】しかし、多種類の触媒を混合したような場
合は、たとえ触媒を均一に混合したとしても、種類の異
なる触媒がμmレベルで大きく離れて位置することにな
る。触媒による有害物質の分解は、触媒上での分子レベ
ルの反応によるものであることから、分子レベルでみた
場合に種類の異なる触媒が近接していない限り、多種類
の有害物質を同時に効果的に分解するのは困難である。
However, in the case where various types of catalysts are mixed, even if the catalysts are mixed uniformly, different types of catalysts are located far apart at the μm level. Since the decomposition of harmful substances by the catalyst is based on the reaction at the molecular level on the catalyst, multiple types of harmful substances can be effectively and simultaneously effective unless different types of catalysts are close to each other at the molecular level. It is difficult to disassemble.

【0005】本発明の目的は、種類の異なる複数の物質
に対する活性を同時に効果的に発揮し得る触媒を実現す
ることにある。
An object of the present invention is to provide a catalyst which can simultaneously and effectively exert activities on a plurality of different types of substances.

【0006】[0006]

【課題を解決するための手段】本発明に係る集積化触媒
は、複数種類の触媒単位を多数含む触媒単位群からな
り、触媒単位はナノメートルレベルで集合して触媒単位
群を形成している。
The integrated catalyst according to the present invention comprises a group of catalyst units including a large number of catalyst units of a plurality of types, and the catalyst units are assembled at a nanometer level to form a group of catalyst units. .

【0007】ここで、複数種類の触媒単位は、例えば、
それぞれが独自の触媒機能を有しており、かつ少なくと
も1種の触媒単位が他の種類の触媒単位のうちの少なく
とも1種の触媒機能を補完可能なように選択されてい
る。また、複数種類の触媒単位のそれぞれは、例えば、
金属酸化物と金属元素との組合わせからなる。この場
合、複数種類の触媒単位のうちの少なくとも1種のもの
の金属酸化物と金属元素とは、触媒機能を相乗的に高め
得る組合わせに設定されている。
Here, the plurality of types of catalyst units are, for example,
Each has its own catalytic function and at least one catalytic unit is selected to be able to complement at least one catalytic function of the other catalytic units. Further, each of the plurality of types of catalyst units is, for example,
It consists of a combination of a metal oxide and a metal element. In this case, the metal oxide and the metal element of at least one of the plurality of types of catalyst units are set to a combination capable of synergistically enhancing the catalytic function.

【0008】なお、上述の触媒単位群は、例えば、担体
上に配置されている。この場合、担体は、例えば、活性
炭および活性炭素繊維のうちから選ばれた1種である。
The above-mentioned catalyst unit group is disposed, for example, on a carrier. In this case, the carrier is, for example, one selected from activated carbon and activated carbon fiber.

【0009】本発明に係る集積化触媒の一形態は、金元
素が三酸化二鉄上に担持された第1触媒単位、白金元素
が二酸化スズ上に担持された第2触媒単位およびイリジ
ウム元素が酸化ランタン上に担持された第3触媒単位を
それぞれ多数含む触媒単位群からなり、第1触媒成分、
第2触媒成分および第3触媒成分がナノメートルレベル
で集合して触媒単位群を形成している。この形態に係る
集積化触媒では、例えば、触媒単位群が活性炭および活
性炭素繊維のうちから選ばれた1種の担体上に配置され
ている。
One embodiment of the integrated catalyst according to the present invention comprises a first catalyst unit in which a gold element is supported on diiron trioxide, a second catalyst unit in which a platinum element is supported on tin dioxide, and an iridium element. A catalyst unit group comprising a large number of third catalyst units each supported on lanthanum oxide; a first catalyst component;
The second catalyst component and the third catalyst component assemble at a nanometer level to form a catalyst unit group. In the integrated catalyst according to this embodiment, for example, the catalyst unit group is disposed on one type of carrier selected from activated carbon and activated carbon fiber.

【0010】本発明に係る集積化触媒の製造方法は、金
属酸化物に対して特定の金属元素が組み合わされた触媒
単位の複数種類がナノメートルレベルで多数集合した集
積化触媒を製造するための方法であり、ナノメートルレ
ベルで集積された、複数種類の金属酸化物を含む金属酸
化物群を調製する第1の工程と、金属酸化物群に含まれ
る金属酸化物のそれぞれに対し、それに対応する金属元
素を選択的に担持させる第2の工程とを含んでいる。
The method for producing an integrated catalyst according to the present invention is intended to produce an integrated catalyst in which a plurality of types of catalyst units in which a specific metal element is combined with a metal oxide are assembled at a nanometer level. A first step of preparing a metal oxide group including a plurality of types of metal oxides integrated at the nanometer level, and corresponding to each of the metal oxides included in the metal oxide group. A second step of selectively supporting the metal element to be carried out.

【0011】ここで、第2の工程は、例えば、複数種類
の金属酸化物の等電点の差を利用して、金属酸化物群の
うちの1種類の金属酸化物のみに対してそれに対応する
金属元素のイオンを選択的に付着させる工程と、当該金
属元素のイオンを金属元素に変換する工程とを含み、こ
れらの工程からなる多段工程を金属酸化物群に含まれる
金属酸化物の種類毎に繰り返している。
In the second step, for example, utilizing only a difference in isoelectric point between a plurality of types of metal oxides, only one type of metal oxide in the group of metal oxides is used. A step of selectively adhering ions of the metal element to be performed, and a step of converting the ions of the metal element to a metal element. It repeats every time.

【0012】このような第2の工程において、金属元素
のイオンを金属元素に変換する工程は、例えば、金属元
素のイオンを金属元素の水酸化物に誘導する工程と、当
該水酸化物を金属元素に変換する工程とを含んでいる。
In the second step, the step of converting the metal element ion into the metal element includes, for example, a step of inducing the metal element ion to a metal element hydroxide and a step of converting the metal hydroxide to a metal element hydroxide. Converting to an element.

【0013】なお、本発明に係る上述の集積化触媒の製
造方法は、例えば、金属酸化物に変換可能な金属酸化物
前駆体と、当該金属酸化物に対応する金属元素に変換可
能な金属元素前駆体とを同時に析出させる工程と、金属
酸化物前駆体および金属元素前駆体をそれぞれ金属酸化
物および金属元素に変換する工程とを含む第3の工程を
さらに含んでいてもよい。
The above-described method for producing an integrated catalyst according to the present invention comprises, for example, a metal oxide precursor that can be converted to a metal oxide and a metal element that can be converted to a metal element corresponding to the metal oxide. The method may further include a third step including a step of simultaneously depositing the precursor and a step of converting the metal oxide precursor and the metal element precursor into a metal oxide and a metal element, respectively.

【0014】この場合、第3の工程は、複数回繰り返さ
れてもよい。また、上述の第2の工程における多段工程
を繰り返す間に、第3の工程を少なくとも1回実施して
もよい。
In this case, the third step may be repeated a plurality of times. In addition, the third step may be performed at least once while the multi-step step in the second step is repeated.

【0015】本発明に係る他の集積化触媒の製造方法
は、本発明に係る集積化触媒の上述の一形態に係るも
の、すなわち、金元素が三酸化二鉄上に担持された第1
触媒単位、白金元素が二酸化スズ上に担持された第2触
媒単位およびイリジウム元素が酸化ランタン上に担持さ
れた第3触媒単位をそれぞれ多数含む触媒単位群からな
り、第1触媒成分、第2触媒成分および第3触媒成分が
ナノメートルレベルで集合して触媒単位群を形成してい
る集積化触媒を製造するための方法である。この製造方
法は、下記の工程を含んでいる。
Another method for producing an integrated catalyst according to the present invention relates to the above-described embodiment of the integrated catalyst according to the present invention, that is, the first method in which a gold element is supported on diiron trioxide.
A first catalyst component, a second catalyst unit including a large number of catalyst units, a second catalyst unit in which platinum element is supported on tin dioxide, and a catalyst unit group including a large number of third catalyst units in which iridium element is supported on lanthanum oxide; A method for producing an integrated catalyst in which a component and a third catalyst component are assembled at a nanometer level to form a group of catalyst units. This manufacturing method includes the following steps.

【0016】◎ナノメートルレベルで集積された、三酸
化二鉄と二酸化スズとを含む水溶液を調製する工程。 ◎水溶液に白金化合物を溶解しかつ当該水溶液のpHを
二酸化スズの等電点よりもアルカリ性側でありかつ三酸
化二鉄の等電点より酸性側に設定して、白金化合物から
の白金陽イオンを二酸化スズのみに選択的に付着させ、
水溶液のpHを三酸化二鉄の等電点を越えない範囲でさ
らにアルカリ性側に調整して白金陽イオンから水酸化白
金を誘導する工程。 ◎水酸化白金を加熱処理して白金元素に変換する工程。 ◎水溶液に金化合物を溶解しかつ水溶液のpHを二酸化
スズの等電点と三酸化二鉄の等電点との間に設定して、
金化合物からの金陰イオンを三酸化二鉄のみに選択的に
付着させ、水溶液のpHをさらにアルカリ性側に調整し
て金陰イオンから水酸化金を誘導する工程。 ◎水酸化金を加熱処理して金元素に変換する工程。 ◎水溶液にランタン塩とイリジウム塩とを溶解した後、
当該水溶液のpHを調整して、水溶液内に水酸化ランタ
ンと水酸化イリジウムとを生成させる工程。 ◎水酸化ランタンおよび水酸化イリジウムを加熱処理
し、それぞれを酸化ランタンおよびイリジウム元素に変
換する工程。
A step of preparing an aqueous solution containing diiron trioxide and tin dioxide accumulated at the nanometer level. ◎ The platinum compound is dissolved in the aqueous solution and the pH of the aqueous solution is set to be more alkaline than the isoelectric point of tin dioxide and more acidic than the isoelectric point of diiron trioxide, and the platinum cation from the platinum compound is dissolved. Selectively adheres only to tin dioxide,
Inducing platinum hydroxide from platinum cations by further adjusting the pH of the aqueous solution to an alkaline side within a range not exceeding the isoelectric point of ferric trioxide. ◎ Process of heat-treating platinum hydroxide to convert it to platinum element. ◎ Dissolve the gold compound in the aqueous solution and set the pH of the aqueous solution between the isoelectric point of tin dioxide and the isoelectric point of diiron trioxide,
A step of selectively adhering a gold anion from a gold compound only to diiron trioxide and further adjusting the pH of the aqueous solution to an alkaline side to induce gold hydroxide from the gold anion. ◎ Step of heat-treating gold hydroxide to convert it to gold element. ◎ After dissolving the lanthanum salt and the iridium salt in the aqueous solution,
Adjusting the pH of the aqueous solution to generate lanthanum hydroxide and iridium hydroxide in the aqueous solution. A step of heat-treating lanthanum hydroxide and iridium hydroxide to convert them into lanthanum oxide and iridium, respectively;

【0017】[0017]

【発明の実施の形態】本発明の集積化触媒は、多数の触
媒単位を含んでいる。本発明において、触媒単位とは、
それ自体で独自の触媒機能を発揮し得る単位を言う。例
えば、金属元素、金属酸化物、および金属元素と金属酸
化物との組合せ(以下、「複合触媒」と称する場合があ
る)などが本発明における触媒単位である。
DETAILED DESCRIPTION OF THE INVENTION The integrated catalyst of the present invention contains a large number of catalyst units. In the present invention, the catalyst unit is
A unit that can exhibit its own catalytic function by itself. For example, a catalyst element in the present invention includes a metal element, a metal oxide, and a combination of a metal element and a metal oxide (hereinafter, may be referred to as a “composite catalyst”).

【0018】ここで、金属元素は、例えば各種の排気ガ
ス中に含まれる各種の有害物質のうちの少なくとも一成
分を分解し得る触媒機能を発揮し得ることが知れられて
いる公知のものであり、具体的には、金、白金、イリジ
ウム、ルテニウム、ロジウム、パラジウムおよび銀を例
示することができる。
Here, the metal element is a known metal element which is known to be capable of decomposing at least one of various harmful substances contained in various exhaust gases, for example. Specifically, gold, platinum, iridium, ruthenium, rhodium, palladium and silver can be exemplified.

【0019】また、金属酸化物は、上述の金属元素の担
体または助触媒として金属元素と同様の触媒機能を発揮
し得ることが知られている公知のものであり、具体的に
は、三酸化二鉄(Fe23)、二酸化スズ(SnO2
および酸化ランタン(La2 3)を例示することができ
る。その他にも、金属酸化物としては、アルミニウム、
ケイ素、マグネシウム、チタン、バナジウム、マンガ
ン、コバルト、ニッケル、銅、亜鉛、ジルコニウム、ニ
オブ、モリブデン、タングステン、セリウム、プラセオ
ジムなどの金属元素の酸化物を挙げることができる。
In addition, the metal oxide carries the above-mentioned metal element.
Exhibits the same catalytic function as metal elements as a body or co-catalyst
It is a known thing that is known to be able to
Is diiron trioxide (FeTwoOThree), Tin dioxide (SnO)Two)
And lanthanum oxide (LaTwoO Three) Can be illustrated
You. Other metal oxides include aluminum,
Silicon, magnesium, titanium, vanadium, manga
, Cobalt, nickel, copper, zinc, zirconium,
Of, molybdenum, tungsten, cerium, praseo
An oxide of a metal element such as gym can be given.

