JP2000261045A - Manufacture of thermoelectric conversion material - Google Patents
Manufacture of thermoelectric conversion materialInfo
- Publication number
- JP2000261045A JP2000261045A JP11063093A JP6309399A JP2000261045A JP 2000261045 A JP2000261045 A JP 2000261045A JP 11063093 A JP11063093 A JP 11063093A JP 6309399 A JP6309399 A JP 6309399A JP 2000261045 A JP2000261045 A JP 2000261045A
- Authority
- JP
- Japan
- Prior art keywords
- rich phase
- type
- thermoelectric conversion
- powder
- additive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 46
- 239000000463 material Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims 4
- 239000004065 semiconductor Substances 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 3
- 239000000654 additive Substances 0.000 claims description 46
- 230000000996 additive effect Effects 0.000 claims description 46
- 239000012071 phase Substances 0.000 claims description 39
- 238000005245 sintering Methods 0.000 claims description 18
- 238000009832 plasma treatment Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 238000001947 vapour-phase growth Methods 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 22
- 239000000203 mixture Substances 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 18
- 238000002844 melting Methods 0.000 description 16
- 230000008018 melting Effects 0.000 description 16
- 238000001816 cooling Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 8
- 229910021478 group 5 element Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000011856 silicon-based particle Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910008310 Si—Ge Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910021480 group 4 element Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000007578 melt-quenching technique Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- -1 BiTe and PbTe Chemical class 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、Siに種々の添加
元素を20原子%以下含有させた焼結体からなる新規な熱
電変換材料に関し、Si粉末に気相成長成膜したり、GeH4
ガスでプラズマ処理して所要組成のSi系材料の粉末を得
て、これを焼結し、Siリッチ相の粒界に添加元素のリッ
チ相を分散させた組織となすことにより、ゼーベック係
数が極めて大きくかつ熱伝導率が小さくなり、熱電変換
効率を著しく高めることが可能で、資源的に豊富なSiが
主体で環境汚染が極めて少ないことを特徴とする焼結体
からなる多結晶Si系熱電変換材料に関する。TECHNICAL FIELD The present invention relates to a novel thermoelectric conversion material composed of a sintered body having a variety of additional element is contained 20 atomic% or less Si, or vapor phase growth deposition on Si powder, GeH 4
Plasma treatment with gas is used to obtain a Si-based material powder of the required composition, which is sintered to form a structure in which the rich phase of the added element is dispersed at the grain boundaries of the Si-rich phase, so that the Seebeck coefficient is extremely high. Polycrystalline Si-based thermoelectric conversion made of sintered body characterized by large size, low thermal conductivity, remarkable increase in thermoelectric conversion efficiency, and characterized by extremely low environmental pollution with mainly Si rich in resources About the material.
【0002】[0002]
【従来の技術】熱電変換素子は、最近の産業界において
要求の高い熱エネルギーの有効利用の観点から実用化が
期待されているデバイスであり、例えば、廃熱を利用し
て電気エネルギーに変換するシステムや、屋外で簡単に
電気を得るための小型携帯用発電装置、ガス機器の炎セ
ンサー等、非常に広範囲の用途が検討されている。2. Description of the Related Art Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective use of thermal energy, which is required in recent industries. For example, thermoelectric conversion elements convert waste heat into electric energy. A very wide range of applications are being studied, such as systems, small portable generators for easily obtaining electricity outdoors, and flame sensors for gas appliances.
【0003】この熱エネルギーから電気エネルギーへの変換
効率は、性能指数ZTの関数であり、ZTが高いほど高くな
る。この性能指数ZTは(1)式のように表されている。 ZT=α2σT/κ (1)式 ここで、αは熱電材料のゼーベック係数、σは電気伝導
率、κは熱伝導率、そしてTは熱電素子の高温側(TH)と
低温側(TL)の平均値で表した絶対温度である。[0003] The conversion efficiency from heat energy to electric energy is a function of the figure of merit ZT, and increases as ZT increases. This figure of merit ZT is expressed as in equation (1). ZT = α 2 σT / κ (1) where α is the Seebeck coefficient of the thermoelectric material, σ is the electrical conductivity, κ is the thermal conductivity, and T is the high-temperature side (T H ) and low-temperature side ( It is the absolute temperature represented by the average value of T L ).
