JP2000262099A - Lateral flow compensating device for ac generator - Google Patents

Lateral flow compensating device for ac generator

Info

Publication number
JP2000262099A
JP2000262099A JP11062148A JP6214899A JP2000262099A JP 2000262099 A JP2000262099 A JP 2000262099A JP 11062148 A JP11062148 A JP 11062148A JP 6214899 A JP6214899 A JP 6214899A JP 2000262099 A JP2000262099 A JP 2000262099A
Authority
JP
Japan
Prior art keywords
voltage
generator
current
transformer
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11062148A
Other languages
Japanese (ja)
Inventor
Masamitsu Kamiya
正光 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP11062148A priority Critical patent/JP2000262099A/en
Publication of JP2000262099A publication Critical patent/JP2000262099A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To miniaturize and make light weight the constitution of a lateral flow compensation device adopted, when an AC generator is operated in parallel with the other power source and to reduce manufacture man-hours. SOLUTION: A voltage source-type current/voltage converter 6, in which a magnetic circuit 6-1 and a hole element 6-2 are combined and whose power loss is extremely small, is adopted. The current signal of an AC generator 1 is converted into a voltage via magnetic flux. Voltage and the secondary side voltage of transformers 4 and 7 detecting generator voltage are added vectorially in arithmetic circuits 8 and 9A. Then, voltage is full-wave rectified and is changed into DC voltage and is outputted as a feedback voltage signal in a generator control system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流発電機を他の
電源と並列運転する場合に、両電源間に流れる無効成分
の横流を防ぐために使用される横流補償装置を小形・軽
量化するのに好適な交流発電機の横流補償装置の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to reduce the size and weight of a cross flow compensator used to prevent cross flow of an ineffective component flowing between two power supplies when an AC generator is operated in parallel with another power supply. The present invention relates to an improvement of a cross flow compensator for an AC generator, which is suitable for the present invention.

【0002】[0002]

【従来の技術】従来の横流補償装置は、例えば図4に示
す横流補償装置5のように、変流器6と変圧器7と抵抗
器8および全波整流回路9で構成されており、次のよう
に動作する。
2. Description of the Related Art A conventional cross current compensator, such as a cross current compensator 5 shown in FIG. 4, comprises a current transformer 6, a transformer 7, a resistor 8, and a full-wave rectifier circuit 9. Works like

【0003】図4において、交流発電機1を他の交流電
源2と並列運転し、安定した三相RSTの交流電力を負
荷側に供給している場合に、何らかの原因で発電機電圧
が変化すると両電源間に無効成分の横流が流れ、その結
果、発電機力率が変動する。横流補償装置5は、上記発
電機力率の変動に応じて大きさが変化する直流出力電圧
eを発生させ、自動電圧調整装置へ帰還電圧信号として
供給するものである。発電機電流i1を検出する二次側
が接地された高圧タイプの変流器3の二次側電流が横流
補償装置5内の変流器6に入力し、その二次側電流i2
が抵抗器8に供給されて、抵抗器の両端にi2に対応し
た電圧v1を発生する。一方、発電機電圧を検出する二
次側が接地された高圧タイプの変圧器4の二次側電圧が
横流補償装置5内の変圧器7に入力し、その二次側電圧
v2と、前記電圧v1とを直列にした(v2−v1)な
る合成ベクトル電圧v3を発生する。
In FIG. 4, when the AC generator 1 is operated in parallel with another AC power supply 2 and stable three-phase RST AC power is supplied to the load side, if the generator voltage changes for any reason, A cross flow of the reactive component flows between the two power sources, and as a result, the power factor of the generator fluctuates. The cross current compensator 5 generates a DC output voltage e whose magnitude changes in accordance with the fluctuation of the generator power factor, and supplies the DC output voltage e to the automatic voltage regulator as a feedback voltage signal. The secondary side current of the high-voltage type current transformer 3 whose secondary side for detecting the generator current i1 is grounded is input to the current transformer 6 in the cross current compensator 5, and the secondary side current i2
Is supplied to the resistor 8 to generate a voltage v1 corresponding to i2 across the resistor. On the other hand, the secondary voltage of the high-voltage type transformer 4 whose secondary side for detecting the generator voltage is grounded is input to the transformer 7 in the cross current compensator 5, and the secondary voltage v2 and the voltage v1 Are generated in series, and a composite vector voltage v3 of (v2-v1) is generated.