【0020】さらに、金属元素と金属酸化物とが組合せ
られたもの、すなわち複合触媒は、例えば、上述の金属
元素のうちの1つと、上述の金属酸化物のうちの1つと
を組合せたものである。より具体的には、三酸化二鉄に
金元素が担持されたもの、二酸化スズに白金が担持され
たもの、および酸化ランタンにイリジウムが担持された
ものなどを例示することができる。
Further, a combination of a metal element and a metal oxide, that is, a composite catalyst is, for example, a combination of one of the above metal elements and one of the above metal oxides. is there. More specifically, a material in which diiron trioxide carries a gold element, a material in which tin dioxide carries platinum, and a material in which lanthanum oxide carries iridium can be exemplified.

【0021】複合触媒の触媒単位は、それを構成する金
属元素と金属酸化物とが機能を分担し、しかも所要の触
媒機能を互いに高め合い得る相乗効果を有するように金
属元素と金属酸化物とが組合されているのが好ましい。
例えば、炭化水素類に対する酸化分解において気相酸素
の取り込みを容易に行うことができる二酸化スズに白金
元素を担持させた触媒単位は、二酸化スズ単独または白
金元素単独で達成できる炭化水素類に対する酸化分解活
性に比べ、両者が組合されると、当該酸化分解活性が相
乗的に高まる。また、NOxと親和性を有する酸化ラン
タンにアミン類に対する分解活性を有するイリジウム元
素を担持させた触媒単位は、酸化ランタン単独またはイ
リジウム元素単独でも同様にアミン類に対する分解活性
を示し得るが、両者が組合されると、当該分解活性が相
乗的に高まる。
The catalyst unit of the composite catalyst is composed of the metal element and the metal oxide such that the metal element and the metal oxide constituting the catalyst unit share functions and have a synergistic effect that can enhance the required catalyst functions. Are preferably combined.
For example, a catalyst unit in which platinum element is supported on tin dioxide, which can easily take in gas phase oxygen in the oxidative decomposition of hydrocarbons, can be oxidized by hydrocarbons that can be achieved by tin dioxide alone or platinum element alone. Compared with the activity, when both are combined, the oxidative decomposition activity increases synergistically. Further, the catalyst units is supported iridium element having a decomposition activity for amines lanthanum oxide having an affinity for NO x is may exhibit degradation activity against Likewise amines in lanthanum oxide alone or iridium alone, both Are combined, the decomposition activity increases synergistically.

【0022】本発明の集積化触媒は、上述のような触媒
単位を複数種類含んでいる。触媒単位の種類の組合せ
は、特に限定されるものではなく、例えば、複数の種類
の金属元素の組合せ、複数の種類の金属酸化物の組合
せ、複数の種類の複合触媒の組合せ、並びに金属元素、
金属酸化物および複合触媒のうちの2種以上の組合せな
どである。なお、本発明では、所要の触媒機能を最も効
果的に発揮し得ることから、複数の種類の触媒単位のそ
れぞれが、いずれも複合触媒であるもの、すなわち、金
属酸化物と金属元素との組合せからなるものが好まし
い。
The integrated catalyst of the present invention contains a plurality of types of the above catalyst units. The combination of the types of the catalyst units is not particularly limited, for example, a combination of a plurality of types of metal elements, a combination of a plurality of types of metal oxides, a combination of a plurality of types of composite catalysts, and a metal element,
It is a combination of two or more of a metal oxide and a composite catalyst. In the present invention, since the required catalytic function can be exhibited most effectively, each of a plurality of types of catalyst units is a composite catalyst, that is, a combination of a metal oxide and a metal element. Is preferred.

【0023】触媒の機能的観点からの触媒単位の組合せ
は、本発明の集積化触媒の用途、換言すると、本発明の
集積化触媒に求められる触媒機能に応じて適宜設定する
ことができ、特に限定されるものではないが、通常は、
各触媒単位が他の触媒単位とは異なる独自の触媒機能を
有し、少なくとも1種の触媒単位が他の触媒単位のうち
の少なくとも1種の触媒単位の触媒機能を補完可能なよ
うに設定されているのが好ましい。因みに、ここで言う
「触媒機能の補完」とは、ある触媒単位が他の触媒単位
の触媒活性を維持しまたは促進するようなことを言う。
The combination of catalyst units from the functional viewpoint of the catalyst can be appropriately set according to the use of the integrated catalyst of the present invention, in other words, the catalyst function required for the integrated catalyst of the present invention. Although not limited, usually
Each catalyst unit has a unique catalyst function different from other catalyst units, and at least one catalyst unit is set so as to complement the catalyst function of at least one catalyst unit of the other catalyst units. Is preferred. Incidentally, the term "complementary to the catalytic function" as used herein means that one catalytic unit maintains or promotes the catalytic activity of another catalytic unit.

【0024】例えば、炭化水素類に対する酸化分解活性
を示す、二酸化スズに白金元素を担持させた触媒単位、
およびNOxと親和性を示す酸化ランタンにアミン類に
対する分解活性を示すイリジウム元素を担持させた触媒
単位のうちの少なくとも1種を用いる場合、これらの触
媒単位は炭化水素類またはアミン類を分解したときに生
成する一酸化炭素により自らが被毒されて触媒活性を喪
失し易いので、それらの触媒単位の触媒活性を維持させ
るために、一酸化炭素に対する分解活性を示す、三酸化
二鉄に金元素を担持させた触媒単位を組合せるのが好ま
しい。
For example, a catalyst unit having platinum element supported on tin dioxide, which exhibits oxidative decomposition activity for hydrocarbons,
And NO x in the case of using at least one of the catalyst units is supported iridium element indicating the degradation activity against amines lanthanum oxide exhibits an affinity, these catalysts units to decompose hydrocarbons or amines Since it is easily poisoned by carbon monoxide that is sometimes generated and loses its catalytic activity, in order to maintain the catalytic activity of those catalyst units, diiron trioxide, which exhibits a decomposition activity for carbon monoxide, is made of gold. It is preferable to combine catalyst units carrying elements.

【0025】本発明の集積化触媒は、上述のような複数
の種類の触媒単位を多数含む触媒単位群からなる。ここ
で、触媒単位群は、複数の種類の触媒単位の多数を単に
混合しただけのものではなく、複数の種類の触媒単位の
多数が原子や分子の数倍の寸法であるナノメートル以下
のレベルで集合して一体化したものである。図1に、こ
のような本発明の集積化触媒の一形態の概念図を示す。
図において、集積化触媒1は、3種類の触媒単位a、b
およびcのそれぞれを多数含む触媒単位群Uからなり、
触媒単位a、bおよびcはランダムに層状に積層されて
いる。また、図2に、集積化触媒の他の形態の概念図を
示す。図において、集積化触媒2は、図1に示す形態の
ものと同様に3種類の触媒単位a、bおよびcのそれぞ
れを多数含む触媒単位群Uからなり、触媒単位a、bお
よびcは単層状にランダムに配列されている。
The integrated catalyst of the present invention comprises a group of catalyst units including a large number of the above-described plural types of catalyst units. Here, the catalyst unit group is not simply a mixture of a large number of plural types of catalyst units, but a sub-nanometer level in which many of the plural types of catalyst units are several times as large as atoms or molecules. It is gathered and integrated. FIG. 1 shows a conceptual diagram of one embodiment of such an integrated catalyst of the present invention.
In the figure, the integrated catalyst 1 has three types of catalyst units a and b.
And a catalyst unit group U containing a large number of each of
The catalyst units a, b and c are randomly stacked in layers. FIG. 2 shows a conceptual diagram of another embodiment of the integrated catalyst. In the figure, the integrated catalyst 2 is composed of a catalyst unit group U including a large number of each of three types of catalyst units a, b and c, similarly to the embodiment shown in FIG. They are randomly arranged in layers.

【0026】なお、上述の各形態の集積化触媒1、2
は、担体S上に配置されていてもよい。ここで用いられ
る担体は、触媒単位群Uを担持することができるもので
あれば特に限定されるものではないが、例えば、活性
炭、活性炭素繊維、アルミナおよびシリカなどを挙げる
ことができる。このうち、本発明では、活性炭または活
性炭素繊維を担体として用いるのが好ましい。活性炭お
よび活性炭素繊維は、直径が数十オングストロームに達
する細孔を多数有しており、その結果、比表面積が他の
担体に比べて格段に大きいため、触媒単位群を他の担体
に比べて多く担持することができる。また、その特有の
細孔構造のために、微粒子状の有害物質やファンデルワ
ールス半径が大きな分子の有害物質を細孔内に効果的に
吸着することができ、そのような有害物質をその細孔内
に担持された触媒単位群により効果的に分解することも
できる。したがって、担体として活性炭または活性炭素
繊維を用いた場合は、本発明の集積化触媒による効果を
より高めることができる。
The integrated catalysts 1 and 2 of the above-described embodiments are
May be arranged on the carrier S. The carrier used here is not particularly limited as long as it can support the catalyst unit group U, and examples thereof include activated carbon, activated carbon fiber, alumina, and silica. Among them, in the present invention, it is preferable to use activated carbon or activated carbon fiber as a carrier. Activated carbon and activated carbon fiber have a large number of pores reaching a diameter of several tens of angstroms, and as a result, the specific surface area is much larger than that of other carriers. Many can be supported. In addition, due to its unique pore structure, fine-particle harmful substances and harmful substances having a large Van der Waals radius can be effectively adsorbed in the pores. It can also be effectively decomposed by the group of catalyst units supported in the pores. Therefore, when activated carbon or activated carbon fiber is used as the carrier, the effect of the integrated catalyst of the present invention can be further enhanced.

【0027】本発明の集積化触媒として好ましいもの
は、複数の種類のそれぞれの触媒単位が金属酸化物と金
属元素との組合せからなる複合触媒であり、しかも、こ
のような触媒単位のうちの少なくとも1種が他の触媒単
位のうちの少なくとも1種の触媒機能を補完可能なよう
に選択されたものである。この場合、触媒単位のうちの
少なくとも1種は、上述のように金属酸化物と金属元素
とが触媒機能を相乗的に高め得る組合せに設定されてい
るのが特に好ましい。
Preferred as the integrated catalyst of the present invention is a composite catalyst in which each of a plurality of types of catalyst units comprises a combination of a metal oxide and a metal element, and at least one of such catalyst units. One is selected such that it can complement the catalytic function of at least one of the other catalytic units. In this case, it is particularly preferable that at least one of the catalyst units is set to a combination in which the metal oxide and the metal element can synergistically enhance the catalytic function as described above.

【0028】このような集積化触媒の一例として、金元
素が三酸化二鉄上に担持された第1触媒単位、白金元素
が二酸化スズ上に担持された第2触媒単位およびイリジ
ウム元素が酸化ランタン上に担持された第3触媒単位の
3種類の触媒単位をそれぞれ多数含み、これらの各触媒
単位がナノメートルレベルで集合して触媒単位群を形成
しているものを挙げることができる。なお、この触媒単
位群は、活性炭または活性炭素繊維からなる担体上に配
置されていてもよい。
As an example of such an integrated catalyst, a first catalyst unit in which a gold element is supported on diiron trioxide, a second catalyst unit in which a platinum element is supported on tin dioxide, and iridium element are lanthanum oxide One example includes a large number of three types of catalyst units of a third catalyst unit supported thereon, and these catalyst units are assembled at a nanometer level to form a catalyst unit group. The catalyst unit group may be arranged on a carrier made of activated carbon or activated carbon fiber.

【0029】このような集積化触媒において、第1触媒
成分は、一酸化炭素およびアルデヒド類に対して優れた
低温酸化分解活性を示す。特に、一酸化炭素に対して
は、−70℃でも優れた酸化分解活性を示す。また、第
2触媒成分は、高温領域において炭化水素類などに対し
て優れた酸化分解活性を示す。さらに、第3触媒成分
は、アミン類に対して優れた分解活性を示す。このた
め、この集積化触媒は、一酸化炭素、アルデヒド類、炭
化水素類、アミン類、メルカプタン類およびダイオキシ
ンなどの有機塩素化合物を含む排気ガスの処理用触媒と
して用いられた場合、排気ガス中に含まれるこれらの有
害物質の濃度を比較的低温で同時に効果的に低減させる
ことができ、しかもその機能を長期間持続することがで
きる。
In such an integrated catalyst, the first catalyst component exhibits excellent low-temperature oxidative decomposition activity against carbon monoxide and aldehydes. In particular, it exhibits excellent oxidative decomposition activity against carbon monoxide even at -70 ° C. In addition, the second catalyst component exhibits excellent oxidative decomposition activity against hydrocarbons and the like in a high temperature range. Furthermore, the third catalyst component exhibits excellent decomposition activity for amines. Therefore, when this integrated catalyst is used as a catalyst for treating an exhaust gas containing an organic chlorine compound such as carbon monoxide, aldehydes, hydrocarbons, amines, mercaptans, and dioxin, the integrated catalyst is contained in the exhaust gas. The concentration of these contained harmful substances can be simultaneously and effectively reduced at a relatively low temperature, and their functions can be maintained for a long time.