【0004】今までに知られている熱電変換材料であるFeSi
2、SiGe等のケイ化物は資源的に豊富であるが、前者は
性能指数(ZT)は0.2以下でその変換効率が低くかつ使用
温度範囲が非常に狭く、後者は資源的に乏しいGeの含有
量が20〜30at%程度でなければ熱伝導の低下は見られ
ず、またSiとGeは全律固溶の液相線と固相線の幅広い状
態をもち、溶解やZL法(Zone-Leveling)では組成を均一
に作製するのが困難で工業化し難い等の理由から汎用さ
れるには至っていない。[0004] FeSi, a thermoelectric conversion material known so far,
2 , silicides such as SiGe are abundant in resources, but the former has a figure of merit (ZT) of 0.2 or less, its conversion efficiency is low and the operating temperature range is very narrow, and the latter contains Ge which is poor in resources. If the amount is not about 20 to 30 at%, no decrease in heat conduction is observed, and Si and Ge have a wide range of liquid-solid and solid-phase lines of totally controlled solid solution, dissolution and ZL method (Zone-Leveling ) Is not widely used because it is difficult to produce a uniform composition and it is difficult to industrialize.
【0005】現在、最も高い性能指数を示すスクッテルダイ
ト型結晶構造を有するIrSb3を初め、BiTe、PbTe等のカ
ルコゲン系化合物は高効率の熱電変換能力を有すること
が知られているが、地球環境保全の観点からみれば、こ
れらの重金属系元素の使用は今後規制されていくことが
予想される。At present, chalcogen-based compounds such as BiTe and PbTe, such as IrSb 3 having a skutterudite-type crystal structure exhibiting the highest figure of merit, are known to have high-efficiency thermoelectric conversion capabilities. From the viewpoint of environmental protection, it is expected that the use of these heavy metal elements will be regulated in the future.
【0006】[0006]
【発明が解決しようとする課題】一方、Siは高いゼーベ
ック係数を有する反面、熱伝導率が非常に高いために、
高効率の熱電材料には適していないと考えられ、その熱
電特性の研究はキャリヤー濃度1018(Mm3)以下のSiに限
られていた。On the other hand, while Si has a high Seebeck coefficient, it has a very high thermal conductivity,
It is not considered suitable for high-efficiency thermoelectric materials, and the study of its thermoelectric properties has been limited to Si with a carrier concentration of 10 18 (Mm 3 ) or less.
【0007】ところが、発明者らは、Si単体に各種元素を添
加すること、例えば、Siに微量の3族あるいは5族元素と
少量のGeを複合添加することにより、熱伝導率を下げる
ことが可能で、従来から知られるSi-Ge系、Fe-Si系に比
べ、ゼーベック係数が同等以上、あるいは所定のキャリ
ヤー濃度で極めて高くなることを知見し、Si単体が有す
る本質的な長所を損ねることなく、熱電変換材料として
大きな性能指数を示し高性能化できることを知見した。[0007] However, the inventors have found that adding various elements to Si alone, for example, adding a small amount of a group 3 or 5 element and a small amount of Ge to Si can lower the thermal conductivity. It is possible to find that the Seebeck coefficient is equal to or higher than that of conventionally known Si-Ge and Fe-Si systems, or that it is extremely high at a given carrier concentration, impairing the essential advantages of Si alone. Instead, it was found that the thermoelectric conversion material exhibited a large figure of merit and could be improved in performance.
【0008】また、発明者らは、Siに種々元素を添加してP
型半導体とN型半導体を作製し、その添加量と熱電特性
の関係を調査検討した結果、添加量つまりキャリヤー濃
度が1018(M/m3)まではキャリヤーの増加と共にゼーベッ
ク係数は低下するが、1018〜1019(M/m3)にかけて極大値
を持つこと知見した。[0008] The inventors have also added various elements to Si to add P
As a result of investigating the relationship between the amount of addition and the thermoelectric properties, the Seebeck coefficient decreased with the increase of the carrier up to the addition amount, that is, the carrier concentration of 10 18 (M / m 3 ). , 10 18 to 10 19 (M / m 3 ).
【0009】この発明は、発明者らが知見したこの新規なSi
系熱電変換材料が有する高いゼーベック係数を有し、電
気伝導度を損なうことなく、熱伝導率をさらに低下させ
て高性能化、あるいはさらにゼーベック係数を向上させ
ることを目的としている。[0009] The present invention is based on this novel Si which the inventors have found.
The object is to have a high Seebeck coefficient possessed by a system thermoelectric conversion material, to further lower the thermal conductivity without deteriorating the electric conductivity, to improve the performance, or to further improve the Seebeck coefficient.