【0004】図5は、発電機力率が1.0の場合の各電
圧v1、v2、v3のベクトル図を示すもので、合成ベ
クトル電圧v3の軌跡は、発電機力率の変動に応じて一
点鎖線で示した円上を移動し、その絶対値即ち、大きさ
は発電機力率が遅れ方向になると増加し、進み方向にな
ると減少する。電圧v3を図4に示す全波整流回路9で
直流にし、v3の大きさに対応した電圧eを出力する。
なお、0Vは零電圧ラインである。
FIG. 5 shows a vector diagram of each of the voltages v1, v2, and v3 when the power factor of the generator is 1.0. The locus of the composite vector voltage v3 changes according to the fluctuation of the power factor of the generator. The generator moves on a circle indicated by a dashed line, and its absolute value, that is, the magnitude increases when the generator power factor is in the late direction, and decreases when the generator power factor is in the forward direction. The voltage v3 is converted to a direct current by the full-wave rectifier circuit 9 shown in FIG. 4, and a voltage e corresponding to the magnitude of v3 is output.
Note that 0 V is a zero voltage line.

【0005】[0005]

【発明が解決しようとする課題】このように構成される
従来の横流補償装置では、変流器6を採用して電流−電
流交換を行い、電流源である二次側電流i2を電圧に変
換するとき抵抗器8で多大の電力損失が発生し、このた
め、例えば20W相当の仕様の抵抗器を必要とし、これ
に伴い他の構成部品も大形のものになって横流補償装置
全体が大形となり、製作面での工数低減化が困難である
といった問題点があった。本発明は従来のものの上記課
題(問題点)を解決し、横流補償装置の製作工数低減化
を達成することができる交流発電機の横流補償装置を提
供することを目的とする。
In the conventional cross current compensator constructed as described above, current-current exchange is performed by using the current transformer 6, and the secondary current i2 as a current source is converted into a voltage. In this case, a large amount of power loss occurs in the resistor 8, and therefore, a resistor having a specification equivalent to, for example, 20 W is required. However, there is a problem that it is difficult to reduce man-hours in manufacturing. SUMMARY OF THE INVENTION It is an object of the present invention to provide a cross flow compensator for an AC generator, which solves the above-mentioned problems (problems) of the conventional device and can reduce the number of manufacturing steps of the cross current compensator.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、磁気回路とホール素子を組み合わせた、
電力損失がきわめて小さい電圧源型の電流−電圧変換器
を採用して、発電機電流信号を磁束を介して電圧に変換
し、信号の処理は集積回路の演算増幅器等で行うように
回路構成して、横流補償装置をプリント板配線可能なレ
ベルにまで小形化し、製作工数低減化を実現した。
According to the present invention, a magnetic circuit and a Hall element are combined to solve the above-mentioned problems.
A voltage source type current-to-voltage converter with very small power loss is adopted, the generator current signal is converted to voltage via magnetic flux, and the signal is processed by the operational amplifier of the integrated circuit. As a result, the cross current compensator was downsized to a level that allows wiring on a printed circuit board, and the number of manufacturing steps was reduced.

【0007】[0007]

【発明の実施の形態】図1は、本発明回路の一実施の形
態の回路構成図で、従来のものと同等の構成(符号1〜
4の部分)は図4と同一の符号を付して示した。図1に
おいて、5は横流補償装置、6は電流−電圧変換器、7
は変圧器、8は演算増幅器、9Aは全波整流回路であ
る。なお、全波整流回路9Aの構成は後述する。
FIG. 1 is a circuit diagram showing an embodiment of a circuit according to the present invention.
4) are denoted by the same reference numerals as in FIG. In FIG. 1, 5 is a cross current compensator, 6 is a current-voltage converter, 7
Is a transformer, 8 is an operational amplifier, and 9A is a full-wave rectifier circuit. The configuration of the full-wave rectifier circuit 9A will be described later.