【0030】特に、この集積化触媒は、第1触媒単位が
第2触媒単位および第3触媒単位の補完的機能を発揮し
得る。すなわち、第2触媒単位および第3触媒単位は、
それぞれ炭化水素類およびアミン類を分解した際に自ら
が生成する一酸化炭素および排気ガス中に含まれる一酸
化炭素により被毒され、活性が著しく低下する場合があ
るが、この一酸化炭素は第1触媒単位により分解され得
るので、第2触媒単位および第3触媒単位の活性は維持
され得る。
In particular, in the integrated catalyst, the first catalyst unit can perform a complementary function of the second catalyst unit and the third catalyst unit. That is, the second catalyst unit and the third catalyst unit are:
In some cases, they are poisoned by carbon monoxide generated by themselves when hydrocarbons and amines are decomposed and carbon monoxide contained in exhaust gas, and their activity may be significantly reduced. Since the activity can be decomposed by one catalyst unit, the activities of the second and third catalyst units can be maintained.

【0031】つまり、この集積化触媒は、第1触媒単
位、第2触媒単位および第3触媒単位を単に均一に混合
しただけのものとは異なり、これらの触媒単位がナノメ
ートルレベルで集合して一体化しているため(すなわ
ち、各触媒単位がナノメートルレベルで近接しながら集
合しているため)、第2触媒単位および第3触媒単位に
おいて分子レベルの反応で生成した一酸化炭素をそれら
の触媒単位にナノメートルレベルで近接して位置する第
1触媒成分により速やかに分解し得る。
That is, this integrated catalyst is different from a catalyst in which the first catalyst unit, the second catalyst unit and the third catalyst unit are simply mixed uniformly, and these catalyst units are aggregated at a nanometer level. Because they are integrated (ie, each catalyst unit is assembled in close proximity at the nanometer level), the carbon monoxide produced by the reaction at the molecular level in the second catalyst unit and the third catalyst unit is converted into those catalysts. It can be rapidly decomposed by the first catalyst component located close to the unit at the nanometer level.

【0032】以上の結果、この集積化触媒は、所要の触
媒機能を効果的に、しかも長期間持続的に発揮し得る。
このような本発明の集積化触媒は、上述のような機能を
発揮し得るため、例えば、ごみ焼却施設や各種の産業プ
ラントから排出される排気ガスの処理用触媒、空気清浄
機用触媒および燃料電池用触媒などとして利用すること
ができる。
As a result, the integrated catalyst can exhibit the required catalytic function effectively and continuously for a long period of time.
Since such an integrated catalyst of the present invention can exhibit the above-described functions, for example, a catalyst for treating exhaust gas discharged from a refuse incineration plant or various industrial plants, a catalyst for an air purifier, and a fuel It can be used as a battery catalyst or the like.

【0033】本発明の集積化触媒は、例えば、共沈殿法
などの公知の手法により、水溶液中で各種の金属元素や
金属酸化物を同時に析出させると製造することができ
る。但し、集積化触媒のうち、金属元素と金属酸化物と
が組み合わされた触媒単位の複数種類がナノメートルレ
ベルで多数集合したものは、特定の金属元素と特定の金
属酸化物とが対になるよう組合せる必要があるので、通
常の共沈殿法による手法では製造が困難である。そこ
で、このような集積化触媒を製造するための方法を以下
に説明する。
The integrated catalyst of the present invention can be produced by simultaneously depositing various metal elements and metal oxides in an aqueous solution by a known method such as a coprecipitation method. However, among the integrated catalysts, when a plurality of types of catalyst units in which a metal element and a metal oxide are combined are aggregated at a nanometer level, a specific metal element and a specific metal oxide are paired. Therefore, it is difficult to produce by a common coprecipitation method. Therefore, a method for producing such an integrated catalyst will be described below.

【0034】ここでは、金元素が三酸化二鉄に担持され
た触媒単位の多数と白金元素が二酸化スズに担持された
触媒単位の多数とを含む触媒単位群からなる集積化触媒
を例とし、その製造方法を工程毎に説明する。
Here, as an example, an integrated catalyst comprising a group of catalyst units including a large number of catalyst units in which a gold element is supported on diiron trioxide and a large number of catalyst units in which a platinum element is supported on tin dioxide, The manufacturing method will be described for each process.

【0035】第1の工程 この工程では、複数種類の金属酸化物、すなわち三酸化
二鉄と二酸化スズとがナノメートルレベルで集積された
金属酸化物群を調整する。ここでは、先ず、鉄塩および
スズ塩(例えば、共に硝酸塩)を含む水溶液を調製し、
この水溶液のpHをアルカリ性側に徐々に調整すること
により水酸化鉄および水酸化スズを調製する。ここで、
水溶液のpHをアルカリ性側に調整するための方法とし
ては、例えば、予め水溶液中に尿素を溶解しておき、
この水溶液を70℃程度に加熱する方法、および水溶
液に炭酸ナトリウム水溶液または水酸化ナトリウム水溶
液を徐々に滴下する方法などを採用することができる。
First Step In this step, a group of metal oxides in which a plurality of types of metal oxides, that is, diiron trioxide and tin dioxide are integrated at a nanometer level is prepared. Here, first, an aqueous solution containing an iron salt and a tin salt (for example, both nitrates) is prepared,
Iron hydroxide and tin hydroxide are prepared by gradually adjusting the pH of this aqueous solution to the alkaline side. here,
As a method for adjusting the pH of the aqueous solution to the alkaline side, for example, urea is previously dissolved in the aqueous solution,
A method of heating this aqueous solution to about 70 ° C., a method of gradually dropping an aqueous sodium carbonate solution or an aqueous sodium hydroxide solution into the aqueous solution, and the like can be adopted.

【0036】の方法による場合は、水溶液を加熱する
と、尿素が緩やかに分解してNH4 +イオンとOH-イオ
ンとが生成する。これにより、水溶液のpHが徐々にア
ルカリ性側に変化し、pH値がある値よりもアルカリ性
側になると、水溶液中に水に不溶の水酸化鉄および水酸
化スズがナノメートルレベルで集合しながら析出し、水
溶液中に沈殿する。これにより得られる金属水酸化物群
を酸素含有雰囲気中で熱処理すると、当該金属水酸化物
群は目的とする金属酸化物群、すなわち三酸化二鉄と二
酸化スズとを含む金属酸化物群に変換される。
In the case of the method described above, when the aqueous solution is heated, urea is slowly decomposed to generate NH 4 + ions and OH - ions. As a result, the pH of the aqueous solution gradually changes to an alkaline side, and when the pH value becomes more alkaline than a certain value, water-insoluble iron hydroxide and tin hydroxide precipitate in the aqueous solution while gathering at a nanometer level. And precipitate in aqueous solution. When the obtained metal hydroxide group is heat-treated in an oxygen-containing atmosphere, the metal hydroxide group is converted into a target metal oxide group, that is, a metal oxide group containing diiron trioxide and tin dioxide. Is done.

【0037】一方、の方法による場合は、金属塩、す
なわち上述の鉄塩およびスズ塩を含む水溶液を攪拌しな
がら炭酸ナトリウム水溶液または水酸化ナトリウム水溶
液を徐々に滴下する。これにより、水溶液のpHが徐々
にアルカリ性側に変化し、pH値がある値よりもアルカ
リ性側になると、水溶液中に水に不溶の水酸化鉄および
水酸化スズがナノメートルレベルで集合しながら析出
し、水溶液中に沈殿する。これにより得られる金属水酸
化物群を酸素含有雰囲気中で熱処理すると、金属水酸化
物群は目的とする金属酸化物群、すなわち三酸化二鉄と
二酸化スズとを含む金属酸化物群に変換される。
On the other hand, in the case of the above method, an aqueous solution of sodium carbonate or an aqueous solution of sodium hydroxide is gradually dropped while stirring the aqueous solution containing the metal salt, ie, the iron salt and the tin salt. As a result, the pH of the aqueous solution gradually changes to an alkaline side, and when the pH value becomes more alkaline than a certain value, water-insoluble iron hydroxide and tin hydroxide precipitate in the aqueous solution while gathering at a nanometer level. And precipitate in aqueous solution. When the obtained metal hydroxide group is heat-treated in an oxygen-containing atmosphere, the metal hydroxide group is converted into a target metal oxide group, that is, a metal oxide group containing diiron trioxide and tin dioxide. You.

【0038】なお、この工程では、上述のように水溶液
中に複数の金属塩を同時に添加して、それらに対応する
複数の金属酸化物を同時に生成させるようにしてもよい
し、金属塩を1種類ずつ添加して、それに対応する金属
酸化物を1種類ずつ順に生成させるようにしてもよい。
In this step, as described above, a plurality of metal salts may be simultaneously added to the aqueous solution to generate a plurality of metal oxides corresponding thereto, or one metal salt may be added. The metal oxides may be added one by one and the corresponding metal oxides may be sequentially generated one by one.

【0039】また、触媒単位群が担体上に配置された集
積化触媒を製造する場合は、この工程において、水溶液
中に予め上述の担体を配置しておく。このようにする
と、上述の金属水酸化物群が担体上に沈殿するので、金
属酸化物群を担体上に生成させる(担持させる)ことが
できる。
In the case of producing an integrated catalyst in which the catalyst unit group is arranged on a carrier, in this step, the carrier is previously arranged in an aqueous solution. In this case, the above-mentioned metal hydroxide group precipitates on the carrier, so that the metal oxide group can be generated (supported) on the carrier.

【0040】第2の工程 この工程では、第1の工程で得られた金属酸化物群に含
まれるそれぞれの金属酸化物、すなわち、三酸化二鉄お
よび二酸化スズのそれぞれに対し、対応する金属元素、
すなわち金元素および白金元素を選択的に担持させる。
Second Step In this step, each of the metal oxides contained in the group of metal oxides obtained in the first step, that is, each of diiron trioxide and tin dioxide is treated with a corresponding metal element. ,
That is, the gold element and the platinum element are selectively carried.

【0041】ここでは、三酸化二鉄と二酸化スズとの等
電点の差を利用し、両者に対して対応する金属元素を選
択的に担持させる。図3に、三酸化二鉄および二酸化ス
ズの水溶液中におけるイオン吸着密度とpHとの関係を
示す。図に示すように、二酸化スズの等電点(pH)は
4.5であり、三酸化二鉄の等電点は8.0である。こ
のため、水溶液のpHが4.5未満の場合、二酸化スズ
および三酸化二鉄の表面はいずれも正電荷を帯びること
になる。また、水溶液のpHが4.5〜8.0の範囲で
は、二酸化スズの表面は負電荷を帯び、三酸化二鉄の表
面は正電荷を帯びることになる。
Here, utilizing the difference in isoelectric point between diiron trioxide and tin dioxide, the corresponding metal element is selectively carried on both. FIG. 3 shows the relationship between the ion adsorption density and the pH in an aqueous solution of diiron trioxide and tin dioxide. As shown in the figure, the isoelectric point (pH) of tin dioxide is 4.5, and the isoelectric point of diiron trioxide is 8.0. Therefore, when the pH of the aqueous solution is less than 4.5, both the surfaces of tin dioxide and diiron trioxide are positively charged. When the pH of the aqueous solution is in the range of 4.5 to 8.0, the surface of tin dioxide is negatively charged and the surface of diiron trioxide is positively charged.

【0042】この工程では、上述のような三酸化二鉄と
二酸化スズとの等電点の差を利用して、これらの金属酸
化物に対して対応する金属元素を選択的に担持させるこ
とができる。具体的には、先ず、三酸化二鉄と二酸化ス
ズとを含む水溶液中に白金化合物(例えば白金塩、より
具体的には例えば塩化白金)を添加し、水溶液のpHを
4.5以上でありかつ三酸化二鉄の等電点よりも酸性側
に設定する。この結果、水溶液中で生成するカチオン性
の白金イオン(Pt4+)は、そのpHで表面が負電荷を
帯びている二酸化スズの表面に引き寄せられ、正電荷を
帯びている三酸化二鉄に対して反発することになる。
In this step, by utilizing the above-mentioned difference in the isoelectric points of diiron trioxide and tin dioxide, the corresponding metal element can be selectively carried on these metal oxides. it can. Specifically, first, a platinum compound (for example, a platinum salt, more specifically, for example, platinum chloride) is added to an aqueous solution containing diiron trioxide and tin dioxide, and the pH of the aqueous solution is 4.5 or more. In addition, it is set to be more acidic than the isoelectric point of diiron trioxide. As a result, the cationic platinum ion (Pt 4+ ) generated in the aqueous solution is attracted to the surface of tin dioxide having a negative charge at the pH, and is converted to diiron trioxide having a positive charge. You will be repelled.

【0043】この状態で水溶液のpHをさらにアルカリ
性側に設定すると、白金イオンは水酸化白金(Pt(O
H)4・2H2O)となり、二酸化スズ上のみに選択的に
析出する。その後、水溶液から金属酸化物群を取り出し
て熱処理すると、水酸化白金は白金元素に変換され、白
金元素を担持した二酸化スズと三酸化二鉄とを含む金属
酸化物群が得られる。
In this state, when the pH of the aqueous solution is further set to the alkaline side, the platinum ion becomes platinum hydroxide (Pt (O
H) 4 · 2H 2 O), and the selectively deposited only on the tin dioxide. Thereafter, when the metal oxide group is taken out from the aqueous solution and heat-treated, platinum hydroxide is converted to platinum element, and a metal oxide group containing tin dioxide and diiron trioxide carrying platinum element is obtained.

【0044】次に、この金属酸化物群の水溶液を再度調
製し、それに金化合物(例えば金元素を含む酸、より具
体的には例えば塩化金酸)を添加する。そして、その水
溶液のpHを4.5以上でありかつ三酸化二鉄の等電点
よりも酸性側に設定すると、水溶液中で生成するアニオ
ン性の金イオン(例えば、AuCl4 -)は当該pH領域
で表面が正電荷を帯びている三酸化二鉄に引き寄せら
れ、表面が負電荷を帯びている二酸化スズに対して反発
することになる。この状態で水溶液のpHをさらにアル
カリ性側に設定すると、金イオンは水酸化金(Au(O
H)3)となり、三酸化二鉄上のみに選択的に析出す
る。その後、水溶液から金属酸化物群を取り出して熱処
理すると、水酸化金は金元素に変換される。この結果、
白金元素を担持した二酸化スズからなる触媒単位と金元
素を担持した三酸化二鉄からなる触媒単位とを多数含む
触媒単位群、すなわち目的とする集積化触媒が得られ
る。なお、上述の第1の工程において、金属酸化物群を
担体上に生成させた場合、この集積化触媒は担体上に形
成されることになる。
Next, an aqueous solution of the metal oxide group is prepared again, and a gold compound (for example, an acid containing a gold element, more specifically, for example, chloroauric acid) is added thereto. When the pH of the aqueous solution is set to 4.5 or more and on the acidic side with respect to the isoelectric point of diiron trioxide, the anionic gold ion (for example, AuCl 4 ) generated in the aqueous solution is adjusted to the pH. In the area, the surface will be attracted to the positively charged diiron trioxide and will repel the negatively charged tin dioxide. In this state, when the pH of the aqueous solution is further set to the alkaline side, the gold ion becomes gold hydroxide (Au (O
H) 3 ) and selectively precipitate only on diiron trioxide. Thereafter, when the metal oxide group is taken out of the aqueous solution and heat-treated, the gold hydroxide is converted to a gold element. As a result,
A catalyst unit group including a large number of catalyst units made of tin dioxide carrying platinum element and catalyst units made of diiron trioxide carrying gold element, that is, a target integrated catalyst is obtained. When the metal oxide group is formed on the carrier in the first step, the integrated catalyst is formed on the carrier.

【0045】第3の工程 白金元素を担持した二酸化スズからなる触媒単位と金元
素を担持した三酸化二鉄からなる触媒単位とに加えて、
例えばイリジウム元素を担持した酸化ランタンからなる
触媒単位をさらに含む触媒単位群からなる集積化触媒を
製造する場合は、上述のような第1の工程および第2の
工程を経て得られた集積化触媒に対し、以下に説明する
第3の工程をさらに適用する。
Third step In addition to a catalyst unit composed of tin dioxide carrying platinum element and a catalyst unit composed of diiron trioxide carrying gold element,
For example, when manufacturing an integrated catalyst comprising a catalyst unit group further including a catalyst unit comprising lanthanum oxide supporting an iridium element, the integrated catalyst obtained through the first step and the second step as described above For this, a third step described below is further applied.

【0046】この工程では、先ず、上述の第2の工程に
より得られた集積化触媒に対し、酸化ランタンに変換可
能な金属酸化物前駆体とイリジウム元素に変換可能な金
属元素前駆体とを同時に析出させる。なお、ここで言う
金属酸化物前駆体および金属元素前駆体は、例えば、そ
れぞれ水酸化ランタンおよび水酸化イリジウムである。
In this step, first, a metal oxide precursor which can be converted to lanthanum oxide and a metal element precursor which can be converted to iridium element are simultaneously applied to the integrated catalyst obtained in the second step. Precipitate. In addition, the metal oxide precursor and the metal element precursor mentioned here are, for example, lanthanum hydroxide and iridium hydroxide, respectively.

【0047】ここでは、通常、金属酸化物前駆体を形成
するための金属の塩(この例の場合はランタンの塩、よ
り具体的には例えば硝酸ランタン)と金属元素前駆体を
形成するための金属の塩(この例の場合はイリジウムの
塩、より具体的には例えば塩化イリジウム)とを含む水
溶液を調製し、これに上述の第2の工程により得られた
集積化触媒を添加する。そして、当該水溶液のpHを徐
々にアルカリ性側に調整し、水酸化ランタン(金属酸化
物前駆体)と水酸化イリジウム(金属元素前駆体)とを
同時に沈殿させる。この際、水酸化ランタンと水酸化イ
リジウムとは、ナノメートルレベルで互いに集合しなが
ら析出して沈殿し、同時に第2の工程で得られた集積化
触媒に対してナノメートルレベルで集積する。
Here, usually, a metal salt (a lanthanum salt in this example, more specifically, for example, lanthanum nitrate) for forming a metal oxide precursor and a metal element precursor for forming a metal element precursor are usually used. An aqueous solution containing a metal salt (in this case, an iridium salt, more specifically, for example, iridium chloride) is prepared, and the integrated catalyst obtained in the second step is added to the aqueous solution. Then, the pH of the aqueous solution is gradually adjusted to an alkaline side, and lanthanum hydroxide (metal oxide precursor) and iridium hydroxide (metal element precursor) are simultaneously precipitated. At this time, the lanthanum hydroxide and the iridium hydroxide aggregate and precipitate together at the nanometer level, and simultaneously precipitate at the nanometer level on the integrated catalyst obtained in the second step.

【0048】なお、水溶液のpHを調整するための方法
としては、上述の第1の工程で採用可能な方法と同様の
方法、すなわち、水溶液中に尿素を添加して70℃程度
に加熱する方法および水溶液に対して炭酸ナトリウム水
溶液または水酸化ナトリウム水溶液を徐々に滴下する方
法を採用することができる。
As a method for adjusting the pH of the aqueous solution, a method similar to the method that can be adopted in the first step described above, that is, a method in which urea is added to the aqueous solution and heated to about 70 ° C. And a method in which an aqueous solution of sodium carbonate or an aqueous solution of sodium hydroxide is gradually added dropwise to the aqueous solution.

【0049】次に、水酸化ランタンと水酸化イリジウム
とが追加的に集積した集積化触媒を水溶液から取り出
し、これを空気中で熱処理する。これにより、水酸化ラ
ンタンおよび水酸化イリジウムは、同時にそれぞれ酸化
ランタンおよびイリジウム元素に変換され、イリジウム
元素を担持した酸化ランタンからなる新たな触媒単位が
生成する。これにより、白金元素を担持した二酸化スズ
からなる触媒単位、金元素を担持した三酸化二鉄からな
る触媒単位およびイリジウム元素を担持した酸化ランタ
ンからなる触媒単位の3種類の触媒単位を含む触媒単位
群からなる集積化触媒が得られる。
Next, the integrated catalyst in which lanthanum hydroxide and iridium hydroxide are additionally added is taken out of the aqueous solution, and is heat-treated in the air. As a result, the lanthanum hydroxide and the iridium hydroxide are simultaneously converted into the lanthanum oxide and the iridium element, respectively, and a new catalyst unit composed of the lanthanum oxide supporting the iridium element is generated. Thus, a catalyst unit comprising three types of catalyst units, a catalyst unit comprising tin dioxide carrying a platinum element, a catalyst unit comprising diiron trioxide carrying a gold element, and a catalyst unit comprising lanthanum oxide carrying an iridium element An integrated catalyst consisting of groups is obtained.

【0050】なお、上述のような最終段階での熱処理工
程において、その際の条件により水酸化イリジウムが酸
化イリジウムに変換されてしまう場合があるが、この場
合はそれを適宜還元雰囲気下で熱処理すると、イリジウ
ム元素に変換することができる。
In the above-mentioned heat treatment step at the final stage, iridium hydroxide may be converted to iridium oxide depending on the conditions at that time. In this case, it is necessary to heat-treat it in a reducing atmosphere. , Can be converted to iridium element.

【0051】本発明に係る上述の製造方法は、上述のよ
うな例に係る集積化触媒以外の他の集積化触媒、すなわ
ち、金属元素が金属酸化物に担持された触媒単位の複数
種類からなる他の集積化触媒を製造する場合にも適用す
ることができる。この場合、上述の第1の工程において
3種類以上の金属酸化物を含む金属酸化物群を形成し、
それに対して第2の工程を触媒単位の種類に応じて3回
以上繰り返してもよい。また、触媒単位の種類に応じ、
上述の第3の工程を2回以上繰り返してもよい。さら
に、上述の製造方法では、必ずしも第1の工程と第2の
工程とを完了してから第3の工程を実施する必要はな
く、第3の工程を実施してから第1および第2の工程を
実施してもよいし、第1の工程で得られた金属酸化物群
に含まれる金属酸化物に対して第2の工程を繰り返し適
用する間に適宜第3の工程を1回または2回以上挿入し
てもよい。
The above-described production method according to the present invention comprises an integrated catalyst other than the integrated catalyst according to the above-described example, that is, a plurality of types of catalyst units in which a metal element is supported on a metal oxide. The present invention can be applied to the case of manufacturing other integrated catalysts. In this case, a metal oxide group containing three or more types of metal oxides is formed in the first step described above,
On the other hand, the second step may be repeated three or more times depending on the type of the catalyst unit. Also, depending on the type of catalyst unit,
The above third step may be repeated two or more times. Further, in the above-described manufacturing method, it is not always necessary to perform the third step after completing the first step and the second step, and to perform the first and second steps after performing the third step. The step may be performed, or the third step may be appropriately performed once or twice while repeatedly applying the second step to the metal oxides included in the metal oxide group obtained in the first step. It may be inserted more than once.

【0052】[0052]

【実施例】実施例1 ナス型フラスコに500mlの水を加え、これに10g
のコールタールピッチ系活性炭素繊維(平均繊維径=1
4.0μm、BET比表面積=1,920m2/g、平
均細孔径=19.01オングストローム)を浸した。こ
の際、活性炭素繊維の細孔内にも水を浸入させるため、
ナス型フラスコ内を約10分間真空脱気処理した。
EXAMPLE 1 500 ml of water was added to an eggplant-shaped flask, and 10 g of water was added thereto.
Coal tar pitch based activated carbon fiber (average fiber diameter = 1
4.0 μm, BET specific surface area = 1,920 m 2 / g, average pore diameter = 19.01 Å). At this time, in order to allow water to penetrate into the pores of the activated carbon fiber,
The inside of the eggplant-shaped flask was subjected to vacuum degassing for about 10 minutes.

【0053】次に、ナス型フラスコ内の活性炭素繊維を
水と共に蓋付き円筒型瓶に移し、これに0.006モル
のFe(NO33・9H2O、0.006モルのSnC
4および0.036モルの尿素を加えて溶解し、50
0mlの水溶液を得た。そして、この水溶液を80℃の
ウオーターバス中で攪拌しながら5時間加熱処理した。
この際、水溶液中の尿素が加水分解してOH-イオンが
生成し、水溶液のpHが徐々にアルカリ性側に移行し
た。この結果、水溶液中の活性炭素繊維には、水酸化鉄
(Fe(OH)3)と水酸化スズ(Sn(OH)4)が析
出して沈殿した。
Next, the activated carbon fibers in the eggplant-shaped flask were transferred together with water to a cylindrical bottle with a lid, to which 0.006 mol of Fe (NO 3 ) 3 .9H 2 O and 0.006 mol of SnC were added.
Add 4 and 0.036 mol of urea and dissolve, add 50
0 ml of an aqueous solution was obtained. Then, this aqueous solution was subjected to a heat treatment for 5 hours while being stirred in a water bath at 80 ° C.
At this time, urea in the aqueous solution was hydrolyzed to generate OH - ions, and the pH of the aqueous solution gradually shifted to the alkaline side. As a result, iron hydroxide (Fe (OH) 3 ) and tin hydroxide (Sn (OH) 4 ) were precipitated and precipitated on the activated carbon fibers in the aqueous solution.

【0054】活性炭素繊維を水溶液から取り出し、これ
をアスピレーターで吸引しながら十分に水洗した後に約
10時間真空乾燥した。この活性炭素繊維をガス流通式
石英管に充填し、この石英管に2容量%の酸素と98容
量%の窒素とを含む混合ガスを活性炭素繊維約1gに対
して250ml/分の流速で流しながら活性炭素繊維を
300℃で3時間焼成した。この結果、水酸化鉄と水酸
化スズとが酸化物に変換され、三酸化二鉄と二酸化スズ
とを担持した活性炭素繊維が得られた。
The activated carbon fiber was taken out of the aqueous solution, sufficiently washed with water while being suctioned by an aspirator, and then dried under vacuum for about 10 hours. This activated carbon fiber is filled in a gas flow type quartz tube, and a mixed gas containing 2% by volume of oxygen and 98% by volume of nitrogen is flowed through the quartz tube at a flow rate of 250 ml / min per approximately 1 g of the activated carbon fiber. The activated carbon fibers were baked at 300 ° C. for 3 hours. As a result, iron hydroxide and tin hydroxide were converted into oxides, and activated carbon fibers carrying diiron trioxide and tin dioxide were obtained.

【0055】次に、三酸化二鉄と二酸化スズとを担持し
た活性炭素繊維10gをナス型フラスコ内の水500m
lに浸し、上述と同様に脱気処理した。その後、当該活
性炭素繊維を水と共に蓋付き円筒型瓶に移し、これに
0.0003モルのPtCl4を加えて500mlの水
溶液を調製した。この水溶液のpHは1.8であった。
Next, 10 g of activated carbon fibers carrying diiron trioxide and tin dioxide were placed in 500 ml of water in an eggplant-shaped flask.
1 and degassed as described above. Thereafter, the activated carbon fibers were transferred together with water to a cylindrical bottle with a lid, and 0.0003 mol of PtCl 4 was added thereto to prepare a 500 ml aqueous solution. The pH of this aqueous solution was 1.8.