【0008】また、電流−電圧変換器6は、磁性体コア
6−1と演算増幅器6−4を備えて成り、磁性体コア6
−1のエアーギャップ内にホール素子6−2を挿入し、
コア6−1に巻かれたコイル6−3に発電機電流i1を
検出する二次側が接地された高圧タイプの変流器3の二
次側電流を入力し、コアとエアーギャップから成る磁気
回路に生ずる磁束中の作用によってホール素子が発生す
る交流電圧を演算増幅器6−4で増幅して電圧v1を出
力する。
The current-voltage converter 6 comprises a magnetic core 6-1 and an operational amplifier 6-4.
-1, the Hall element 6-2 is inserted into the air gap,
A magnetic circuit consisting of a core and an air gap is input to the coil 6-3 wound around the core 6-1 and receives the secondary current of the high-voltage type current transformer 3 whose secondary side for detecting the generator current i1 is grounded. The AC voltage generated by the Hall element is amplified by the operational amplifier 6-4 due to the action in the magnetic flux generated in the step (a), and a voltage v1 is output.

【0009】一方、発電機電圧を検出する二次側が接地
された高圧タイプの変圧器4の二次側電圧が変圧器7に
入力し、その二次側電圧v2と、前記電圧v1とを演算
増幅器8でベクトル加算した(v2・R3/R2−v1
・R3/R1)なる合成ベクトル電圧v3を発生する。
On the other hand, the secondary voltage of the high-voltage type transformer 4 whose secondary side for detecting the generator voltage is grounded is input to the transformer 7, and the secondary voltage v2 and the voltage v1 are calculated. Vector addition by the amplifier 8 (v2 · R3 / R2-v1
R3 / R1) is generated.

【0010】図2は、発電機力率が1.0の場合の各電
圧v1・R3/R1、v2・R3/R2、v3のベクト
ル図を示すもので、図5と同等である。即ち、合成ベク
トル電圧v3の軌跡は、発電機力率の変動に応じて一点
鎖線で示した円上を移動し、その絶対値即ち、大きさ
は、発電機力率が遅れ方向になると増加し、進み方向に
なると減少する。電圧v3を、例えば図3に例示するよ
うな絶対値演算回路で構成した全波整流回路9Aにより
直流にし、v3の大きさに対応した直流出力電圧eを出
力する。また、図1、図3における0Vは零電圧ライン
である。
FIG. 2 is a vector diagram of the voltages v1.R3 / R1, v2.R3 / R2, and v3 when the power factor of the generator is 1.0, and is the same as FIG. That is, the trajectory of the composite vector voltage v3 moves on the circle indicated by the dashed line in accordance with the fluctuation of the generator power factor, and its absolute value, that is, the magnitude increases when the generator power factor is delayed. , And decreases in the forward direction. The voltage v3 is converted to a direct current by a full-wave rectifier circuit 9A constituted by, for example, an absolute value calculation circuit as illustrated in FIG. 3, and a direct current output voltage e corresponding to the magnitude of the v3 is output. 1 and 3 is a zero voltage line.

【0011】なお、横流補償装置5の直流出力電圧e
は、自動電圧調整装置に帰還電圧信号として供給され、
発電機電圧が、仮に、上昇或は下降して交流発電機1と
他の交流電源2との間に横流が流れると、その結果生ず
る発電機力率の変動に伴い、前記直流出力電圧e即ち、
帰還電圧信号が変化し、発電機の励磁電流が調節され
て、前記横流を補償する方向に発電機電圧が自動制御さ
れる。
The DC output voltage e of the cross current compensator 5
Is supplied as a feedback voltage signal to the automatic voltage regulator,
If the generator voltage rises or falls and a cross current flows between the AC generator 1 and another AC power supply 2, the DC output voltage e, ie, ,
The feedback voltage signal changes, the exciting current of the generator is adjusted, and the generator voltage is automatically controlled in a direction to compensate for the cross current.