【0056】水溶液のpHが6.0になるまで攪拌しな
がら5%の炭酸ナトリウム水溶液を緩やかに滴下し、こ
のpHを維持しながら水溶液を2時間熟成した。この過
程では、水溶液のpHが二酸化スズの等電点以上、すな
わち4.5以上になると、水溶液中の白金イオン(Pt
4+)が負電荷を帯びた二酸化スズの表面のみに選択的に
移行し、pHが6.0になったときに白金イオンが水酸
化白金(Pt(OH) 4・2H2O)に変化して二酸化ス
ズの表面にのみ析出して沈殿した。
Stir until the pH of the aqueous solution reaches 6.0.
A 5% aqueous solution of sodium carbonate is slowly added dropwise.
The aqueous solution was aged for 2 hours while maintaining the pH of the solution. This
If the pH of the aqueous solution exceeds the isoelectric point of tin dioxide,
In other words, when the pH exceeds 4.5, platinum ions (Pt)
4+) Selectively on negatively charged tin dioxide surfaces only
When the pH shifts to 6.0, the platinum ion becomes hydroxyl.
Platinum oxide (Pt (OH) Four・ 2HTwoO)
And precipitated only on the surface of the dust.

【0057】以上のようにして処理された活性炭素繊維
を水溶液から取り出し、これをアスピレーターで吸引し
ながら十分に水洗した後に約10時間真空乾燥した。こ
の活性炭素繊維をガス流通式石英管に充填し、この石英
管に2容量%の酸素と98容量%の窒素とを含む混合ガ
スを活性炭素繊維約1gに対して250ml/分の流速
で流しながら活性炭素繊維を300℃で3時間焼成し
た。続けて、この石英管に水素ガスを活性炭素繊維約1
gに対して100ml/分の流速で流しながら活性炭素
繊維を200℃で3時間還元処理した。この結果、白金
元素を担持した二酸化スズからなる触媒単位と、三酸化
二鉄とを担持した活性炭素繊維が得られた。
The activated carbon fiber treated as described above was taken out of the aqueous solution, washed sufficiently with water while sucking it with an aspirator, and dried in vacuum for about 10 hours. This activated carbon fiber is filled in a gas flow type quartz tube, and a mixed gas containing 2% by volume of oxygen and 98% by volume of nitrogen is flowed through the quartz tube at a flow rate of 250 ml / min per approximately 1 g of the activated carbon fiber. The activated carbon fibers were baked at 300 ° C. for 3 hours. Subsequently, hydrogen gas was introduced into the quartz tube by about 1% of activated carbon fiber.
The activated carbon fibers were reduced at 200 ° C. for 3 hours while flowing at a flow rate of 100 ml / min. As a result, an activated carbon fiber carrying a catalyst unit composed of tin dioxide carrying platinum element and diiron trioxide was obtained.

【0058】次に、白金元素を担持した二酸化スズから
なる触媒単位と、三酸化二鉄とを担持した活性炭素繊維
10gをナス型フラスコ内の水500mlに浸し、上述
と同様に脱気処理した。その後、当該活性炭素繊維を水
と共に蓋付き円筒型瓶に移し、これに0.0003モル
のHAuCl4・4H2Oを加えて500mlの水溶液を
調製した。この水溶液のpHは2.8であった。
Next, 10 g of activated carbon fibers carrying tin dioxide and a catalyst unit composed of tin dioxide carrying platinum element were immersed in 500 ml of water in an eggplant-shaped flask, and degassed in the same manner as described above. . Thereafter, the activated carbon fibers was transferred to a capped cylindrical bottle with water, to prepare an aqueous solution of 500ml and added with 0.0003 moles of HAuCl 4 · 4H 2 O. The pH of this aqueous solution was 2.8.

【0059】水溶液のpHが7.0になるまで攪拌しな
がら5%の炭酸ナトリウム水溶液を緩やかに滴下し、こ
のpHを維持しながら水溶液を5時間熟成した。この過
程では、水溶液のpHが二酸化スズの等電点以上、すな
わち4.5以上になると、水溶液中の金イオン(AuC
4-)が正電荷を帯びた三酸化二鉄の表面のみに選択的
に移行し、pHが7.0になったときに当該金イオンが
水酸化金(Au(OH)3)に変化して三酸化二鉄の表
面にのみ析出して沈殿した。
A 5% aqueous sodium carbonate solution was slowly added dropwise with stirring until the pH of the aqueous solution reached 7.0, and the aqueous solution was aged for 5 hours while maintaining this pH. In this process, when the pH of the aqueous solution becomes equal to or higher than the isoelectric point of tin dioxide, that is, 4.5 or higher, gold ions (AuC
l 4- ) selectively migrates only to the surface of positively charged diiron trioxide, and when the pH reaches 7.0, the gold ion changes to gold hydroxide (Au (OH) 3 ). As a result, it was deposited only on the surface of diiron trioxide and precipitated.

【0060】以上のようにして処理された活性炭素繊維
を水溶液から取り出し、これをアスピレーターで吸引し
ながら十分に水洗した後に約10時間真空乾燥した。こ
の活性炭素繊維をガス流通式石英管に充填し、この石英
管に2容量%の酸素と98容量%の窒素とを含む混合ガ
スを活性炭素繊維約1gに対して250ml/分の流速
で流しながら活性炭素繊維を300℃で3時間焼成し
た。この結果、白金元素を担持した二酸化スズからなる
触媒単位および金元素を担持した三酸化二鉄からなる触
媒単位の2つの触媒単位を担持した活性炭素繊維、すな
わち集積化触媒が得られた。得られた集積化触媒の組成
および物理的性状は表1に示す通りである。
The activated carbon fiber treated as described above was taken out of the aqueous solution, washed thoroughly with water while sucking it with an aspirator, and dried in vacuum for about 10 hours. This activated carbon fiber is filled in a gas flow type quartz tube, and a mixed gas containing 2% by volume of oxygen and 98% by volume of nitrogen is flowed through the quartz tube at a flow rate of 250 ml / min per approximately 1 g of the activated carbon fiber. The activated carbon fibers were baked at 300 ° C. for 3 hours. As a result, an activated carbon fiber carrying two catalyst units, that is, a catalyst unit consisting of tin dioxide carrying platinum element and a catalyst unit consisting of diiron trioxide carrying gold element, that is, an integrated catalyst was obtained. The composition and physical properties of the obtained integrated catalyst are as shown in Table 1.

【0061】実施例2 実施例1で得られた集積化触媒10gをナス型フラスコ
内の500mlの水中に浸し、実施例1の場合と同様に
して脱気処理した後、集積化触媒を水と共に蓋付き円筒
型瓶に移した。これに0.006モルのLa(NO33
・6H2O、0.0003モルのIrCl3および0.0
19モルの尿素を添加し、500mlの水溶液を調製し
た。そして、この水溶液を80℃のウオーターバス中で
攪拌しながら5時間加熱処理した。この際、水溶液中の
尿素が加水分解してOH-イオンが生成し、水溶液のp
Hが徐々にアルカリ性側に移行した。この結果、水溶液
中の集積化触媒を構成する活性炭素繊維には、水酸化イ
リジウム(Ir(OH) 3)と水酸化ランタン(La
(OH)3)が析出して沈殿した。
[0061]Example 2 10 g of the integrated catalyst obtained in Example 1 was used in an eggplant-shaped flask.
Immersed in 500 ml of water in the same manner as in Example 1.
After degassing, the integrated catalyst and water
Transferred to mold bottle. 0.006 mol of La (NOThree)Three
・ 6HTwoO, 0.0003 mol IrClThreeAnd 0.0
19 moles of urea were added to make a 500 ml aqueous solution
Was. Then, put this aqueous solution in a water bath at 80 ° C.
Heat treatment was performed for 5 hours while stirring. At this time,
Urea hydrolyzes to OH-Ions are generated and the p
H gradually shifted to the alkaline side. As a result, the aqueous solution
The activated carbon fibers that constitute the integrated catalyst in the
Rhidium (Ir (OH) Three) And lanthanum hydroxide (La
(OH)Three) Was precipitated.

【0062】以上のようにして処理された集積化触媒を
水溶液から取り出し、これをアスピレーターで吸引しな
がら十分に水洗した後に約10時間真空乾燥した。この
集積化触媒をガス流通式石英管に充填し、この石英管に
空気を集積化触媒約1gに対して250ml/分の流速
で流しながら集積化触媒を300℃で3時間焼成した。
続けて、この石英管に水素ガスを集積化触媒約1gに対
して100ml/分の流速で流しながら集積化触媒を2
00℃で3時間還元処理した。この結果、白金元素を担
持した二酸化スズからなる触媒単位、金元素を担持した
三酸化二鉄からなる触媒単位に加え、さらにイリジウム
元素を担持した酸化ランタンからなる触媒単位が活性炭
素繊維上に集積された集積化触媒が得られた。得られた
集積化触媒の組成および物理的性状は表1に示す通りで
ある。
The integrated catalyst treated as described above was taken out of the aqueous solution, sufficiently washed with water while being suctioned by an aspirator, and dried in vacuum for about 10 hours. The integrated catalyst was filled in a gas flow type quartz tube, and the integrated catalyst was calcined at 300 ° C. for 3 hours while flowing air through the quartz tube at a flow rate of 250 ml / min for about 1 g of the integrated catalyst.
Subsequently, while flowing hydrogen gas through the quartz tube at a flow rate of 100 ml / min with respect to about 1 g of the integrated catalyst, the integrated catalyst was supplied for 2 hours.
Reduction treatment was performed at 00 ° C. for 3 hours. As a result, in addition to the catalyst unit consisting of tin dioxide carrying platinum element and the catalyst unit consisting of diiron trioxide carrying gold element, the catalyst unit consisting of lanthanum oxide carrying iridium element is accumulated on the activated carbon fiber. The obtained integrated catalyst was obtained. The composition and physical properties of the obtained integrated catalyst are as shown in Table 1.

【0063】実施例3 500mlの水を仕込んだ蓋付き円筒型瓶に0.6モル
のFe(NO33・9H2O、0.6モルのSnCl4
よび3.6モルの尿素を加えて溶解し、水溶液を得た。
そして、この水溶液を80℃のウオーターバス中で攪拌
しながら5時間加熱処理した。この際、水溶液中の尿素
が加水分解してOH-イオンが生成し、水溶液のpHが
徐々にアルカリ性側に移行した。この結果、水溶液中の
活性炭素繊維には、水酸化鉄(Fe(OH)3)と水酸
化スズ(Sn(OH)4)とが析出して沈殿した。
[0063] Example 3 500 ml of 0.6 molar aqueous lidded cylindrical bottle charged with the Fe (NO 3) 3 · 9H 2 O, 0.6 mol of SnCl 4 and 3.6 moles of urea added And dissolved to obtain an aqueous solution.
Then, this aqueous solution was subjected to a heat treatment for 5 hours while being stirred in a water bath at 80 ° C. At this time, urea in the aqueous solution was hydrolyzed to generate OH - ions, and the pH of the aqueous solution gradually shifted to the alkaline side. As a result, iron hydroxide (Fe (OH) 3 ) and tin hydroxide (Sn (OH) 4 ) were precipitated and precipitated on the activated carbon fibers in the aqueous solution.

【0064】この水溶液を濾過して沈殿を採取し、これ
をアスピレーターで吸引しながら十分に水洗した後に約
10時間真空乾燥した。その後、沈殿をガス流通式石英
管に充填し、この石英管に空気を沈殿約1gに対して2
50ml/分の流速で流しながら沈殿を300℃で3時
間焼成した。この結果、三酸化二鉄と二酸化スズとから
なる金属酸化物群が得られた。
This aqueous solution was filtered to collect a precipitate, which was thoroughly washed with water while suctioning with an aspirator, and then dried under vacuum for about 10 hours. Thereafter, the precipitate was filled in a gas flow type quartz tube, and air was poured into the quartz tube for about 1 g of the precipitate.
The precipitate was calcined at 300 ° C. for 3 hours while flowing at a flow rate of 50 ml / min. As a result, a metal oxide group consisting of diiron trioxide and tin dioxide was obtained.

【0065】次に、金属酸化物群10gをナス型フラス
コ内の水500mlに浸し、上述と同様に脱気処理し
た。その後、当該金属酸化物群を水と共に蓋付き円筒型
瓶に移し、これに0.03モルのPtCl4を加えて5
00mlの水溶液を調製した。この水溶液のpHは1.
8であった。
Next, 10 g of the metal oxide group was immersed in 500 ml of water in an eggplant-shaped flask, and degassed in the same manner as described above. Thereafter, the metal oxide group was transferred together with water to a cylindrical bottle with a lid, to which 0.03 mol of PtCl 4 was added to form a mixture.
A 00 ml aqueous solution was prepared. The pH of this aqueous solution was 1.
It was 8.