【0012】[0012]

【発明の効果】上記のように本発明の交流発電機の横流
補償装置は、電力損失がきわめて小さい電圧源型の電流
−電圧変換器を採用して発電機電流を電圧に変換し、信
号の処理は演算増幅器等で行うように構成したため、次
のような優れた効果を有する。 (1)各構成部品が小形になってプリント板に搭載可能
となる。 (2)この結果、横流補償装置の組立、配線作業等に要
する工数が大幅に低減でき、コストダウンに役立つ。 (3)なお、各構成部品の小形化の一例を示すと、次の
通りである。 即ち、従来回路の主要構成部品である、変流器が体積1
00×70×60(mm)、重量1・5kg、また変圧
器が体積60×35×40(mm)、重量500g、さ
らに抵抗器の体積81×13×21(mm)、重量30
gとなるのに対し、これらに相当する本発明の主要構成
品では、電流−電圧変換器が体積20×20×21(m
m)、重量17g、また変圧器は体積36×33×31
(mm)、重量92g、その他の部品も弱電部品と集積
回路で構成されるため極めて縮小化できる。
As described above, the cross current compensator for an AC generator according to the present invention employs a voltage-source type current-to-voltage converter having a very small power loss to convert the generator current into a voltage, Since the processing is performed by an operational amplifier or the like, the following excellent effects are obtained. (1) Each component becomes small and can be mounted on a printed board. (2) As a result, the man-hours required for assembling, wiring, and the like of the cross current compensator can be significantly reduced, which contributes to cost reduction. (3) An example of miniaturization of each component is as follows. That is, the current transformer, which is a main component of the conventional circuit, has a volume of 1
00 × 70 × 60 (mm), weight 1.5 kg, transformer volume 60 × 35 × 40 (mm), weight 500 g, resistor volume 81 × 13 × 21 (mm), weight 30
g, whereas in the main components of the present invention corresponding to these, the current-voltage converter has a volume of 20 × 20 × 21 (m
m), weight 17g, and transformer volume 36 × 33 × 31
(Mm), weight 92 g, and other components can be extremely reduced because they are composed of weak electric components and integrated circuits.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る交流発電機の横流補償装置の回路
構成を示す接続図である。
FIG. 1 is a connection diagram showing a circuit configuration of a cross flow compensator for an AC generator according to the present invention.

【図2】本発明に係る横流補償装置の機能説明図であ
る。
FIG. 2 is a functional explanatory diagram of the cross current compensator according to the present invention.

【図3】本発明に係る横流補償装置に採用する全波整流
回路の構成を示す接続図である。
FIG. 3 is a connection diagram illustrating a configuration of a full-wave rectifier circuit employed in the cross current compensator according to the present invention.

【図4】従来技術における交流発電機の横流補償装置の
回路構成を示す接続図である。
FIG. 4 is a connection diagram showing a circuit configuration of a cross current compensator for an AC generator according to the related art.

【図5】従来技術における横流補償装置の機能説明図で
ある。
FIG. 5 is an explanatory diagram of functions of a cross current compensator according to the related art.