【0066】水溶液のpHが6.0になるまで攪拌しな
がら5%の炭酸ナトリウム水溶液を緩やかに滴下し、こ
のpHを維持しながら水溶液を5時間熟成した。この過
程では、水溶液のpHが二酸化スズの等電点以上、すな
わち4.5以上になると、水溶液中の白金イオン(Pt
4+)が負電荷を帯びた二酸化スズの表面のみに選択的に
移行し、pHが6.0になったときに白金イオンが水酸
化白金(Pt(OH) 4)に変化して二酸化スズの表面
にのみ析出して沈殿した。
Stir until the pH of the aqueous solution reaches 6.0.
A 5% aqueous solution of sodium carbonate is slowly added dropwise.
The aqueous solution was aged for 5 hours while maintaining the pH of the solution. This
If the pH of the aqueous solution exceeds the isoelectric point of tin dioxide,
In other words, when the pH exceeds 4.5, platinum ions (Pt)
4+) Selectively on negatively charged tin dioxide surfaces only
When the pH shifts to 6.0, the platinum ion becomes hydroxyl.
Platinum oxide (Pt (OH) Four) Change to tin dioxide surface
And precipitated.

【0067】以上のようにして処理された金属酸化物群
を水溶液から取り出し、これをアスピレーターで吸引し
ながら十分に水洗した後に約10時間真空乾燥した。こ
の金属酸化物群をガス流通式石英管に充填し、この石英
管に空気を金属酸化物群約1gに対して250ml/分
の流速で流しながら金属酸化物群を300℃で3時間焼
成した。続けて、この石英管に水素ガスを金属酸化物群
約1gに対して100ml/分の流速で流しながら金属
酸化物群を200℃で3時間還元処理した。この結果、
白金元素を担持した二酸化スズからなる触媒単位と、三
酸化二鉄との複合物が得られた。
The metal oxide group treated as described above was taken out of the aqueous solution, washed thoroughly with water while suctioning with an aspirator, and then dried in vacuum for about 10 hours. The metal oxide group was filled in a gas flow type quartz tube, and the metal oxide group was calcined at 300 ° C. for 3 hours while flowing air through the quartz tube at a flow rate of 250 ml / min for about 1 g of the metal oxide group. . Subsequently, the metal oxide group was reduced at 200 ° C. for 3 hours while flowing hydrogen gas through the quartz tube at a flow rate of 100 ml / min for about 1 g of the metal oxide group. As a result,
A composite of a catalyst unit composed of tin dioxide carrying platinum element and diiron trioxide was obtained.

【0068】次に、複合物10gをナス型フラスコ内の
水500mlに浸し、上述と同様に脱気処理した。その
後、当該複合物を水と共に蓋付き円筒型瓶に移し、これ
に0.03モルのHAuCl4・4H2Oを加えて500
mlの水溶液を調製した。この水溶液のpHは2.8で
あった。
Next, 10 g of the composite was immersed in 500 ml of water in an eggplant-shaped flask and degassed as described above. Thereafter, the composite was transferred to a capped cylindrical bottle with water added thereto 0.03 moles of HAuCl 4 · 4H 2 O 500
A ml aqueous solution was prepared. The pH of this aqueous solution was 2.8.

【0069】水溶液のpHが7.0になるまで攪拌しな
がら5%の炭酸ナトリウム水溶液を緩やかに滴下し、こ
のpHを維持しながら水溶液を5時間熟成した。この過
程では、水溶液のpHが二酸化スズの等電点以上、すな
わち4.5以上になると、水溶液中の金イオン(AuC
4-)が正電荷を帯びた三酸化二鉄の表面のみに選択的
に移行し、pHが7.0になったときに当該金イオンが
水酸化金(Au(OH)3)に変化して三酸化二鉄の表
面にのみ析出して沈殿した。
A 5% aqueous solution of sodium carbonate was slowly added dropwise with stirring until the pH of the aqueous solution reached 7.0, and the aqueous solution was aged for 5 hours while maintaining this pH. In this process, when the pH of the aqueous solution becomes equal to or higher than the isoelectric point of tin dioxide, that is, 4.5 or higher, gold ions (AuC
l 4- ) selectively migrates only to the surface of positively charged diiron trioxide, and when the pH reaches 7.0, the gold ion changes to gold hydroxide (Au (OH) 3 ). As a result, it was deposited only on the surface of diiron trioxide and precipitated.

【0070】以上のようにして処理された複合物を水溶
液から取り出して濾過し、これをアスピレーターで吸引
しながら十分に水洗した後に約10時間真空乾燥した。
この複合物をガス流通式石英管に充填し、この石英管に
空気を複合物約1gに対して250ml/分の流速で流
しながら複合物を300℃で3時間焼成した。この結
果、白金元素を担持した二酸化スズからなる触媒単位お
よび金元素を担持した三酸化二鉄からなる触媒単位の2
つの触媒単位からなる集積化触媒が得られた。得られた
集積化触媒の組成および物理的性状は表1に示す通りで
ある。
The composite treated as described above was taken out of the aqueous solution, filtered, washed sufficiently with suction by an aspirator, and dried in vacuum for about 10 hours.
The composite was filled in a gas flow type quartz tube, and the composite was calcined at 300 ° C. for 3 hours while flowing air through the quartz tube at a flow rate of 250 ml / min for about 1 g of the composite. As a result, a catalyst unit composed of tin dioxide carrying a platinum element and a catalyst unit composed of diiron trioxide carrying a gold element, 2
An integrated catalyst consisting of two catalyst units was obtained. The composition and physical properties of the obtained integrated catalyst are as shown in Table 1.

【0071】比較例1 下記のようにして得られた触媒成分1、触媒成分2およ
び触媒成分3を1:1:1の割合で均一に混合し、混合
触媒を得た。得られた混合触媒の組成および物理的性状
は表1に示す通りである。
Comparative Example 1 Catalyst component 1, catalyst component 2 and catalyst component 3 obtained as described below were uniformly mixed at a ratio of 1: 1: 1 to obtain a mixed catalyst. The composition and physical properties of the obtained mixed catalyst are as shown in Table 1.

【0072】(触媒成分1)ナス型フラスコに500m
lの水を加え、これに10gのコールタールピッチ系活
性炭素繊維(平均繊維径=14.0μm、BET比表面
積=1,920m2/g、平均細孔径=19.01オン
グストローム)を浸した。この際、活性炭素繊維の細孔
内にも水を浸入させるため、ナス型フラスコ内を約10
分間真空脱気処理した。
(Catalyst component 1) 500 m in an eggplant type flask
1 g of water was added thereto, and 10 g of coal tar pitch-based activated carbon fiber (average fiber diameter = 14.0 μm, BET specific surface area = 1,920 m 2 / g, average pore diameter = 19.01 Å) was immersed in the water. At this time, in order to allow water to penetrate into the pores of the activated carbon fiber, about 10
Vacuum degassed for minutes.

【0073】次に、ナス型フラスコ内の活性炭素繊維を
水と共に蓋付き円筒型瓶に移し、これに0.006モル
のFe(NO33・9H2O、0.0003モルのHA
uCl4・4H2Oおよび0.057モルの尿素を加えて
溶解し、500mlの水溶液を得た。そして、この水溶
液を80℃のウオーターバス中で攪拌しながら5時間加
熱処理した。この際、水溶液中の尿素が加水分解してO
-イオンが生成し、水溶液のpHが徐々にアルカリ性
側に移行した。この結果、水溶液中の活性炭素繊維に
は、水酸化鉄(Fe(OH)3)と水酸化金(Au(O
H)3)が析出して沈殿した。
Next, the activated carbon fiber in the eggplant-shaped flask were transferred to a capped cylindrical bottle with water, to which 0.006 mol of Fe (NO 3) 3 · 9H 2 O, 0.0003 moles of HA
UCl 4 .4H 2 O and 0.057 mol of urea were added and dissolved to obtain 500 ml of an aqueous solution. Then, this aqueous solution was subjected to a heat treatment for 5 hours while being stirred in a water bath at 80 ° C. At this time, urea in the aqueous solution is hydrolyzed to O
H - ions were generated, and the pH of the aqueous solution gradually shifted to the alkaline side. As a result, the activated carbon fibers in the aqueous solution contain iron hydroxide (Fe (OH) 3 ) and gold hydroxide (Au (O
H) 3 ) precipitated and precipitated.

【0074】活性炭素繊維を水溶液から取り出し、これ
をアスピレーターで吸引しながら十分に水洗した後に約
10時間真空乾燥した。この活性炭素繊維をガス流通式
石英管に充填し、この石英管に2容量%の酸素と98容
量%の窒素とを含む混合ガスを活性炭素繊維約1gに対
して250ml/分の流速で流しながら活性炭素繊維を
300℃で3時間焼成した。これにより、金元素と三酸
化二鉄とを担持した活性炭素繊維(触媒成分1)が得ら
れた。
The activated carbon fibers were taken out of the aqueous solution, washed thoroughly with water while suctioning them with an aspirator, and then dried under vacuum for about 10 hours. This activated carbon fiber is filled in a gas flow type quartz tube, and a mixed gas containing 2% by volume of oxygen and 98% by volume of nitrogen is flowed through the quartz tube at a flow rate of 250 ml / min per approximately 1 g of the activated carbon fiber. The activated carbon fibers were baked at 300 ° C. for 3 hours. Thus, an activated carbon fiber (catalyst component 1) supporting the gold element and diiron trioxide was obtained.

【0075】(触媒成分2)ナス型フラスコに500m
lの水を加え、これに10gのコールタールピッチ系活
性炭素繊維(平均繊維径=14.0μm、BET比表面
積=1,920m2/g、平均細孔径=19.01オン
グストローム)を浸した。この際、活性炭素繊維の細孔
内にも水を浸入させるため、ナス型フラスコ内を約10
分間真空脱気処理した。
(Catalyst component 2) 500 m in an eggplant type flask
1 g of water was added thereto, and 10 g of coal tar pitch-based activated carbon fiber (average fiber diameter = 14.0 μm, BET specific surface area = 1,920 m 2 / g, average pore diameter = 19.01 Å) was immersed in the water. At this time, in order to allow water to penetrate into the pores of the activated carbon fiber, about 10
Vacuum degassed for minutes.

【0076】次に、ナス型フラスコ内の活性炭素繊維を
水と共に蓋付き円筒型瓶に移し、これに0.006モル
のSnCl4、0.0003モルのPtCl4および0.
057モルの尿素を加えて溶解し、500mlの水溶液
を得た。そして、この水溶液を80℃のウオーターバス
中で攪拌しながら5時間加熱処理した。以下、触媒成分
1の場合と同様に操作したところ、白金元素と二酸化ス
ズとを担持した活性炭素繊維(触媒成分2)が得られ
た。
Next, the activated carbon fibers in the eggplant-shaped flask were transferred together with water to a cylindrical bottle with a lid, into which 0.006 mol of SnCl 4 , 0.0003 mol of PtCl 4, and 0.03 mol of PtCl 4 were added.
057 mol of urea was added and dissolved to obtain 500 ml of an aqueous solution. Then, this aqueous solution was subjected to a heat treatment for 5 hours while being stirred in a water bath at 80 ° C. Thereafter, the same operation as in the case of the catalyst component 1 was performed, whereby an activated carbon fiber carrying the platinum element and tin dioxide (catalyst component 2) was obtained.

【0077】(触媒成分3)ナス型フラスコに500m
lの水を加え、これに10gのコールタールピッチ系活
性炭素繊維(平均繊維径=14.0μm、BET比表面
積=1,920m2/g、平均細孔径=19.01オン
グストローム)を浸した。この際、活性炭素繊維の細孔
内にも水を浸入させるため、ナス型フラスコ内を約10
分間真空脱気処理した。
(Catalyst component 3) 500 m in an eggplant type flask
1 g of water was added thereto, and 10 g of coal tar pitch-based activated carbon fiber (average fiber diameter = 14.0 μm, BET specific surface area = 1,920 m 2 / g, average pore diameter = 19.01 Å) was immersed in the water. At this time, in order to allow water to penetrate into the pores of the activated carbon fiber, about 10
Vacuum degassed for minutes.

【0078】次に、ナス型フラスコ内の活性炭素繊維を
水と共に蓋付き円筒型瓶に移し、これに0.006モル
のLa(NO33・6H2O、0.0003モルのIr
Cl4および0.057モルの尿素を加えて溶解し、5
00mlの水溶液を得た。そして、この水溶液を80℃
のウオーターバス中で攪拌しながら5時間加熱処理し
た。以下、触媒成分1の場合と同様に操作したところ、
イリジウム元素と酸化ランタンとを担持した活性炭素繊
維(触媒成分3)が得られた。
Next, the activated carbon fibers in the eggplant-shaped flask were transferred together with water to a cylindrical bottle with a lid, into which 0.006 mol of La (NO 3 ) 3 .6H 2 O and 0.0003 mol of Ir were added.
Cl 4 and 0.057 mol of urea were added and dissolved.
00 ml of an aqueous solution was obtained. Then, the aqueous solution is heated to 80 ° C.
Was heated for 5 hours while stirring in a water bath. Hereinafter, when the same operation as in the case of the catalyst component 1 was performed,
An activated carbon fiber carrying the iridium element and lanthanum oxide (catalyst component 3) was obtained.

【0079】比較例2 下記のようにして得られた触媒成分1と触媒成分2とを
1:1の割合で均一に混合し、混合触媒を得た。得られ
た混合触媒の組成および物理的性状は表1に示す通りで
ある。
Comparative Example 2 Catalyst component 1 and catalyst component 2 obtained as described below were uniformly mixed at a ratio of 1: 1 to obtain a mixed catalyst. The composition and physical properties of the obtained mixed catalyst are as shown in Table 1.

【0080】(触媒成分1)蓋付き円筒型瓶に0.6モ
ルのFe(NO33・9H2O、0.03モルのHAu
Cl4、3.6モルの尿素および水を加えて溶解し、5
00mlの水溶液を得た。この際、水溶液に対して約1
0分間真空脱気処理した。この水溶液を80℃のウオー
ターバス中で攪拌しながら5時間加熱処理した。この
際、水溶液中の尿素が加水分解してOH-イオンが生成
し、水溶液のpHがアルカリ性側に徐々に移行した。こ
の結果、水溶液中には、水酸化鉄(Fe(OH)3)と
水酸化金(Au(OH)3)とが析出して沈殿した。
(Catalyst component 1) 0.6 mol of Fe (NO 3 ) 3 .9H 2 O, 0.03 mol of HAu were placed in a cylindrical bottle with a lid.
Cl 4 , 3.6 moles of urea and water were added and dissolved.
00 ml of an aqueous solution was obtained. At this time, about 1
Vacuum deaeration treatment was performed for 0 minutes. This aqueous solution was heat-treated for 5 hours while stirring in a water bath at 80 ° C. At this time, urea in the aqueous solution was hydrolyzed to generate OH - ions, and the pH of the aqueous solution gradually shifted to the alkaline side. As a result, iron hydroxide (Fe (OH) 3 ) and gold hydroxide (Au (OH) 3 ) were precipitated and precipitated in the aqueous solution.

【0081】沈殿を水溶液から濾過して取り出し、これ
をアスピレーターで吸引しながら十分に水洗した後に約
10時間真空乾燥した。この沈殿をガス流通式石英管に
充填し、この石英管に空気を沈殿約1gに対して250
ml/分の流速で流しながら沈殿を300℃で3時間焼
成した。これにより、金元素を担持した三酸化二鉄から
なる触媒(触媒成分1)が得られた。
The precipitate was filtered out of the aqueous solution, washed thoroughly with water while suctioning with an aspirator, and dried in vacuum for about 10 hours. The sediment is filled in a gas flow type quartz tube, and air is introduced into the quartz tube for about 1 g of the sediment for 250 g.
The precipitate was calcined at 300 ° C. for 3 hours while flowing at a flow rate of ml / min. As a result, a catalyst (catalyst component 1) composed of diiron trioxide supporting a gold element was obtained.

【0082】(触媒成分2)蓋付き円筒型瓶に0.6モ
ルのSnCl4、0.03モルのPtCl4、3.6モル
の尿素および水を加えて溶解し、500mlの水溶液を
得た。以下、触媒成分1の場合と同様に操作したとこ
ろ、白金元素を担持した二酸化スズからなる触媒(触媒
成分2)が得られた。
(Catalyst component 2) 0.6 mol of SnCl 4 , 0.03 mol of PtCl 4 , 3.6 mol of urea and water were added to a cylindrical bottle with a lid and dissolved to obtain 500 ml of an aqueous solution. . Thereafter, the same operation as in the case of the catalyst component 1 was performed, whereby a catalyst (catalyst component 2) composed of tin dioxide carrying platinum element was obtained.

【0083】[0083]

【表1】 [Table 1]

【0084】評価 各実施例および各比較例で得られた触媒について、一酸
化炭素1,000ppm、o−クロロフェノール1,4
00ppm、アセトアルデヒド700ppm、ヒドラジ
ン750ppm、メチルアミン450ppm、メチルメ
ルカプタン200ppm、水3.9容量%および酸素1
8.65容量%を含む窒素混合ガスに対する分解活性と
活性安定性とを調べた。なお、実施例3および比較例2
で得られた触媒は、平均粒径が0.5mmの石英砂と
1:4(触媒:石英砂)の割合で混合したものを試料と
した。
Evaluation The catalysts obtained in each of the examples and comparative examples were evaluated for carbon monoxide (1,000 ppm) and o-chlorophenol (1,4).
00 ppm, acetaldehyde 700 ppm, hydrazine 750 ppm, methylamine 450 ppm, methyl mercaptan 200 ppm, water 3.9% by volume and oxygen 1
The decomposition activity and the activity stability with respect to a nitrogen mixed gas containing 8.65% by volume were examined. Example 3 and Comparative Example 2
The catalyst obtained in 1 was mixed with quartz sand having an average particle size of 0.5 mm at a ratio of 1: 4 (catalyst: quartz sand) as a sample.

【0085】(分解活性試験)触媒の分解活性は、固定
床流通式反応装置を用いて評価した。ここでは、内径が
19mmのステンレス製の反応管に触媒試料2.0g
(14ml)を充填し、反応管の両端を適量のガラスウ
ールで封止した。そして、この反応管に、20,000
hr-1、温度130℃の条件で上述の窒素混合ガスを通
過させた。
(Decomposition Activity Test) The decomposition activity of the catalyst was evaluated using a fixed bed flow reactor. Here, a catalyst sample of 2.0 g was placed in a stainless steel reaction tube having an inner diameter of 19 mm.
(14 ml), and both ends of the reaction tube were sealed with an appropriate amount of glass wool. Then, 20,000 is added to this reaction tube.
The above-mentioned nitrogen mixed gas was passed under the conditions of hr -1 and a temperature of 130 ° C.

【0086】反応管を通過する前後の窒素混合ガスをガ
スクロマトグラフィー(株式会社柳本製作所の商品名
“H1880T型”)を用いて分析した。この際、o−
クロロフェノール、アセトアルデヒド、ヒドラジン、メ
チルアミンおよびメチルメルカプタンの検出用としてF
ID検出器を用い、一酸化炭素の検出用としてTCD検
出器を用いた。
The nitrogen mixed gas before and after passing through the reaction tube was analyzed by gas chromatography (trade name “H1880T” of Yanagimoto Seisakusho Co., Ltd.). At this time, o-
F for detection of chlorophenol, acetaldehyde, hydrazine, methylamine and methylmercaptan
An ID detector was used, and a TCD detector was used for detecting carbon monoxide.

【0087】触媒の分解活性は、窒素混合ガス中に含ま
れる各成分の分解率を求めることにより評価した。ここ
で、分解率は、反応管に窒素混合ガスを流し始めてから
2時間経過時点での反応管の入口側で測定したガスクロ
マトグラフィーにおける各成分のピーク面積と、同時点
での反応管の出口側で測定したガスクロマトグラフィー
における各成分のピーク面積とに基づいて算出した。結
果を表2に示す。
The decomposition activity of the catalyst was evaluated by determining the decomposition rate of each component contained in the nitrogen mixed gas. Here, the decomposition rate is determined by measuring the peak area of each component in gas chromatography measured at the inlet side of the reaction tube 2 hours after starting to flow the nitrogen mixed gas into the reaction tube, and the outlet of the reaction tube at the same point. It was calculated based on the peak area of each component in gas chromatography measured on the side. Table 2 shows the results.

【0088】(活性安定性)上述の触媒活性試験を24
時間継続し、分解率の変化を調べた。結果を図4〜図8
に示す。なお、図4は実施例1の触媒、図5は実施例2
の触媒、図6は実施例3の触媒、図7は比較例1の触媒
および図8は比較例2の触媒の結果をそれぞれ示してい
る。
(Activity stability)
Over time, the change in the degradation rate was examined. The results are shown in FIGS.
Shown in 4 shows the catalyst of Example 1, and FIG. 5 shows the catalyst of Example 2.
6 shows the result of the catalyst of Example 3, FIG. 7 shows the result of the catalyst of Comparative Example 1, and FIG. 8 shows the result of the catalyst of Comparative Example 2.

【0089】[0089]

【表2】 [Table 2]

【0090】[0090]

【発明の効果】本発明の集積化触媒は、複数種類の触媒
単位がナノメートルレベルで集合したものであるため、
複数種類の触媒を単に混合しただけのものとは異なり、
種類の異なる複数の物質に対する活性を同時に効果的に
発揮し得る。
According to the integrated catalyst of the present invention, a plurality of types of catalyst units are assembled at a nanometer level.
Unlike those that simply mix multiple types of catalysts,
Activities for a plurality of different types of substances can be effectively exhibited simultaneously.

【0091】また、本発明に係る触媒の製造方法によれ
ば、種類の異なる複数の物質に対する活性を同時に効果
的に発揮し得る、金属元素と金属酸化物とが組合わされ
た触媒単位の複数種類がナノメートルレベルで集合した
集積触媒を実現することができる。
Further, according to the method for producing a catalyst according to the present invention, a plurality of types of catalyst units in which a metal element and a metal oxide are combined, which are capable of simultaneously exhibiting an activity on a plurality of different types of substances simultaneously and effectively. Can be realized at the nanometer level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の集積化触媒の一形態の概念図。FIG. 1 is a conceptual diagram of one embodiment of an integrated catalyst of the present invention.

【図2】本発明の集積化触媒の他の形態の概念図。FIG. 2 is a conceptual diagram of another embodiment of the integrated catalyst of the present invention.

【図3】三酸化二鉄および二酸化スズの水溶液中におけ
るイオン吸着密度とpHとの関係を示すグラフ。
FIG. 3 is a graph showing a relationship between ion adsorption density and pH in an aqueous solution of diiron trioxide and tin dioxide.

【図4】実施例1に係る触媒の活性安定性を示すグラ
フ。
FIG. 4 is a graph showing the activity stability of the catalyst according to Example 1.

【図5】実施例2に係る触媒の活性安定性を示すグラ
フ。
FIG. 5 is a graph showing the activity stability of the catalyst according to Example 2.

【図6】実施例3に係る触媒の活性安定性を示すグラ
フ。
FIG. 6 is a graph showing the activity stability of the catalyst according to Example 3.

【図7】比較例1に係る触媒の活性安定性を示すグラ
フ。
FIG. 7 is a graph showing the activity stability of the catalyst according to Comparative Example 1.

【図8】比較例2に係る触媒の活性安定性を示すグラ
フ。
FIG. 8 is a graph showing the activity stability of the catalyst according to Comparative Example 2.

【符号の説明】[Explanation of symbols]

1,2 集積化触媒 a,b,c 触媒単位 U 触媒単位群 S 担体 1, 2 Integrated catalyst a, b, c Catalyst unit U Catalyst unit group S Carrier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 光隆 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 梶川 修 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 岡田 治 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 傳 慶一 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 (72)発明者 王 祥生 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BB05A BB05B BB08B BB12B BC22A BC22B BC42A BC42B BC66A BC66B BC74A BC74B BC75A BC75B BD12B CA03 CA12 CA13 CA14 CA15 CA17 CA19 EA03X EB18X EB18Y EE06 EE09 FA02 FB08 FB13 FB16 FB17 FB18 FB19 FB20 FB30 FB77 FC09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsutaka Okumura 1-8-31 Midorioka, Ikeda-shi, Osaka Inside the Industrial Technology Research Institute, Osaka Institute of Technology (72) Inventor Osamu Kajikawa Hiranocho, Chuo-ku, Osaka-shi, Osaka 1-2 1-2, Osaka Gas Co., Ltd. (72) Inventor Osamu Okada 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture 72-inch Inside Osaka Gas Co., Ltd. (72) Keiichi Den, Chudo, Shimogyo-ku, Kyoto City, Kyoto Prefecture Inside the Kansai New Technology Research Center, 17 Teranicho Co., Ltd. (72) Inventor Yoshio Wang In the Kansai New Technology Research Center, 17 Nakado-Jinancho, Shimogyo-ku, Kyoto, Kyoto Prefecture F-term (reference) BC22A BC22B BC42A BC42B BC66A BC66B BC74A BC74B BC75A BC75B BD12B CA03 CA12 CA13 CA14 CA15 CA17 CA19 EA03X EB18X EB18Y EE06 EE09 FA02 FB08 FB13 FB16 FB17 FB18 FB19 FB20 FB30 FB77 FC09