【符号の説明】[Explanation of symbols]

1:交流発電機 2:交流電源 3:変流器 4、7:変圧器 5:横流補償装置 6:電流−電圧変換器 6−1:磁性体コア 6−2:ホール素子 6−3:コイル 6−4、8:演算増幅器 1: AC generator 2: AC power supply 3: Current transformer 4, 7: Transformer 5: Cross current compensator 6: Current-voltage converter 6-1: Magnetic core 6-2: Hall element 6-3: Coil 6-4, 8: Operational amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流発電機を他の電源と並列運転する場
合に使用する横流補償装置であって、 磁性体コアの一部に設けたエアーギャップ内にホール素
子を挿入し、この磁性体コアに巻かれたコイルに発電機
電流を検出する変流器の二次側電流を供給して、コアと
エアーギャップから成る磁気回路に生ずる磁束の作用に
よってホール素子が発生する交流電圧を増幅して出力す
る電流−電圧変換器と、 発電機電圧を検出する変圧器の二次側電圧とを演算回路
でベクトル加算したものを全波整流して直流電圧に変
え、発電機制御系における帰還電圧信号用として出力す
る手段とを備えて構成したことを特徴とする交流発電機
の横流補償装置。
1. A cross flow compensator used when an AC generator is operated in parallel with another power supply, wherein a Hall element is inserted into an air gap provided in a part of a magnetic core. Supply the secondary current of the current transformer that detects the generator current to the coil wound around the coil, and amplify the AC voltage generated by the Hall element by the action of magnetic flux generated in the magnetic circuit consisting of the core and the air gap. The current-to-voltage converter to be output and the secondary voltage of the transformer for detecting the generator voltage are vector-added by an arithmetic circuit, full-wave rectified and converted to DC voltage, and the feedback voltage signal in the generator control system And a means for outputting power for use in the AC generator.
JP11062148A 1999-03-09 1999-03-09 Lateral flow compensating device for ac generator Pending JP2000262099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11062148A JP2000262099A (en) 1999-03-09 1999-03-09 Lateral flow compensating device for ac generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11062148A JP2000262099A (en) 1999-03-09 1999-03-09 Lateral flow compensating device for ac generator

Publications (1)

Publication Number Publication Date
JP2000262099A true JP2000262099A (en) 2000-09-22

Family

ID=13191740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11062148A Pending JP2000262099A (en) 1999-03-09 1999-03-09 Lateral flow compensating device for ac generator

Country Status (1)

Country Link
JP (1) JP2000262099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312098A (en) * 2004-04-16 2005-11-04 Shinko Electric Co Ltd Cross current compensator of ac generator
CN103091532A (en) * 2011-10-28 2013-05-08 上海汽车集团股份有限公司 Electric current transducer used for automobile and based on zero magnetic flux compensation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312098A (en) * 2004-04-16 2005-11-04 Shinko Electric Co Ltd Cross current compensator of ac generator
JP4576869B2 (en) * 2004-04-16 2010-11-10 シンフォニアテクノロジー株式会社 AC generator cross current compensation device
CN103091532A (en) * 2011-10-28 2013-05-08 上海汽车集团股份有限公司 Electric current transducer used for automobile and based on zero magnetic flux compensation

Similar Documents

Publication Publication Date Title
US6433981B1 (en) Modular current sensor and power source
JP4173442B2 (en) Isolated switching regulator for fast transient loads
JPH028549B2 (en)
JP2000262099A (en) Lateral flow compensating device for ac generator
JP4375839B2 (en) Switching power supply
JP2803151B2 (en) Power supply
JP3633891B2 (en) Power supply dummy circuit
JPH01278265A (en) Control circuit for positive/negative output switching power source
WO2021161945A1 (en) Power source stabilization device
JP2003259642A (en) Contactless power supply unit
JP2006014535A (en) Parallel drive power supply
JP3028213B2 (en) Voltage regulator
JP4855843B2 (en) Switching power supply
JP2000134924A (en) Power circuit
JP4576869B2 (en) AC generator cross current compensation device
JPH0584047B2 (en)
JP2513484Y2 (en) Switching power supply
SU767737A1 (en) Stabilized power supply source
JP3182921B2 (en) Power supply
JP2560612Y2 (en) CV / CC DC stabilized power supply
SU1203490A1 (en) D.c.stabilizer
JP2665919B2 (en) Output transformer for switching power supply
JP3200126B2 (en) Harmonic compensator
JPH03178526A (en) Parallel redundant operation system of power unit
JP3275622B2 (en) Power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306