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】複数種類の触媒単位を多数含む触媒単位群
からなり、 前記触媒単位はナノメートルレベルで集合して前記触媒
単位群を形成している、集積化触媒。
An integrated catalyst comprising a catalyst unit group including a large number of catalyst units of a plurality of types, wherein the catalyst units are assembled at a nanometer level to form the catalyst unit group.
【請求項2】複数種類の前記触媒単位は、それぞれが独
自の触媒機能を有しており、かつ少なくとも1種の触媒
単位が他の種類の触媒単位のうちの少なくとも1種の触
媒機能を補完可能なように選択されている、請求項1に
記載の集積化触媒。
2. A plurality of types of said catalyst units each have a unique catalyst function, and at least one type of catalyst unit complements at least one type of catalyst function of other types of catalyst units. The integrated catalyst according to claim 1, which is selected as possible.
【請求項3】複数種類の前記触媒単位のそれぞれは、金
属酸化物と金属元素との組合わせからなる、請求項1ま
たは2に記載の集積化触媒。
3. The integrated catalyst according to claim 1, wherein each of the plurality of types of catalyst units comprises a combination of a metal oxide and a metal element.
【請求項4】複数種類の前記触媒単位のうちの少なくと
も1種のものの前記金属酸化物と前記金属元素とは、触
媒機能を相乗的に高め得る組合わせに設定されている、
請求項3に記載の集積化触媒。
4. The combination of the metal oxide and the metal element of at least one of a plurality of types of the catalyst units is set so as to synergistically enhance the catalytic function.
An integrated catalyst according to claim 3.
【請求項5】前記触媒単位群が担体上に配置されてい
る、請求項1、2、3または4に記載の集積化触媒。
5. The integrated catalyst according to claim 1, wherein said group of catalyst units is arranged on a carrier.
【請求項6】前記担体が活性炭および活性炭素繊維のう
ちから選ばれた1種である、請求項5に記載の集積化触
媒。
6. The integrated catalyst according to claim 5, wherein said carrier is one selected from activated carbon and activated carbon fibers.
【請求項7】金元素が三酸化二鉄上に担持された第1触
媒単位、白金元素が二酸化スズ上に担持された第2触媒
単位およびイリジウム元素が酸化ランタン上に担持され
た第3触媒単位をそれぞれ多数含む触媒単位群からな
り、 前記第1触媒成分、前記第2触媒成分および前記第3触
媒成分はナノメートルレベルで集合して前記触媒単位群
を形成している、集積化触媒。
7. A first catalyst unit in which a gold element is supported on diiron trioxide, a second catalyst unit in which a platinum element is supported on tin dioxide, and a third catalyst in which an iridium element is supported on lanthanum oxide An integrated catalyst comprising a catalyst unit group including a plurality of units, wherein the first catalyst component, the second catalyst component, and the third catalyst component are assembled at a nanometer level to form the catalyst unit group.
【請求項8】前記触媒単位群が活性炭および活性炭素繊
維のうちから選ばれた1種の担体上に配置されている、
請求項7に記載の集積化触媒。
8. The catalyst unit group is disposed on one type of carrier selected from activated carbon and activated carbon fiber,
An integrated catalyst according to claim 7.
【請求項9】金属酸化物に対して特定の金属元素が組み
合わされた触媒単位の複数種類がナノメートルレベルで
多数集合した集積化触媒を製造するための方法であっ
て、 ナノメートルレベルで集積された、複数種類の前記金属
酸化物を含む金属酸化物群を調製する第1の工程と、 前記金属酸化物群に含まれる前記金属酸化物のそれぞれ
に対し、それに対応する前記金属元素を選択的に担持さ
せる第2の工程と、を含む集積化触媒の製造方法。
9. A method for producing an integrated catalyst in which a plurality of types of catalyst units in which a specific metal element is combined with a metal oxide is assembled at a nanometer level. A first step of preparing a metal oxide group containing a plurality of types of the metal oxides, and selecting the metal element corresponding to each of the metal oxides included in the metal oxide group A method for producing an integrated catalyst, the method comprising:
【請求項10】前記第2の工程は、複数種類の前記金属
酸化物の等電点の差を利用して、前記金属酸化物群のう
ちの1種類の前記金属酸化物のみに対してそれに対応す
る前記金属元素のイオンを選択的に付着させる工程と、
前記金属元素のイオンを前記金属元素に変換する工程と
を含み、これらの工程からなる多段工程を前記金属酸化
物群に含まれる前記金属酸化物の種類毎に繰り返す、請
求項9に記載の集積化触媒の製造方法。
10. The method according to claim 1, wherein the second step uses only a difference in isoelectric point between a plurality of types of the metal oxides to apply only one type of the metal oxides in the group of the metal oxides. Selectively depositing ions of the corresponding metal element;
10. The integration according to claim 9, further comprising the step of: converting ions of the metal element into the metal element, wherein a multi-step process consisting of these steps is repeated for each type of the metal oxide included in the metal oxide group. Production method of the conversion catalyst.
【請求項11】前記金属元素のイオンを前記金属元素に
変換する工程は、前記金属元素のイオンを前記金属元素
の水酸化物に誘導する工程と、前記水酸化物を前記金属
元素に変換する工程とを含んでいる、請求項10に記載
の集積化触媒の製造方法。
11. The step of converting the ions of the metal element to the metal element includes the steps of: inducing the ions of the metal element to a hydroxide of the metal element; and converting the hydroxide to the metal element. 11. The method for producing an integrated catalyst according to claim 10, comprising the steps of:
【請求項12】前記金属酸化物に変換可能な金属酸化物
前駆体と、前記金属酸化物に対応する前記金属元素に変
換可能な金属元素前駆体とを同時に析出させる工程と、
前記金属酸化物前駆体および前記金属元素前駆体をそれ
ぞれ前記金属酸化物および前記金属元素に変換する工程
とを含む第3の工程をさらに含んでいる、請求項9、1
0または11に記載の集積化触媒の製造方法。
12. A step of simultaneously depositing a metal oxide precursor convertible to the metal oxide and a metal element precursor convertible to the metal element corresponding to the metal oxide;
Converting the metal oxide precursor and the metal element precursor into the metal oxide and the metal element, respectively, further comprising a third step.
12. The method for producing an integrated catalyst according to 0 or 11.
【請求項13】前記第3の工程を複数回繰り返す、請求
項12に記載の集積化触媒の製造方法。
13. The method according to claim 12, wherein the third step is repeated a plurality of times.
【請求項14】前記第2の工程における前記多段工程を
繰り返す間に、前記第3の工程を少なくとも1回実施す
る、請求項9、10または11に記載の集積化触媒の製
造方法。
14. The method for producing an integrated catalyst according to claim 9, wherein the third step is performed at least once while repeating the multi-step step in the second step.
【請求項15】金元素が三酸化二鉄上に担持された第1
触媒単位、白金元素が二酸化スズ上に担持された第2触
媒単位およびイリジウム元素が酸化ランタン上に担持さ
れた第3触媒単位をそれぞれ多数含む触媒単位群からな
り、前記第1触媒成分、前記第2触媒成分および前記第
3触媒成分がナノメートルレベルで集合して前記触媒単
位群を形成している集積化触媒を製造するための方法で
あって、 ナノメートルレベルで集積された、前記三酸化二鉄と前
記二酸化スズとを含む水溶液を調製する工程と、 前記水溶液に白金化合物を溶解しかつ前記水溶液のpH
を前記二酸化スズの等電点よりもアルカリ性側でありか
つ前記三酸化二鉄の等電点よりも酸性側に設定して、前
記白金化合物からの白金陽イオンを前記二酸化スズのみ
に選択的に付着させ、前記水溶液のpHを前記三酸化二
鉄の等電点を越えない範囲でさらにアルカリ性側に調整
して前記白金陽イオンから水酸化白金を誘導する工程
と、 前記水酸化白金を加熱処理して前記白金元素に変換する
工程と、 前記水溶液に金化合物を溶解しかつ前記水溶液のpHを
前記二酸化スズの等電点と前記三酸化二鉄の等電点との
間に設定して、前記金化合物からの金陰イオンを前記三
酸化二鉄のみに選択的に付着させ、前記水溶液のpHを
さらにアルカリ性側に調整して前記金陰イオンから水酸
化金を誘導する工程と、 前記水酸化金を加熱処理して前記金元素に変換する工程
と、 前記水溶液にランタン塩とイリジウム塩とを溶解した
後、前記水溶液のpHを調整して、前記水溶液内に水酸
化ランタンと水酸化イリジウムとを生成させる工程と、 前記水酸化ランタンおよび前記水酸化イリジウムを加熱
処理し、それぞれを前記酸化ランタンおよび前記イリジ
ウム元素に変換する工程と、を含む集積化触媒の製造方
法。
15. The first element in which a gold element is supported on diiron trioxide
A catalyst unit group comprising a large number of catalyst units, a second catalyst unit in which platinum element is supported on tin dioxide, and a catalyst unit group including a large number of third catalyst units in which iridium element is supported on lanthanum oxide; A method for producing an integrated catalyst in which two catalyst components and the third catalyst component are assembled at the nanometer level to form the catalyst unit group, wherein the trioxide is integrated at the nanometer level. Preparing an aqueous solution containing ferrous iron and the tin dioxide; dissolving a platinum compound in the aqueous solution; and adjusting the pH of the aqueous solution.
Is set on the more alkaline side than the isoelectric point of the tin dioxide and on the more acidic side than the isoelectric point of the diiron trioxide to selectively convert platinum cations from the platinum compound to the tin dioxide only. Adhering, adjusting the pH of the aqueous solution to be more alkaline within a range not exceeding the isoelectric point of the diiron trioxide to induce platinum hydroxide from the platinum cation, and heat treating the platinum hydroxide. And converting to the platinum element, dissolving a gold compound in the aqueous solution and setting the pH of the aqueous solution between the isoelectric point of the tin dioxide and the isoelectric point of the diiron trioxide, Selectively adhering gold anions from the gold compound only to the diiron trioxide, further adjusting the pH of the aqueous solution to an alkaline side to induce gold hydroxide from the gold anions, Heat treatment of gold oxide Converting lanthanum salt and iridium salt into the aqueous solution, adjusting the pH of the aqueous solution to generate lanthanum hydroxide and iridium hydroxide in the aqueous solution, Heating the lanthanum oxide and the iridium hydroxide to convert them to the lanthanum oxide and the iridium element, respectively.
JP07312999A 1999-03-18 1999-03-18 Integrated catalyst and method for producing the same Expired - Lifetime JP3932335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07312999A JP3932335B2 (en) 1999-03-18 1999-03-18 Integrated catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07312999A JP3932335B2 (en) 1999-03-18 1999-03-18 Integrated catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000262907A true JP2000262907A (en) 2000-09-26
JP3932335B2 JP3932335B2 (en) 2007-06-20

Family

ID=13509308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07312999A Expired - Lifetime JP3932335B2 (en) 1999-03-18 1999-03-18 Integrated catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3932335B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263492A (en) * 2001-03-14 2002-09-17 National Institute Of Advanced Industrial & Technology Iridium supporting material, iridium supporting method and iridium supporting catalyst
JP2003033667A (en) * 2001-07-23 2003-02-04 National Institute Of Advanced Industrial & Technology Method of rapidly searching multicomponent solid catalyst
JP2003230839A (en) * 2002-02-08 2003-08-19 National Institute Of Advanced Industrial & Technology Rapid preparation method for many kinds of solid catalysts and device used therefor
JP2003253244A (en) * 2002-02-28 2003-09-10 Yoshio Murai Method for decomposing dioxins
JP2004298696A (en) * 2003-03-28 2004-10-28 Nippon Gasket Co Ltd Method for manufacturing deodorizing catalyst
JP2005270459A (en) * 2004-03-25 2005-10-06 Nippon Gasket Co Ltd Deodorizer and its manufacturing method
JP2006193392A (en) * 2005-01-17 2006-07-27 Tokyo Institute Of Technology Oxide composite material, its manufacturing method, electrochemical device and catalyst containing oxide composite material
JP2019000805A (en) * 2017-06-15 2019-01-10 大日精化工業株式会社 Manufacturing method of catalyst component carrier and catalyst component carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263492A (en) * 2001-03-14 2002-09-17 National Institute Of Advanced Industrial & Technology Iridium supporting material, iridium supporting method and iridium supporting catalyst
JP2003033667A (en) * 2001-07-23 2003-02-04 National Institute Of Advanced Industrial & Technology Method of rapidly searching multicomponent solid catalyst
JP2003230839A (en) * 2002-02-08 2003-08-19 National Institute Of Advanced Industrial & Technology Rapid preparation method for many kinds of solid catalysts and device used therefor
JP2003253244A (en) * 2002-02-28 2003-09-10 Yoshio Murai Method for decomposing dioxins
JP2004298696A (en) * 2003-03-28 2004-10-28 Nippon Gasket Co Ltd Method for manufacturing deodorizing catalyst
JP2005270459A (en) * 2004-03-25 2005-10-06 Nippon Gasket Co Ltd Deodorizer and its manufacturing method
JP4543167B2 (en) * 2004-03-25 2010-09-15 独立行政法人産業技術総合研究所 Deodorant and method for producing the same
JP2006193392A (en) * 2005-01-17 2006-07-27 Tokyo Institute Of Technology Oxide composite material, its manufacturing method, electrochemical device and catalyst containing oxide composite material
JP2019000805A (en) * 2017-06-15 2019-01-10 大日精化工業株式会社 Manufacturing method of catalyst component carrier and catalyst component carrier

Also Published As

Publication number Publication date
JP3932335B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP1628745B1 (en) Method and apparatus for purifying air using a photocatalyst
TWI442972B (en) The method of preparation of cerium oxide supported gold-palladium catalysts and its application in destruction of volatile organic compounds
CN110404534A (en) A kind of volatile organic matter catalyst for catalytic oxidation and preparation method thereof of efficient anti-chlorine poisoning
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
KR940006404B1 (en) Catalyst for treatment of water
KR100469005B1 (en) Photocatalytic system for the removal of volatile organic compounds
JP3932335B2 (en) Integrated catalyst and method for producing the same
JP3987289B2 (en) Photocatalyst, method for producing the same, and photocatalyst using the same
JP2004074069A (en) Formaldehyde oxidation removal method
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JP2007117911A (en) Catalyst for decomposing organic chlorine compound and method for removing organic chlorine compound using the same
JPH10296087A (en) Deodorizing catalyst and its manufacture
JPH1071331A (en) Zno-pd complex catalyst and preparation thereof
JP3567004B2 (en) Photocatalyst and method for producing the same
JPH0290923A (en) Deodorizing method
JP3546766B2 (en) Deodorizing catalyst
JP3310926B2 (en) DeNOx catalyst and method for producing the same
JP2004089953A (en) Method of continuously decomposing and removing organic substance contained in gas
JP2001104781A (en) Material for removing nitrogen oxide and method for removing it
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
CN108236951A (en) A kind of preparation method of the palladium on carbon powder as formaldehyde remover
TWI293036B (en) Catalyst, method for producing the same and method for treating volatile organic compounds
JP4336121B2 (en) Catalyst and method for producing the same
JP4974004B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061130

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term