【0010】[0010]
【課題を解決するための手段】発明者らは、種々の添加
元素を添加したSi系熱電変換材料において、高いゼーベ
ック係数が得られる機構について鋭意調査したところ、
この新規なSi系材料がSiが主体となるSiリッチ相の粒界
に当該添加元素のリッチ相が形成された組織を有するこ
とを知見した。Means for Solving the Problems The present inventors have conducted intensive studies on the mechanism of obtaining a high Seebeck coefficient in a Si-based thermoelectric conversion material to which various additive elements are added.
It has been found that this novel Si-based material has a structure in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si.
【0011】さらに発明者らは、結晶組織の検討を加えたと
ころ、ゼーベック係数が高くなるのは、結晶粒界に添加
元素を凝集させ、そこでキャリヤーの伝導が大きくなる
ため、結晶粒内のSiリッチ相で高いゼーベック係数が得
られることを知見した。The inventors further studied the crystal structure. As a result, the increase in the Seebeck coefficient was caused by the addition of the added element at the crystal grain boundaries, which increased the carrier conduction. It was found that a high Seebeck coefficient was obtained in the rich phase.
【0012】そこで発明者らは、ゼーベック係数を高く保
ち、熱伝導率を低下させる方法として、成分系以外に結
晶組織の制御を検討したところ、溶融凝固にて通常冷却
あるいは急冷して得られた原料を粉砕し、その粉砕粉を
例えばホットプレスまたはプラズマ焼結で成形、焼結す
ることにより、結晶粒径を1〜50μmと微細にでき、Siリ
ッチ相と添加元素リッチ相が材料内に所要配置で分散し
た構造を持ち、高い性能指数を有する材料が得られるこ
とを知見した。[0012] Then, the inventors examined the control of the crystal structure other than the component system as a method of keeping the Seebeck coefficient high and lowering the thermal conductivity. The raw material is pulverized, and the pulverized powder is formed and sintered by, for example, hot pressing or plasma sintering, so that the crystal grain size can be reduced to 1 to 50 μm, and a Si-rich phase and an additive element-rich phase are required in the material. It has been found that a material having a structure dispersed in the arrangement and having a high figure of merit can be obtained.
【0013】また、発明者は、焼結用のSi系粉末を得る方法
として、Si粉末またはSiに添加元素を含有したSi粉末
に、蒸着、スパッタリング、CVDなどの気相成長法また
は放電プラズマ処理にて添加元素をコーティングした
り、添加元素を含有するガスを用いたプラズマ処理によ
り添加元素をコーティングしたり、メカノフュージョン
処理にて添加元素を埋めこみ、P型又はN型半導体となす
ための添加元素を単独又は複合にて0.001原子%〜20原子
%含有するSi粉末となし、これを焼結し、Siが主体とな
るSiリッチ相の粒界に前記添加元素のリッチ相が形成さ
れた組織を有する焼結体からなる熱電変換材料を得るこ
とができることを知見し、この発明を完成した。[0013] Further, the inventor has proposed a method of obtaining a Si-based powder for sintering by vapor phase growth such as vapor deposition, sputtering, CVD or discharge plasma treatment on Si powder or Si powder containing an additive element to Si. The additional element for coating the additional element by plasma treatment using a gas containing the additional element, or for embedding the additional element by mechanofusion treatment to form a P-type or N-type semiconductor 0.001 atom% to 20 atoms in single or compound
% To obtain a thermoelectric conversion material consisting of a sintered body having a structure in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si. The inventors have found that the present invention can be performed, and have completed the present invention.
【0014】[0014]
【発明の実施の形態】この発明による熱電変換材料の特
徴である、Siが主体となるSiリッチ相の粒界に前記添加
元素のリッチ相が形成された組織について説明すると、
高純度Si(10N)へのGe(4N)の添加量を種々変えてアーク
溶解によりSi1-xGex溶湯(at%)を作製し、その溶解後の
冷却速度を50K/sec〜200K/secと急冷して試料用基板を
作製し、結晶組織をEPMAで観察したところ、x=0.03の場
合、図1Aに示すごとく、写真の黒いところは添加元素を
含むがほとんどがSiであり、Siが主体となるSiリッチ相
であって、写真の白いところが添加元素Geのリッチ相で
あり、Siリッチ相の粒界にGeのリッチ相が分散あるいは
多く形成された組織であることが分かる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the thermoelectric conversion material according to the present invention, in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si, will be described.
Various amounts of Ge (4N) added to high-purity Si (10N) were varied to produce a melt of Si 1-x Ge x (at%) by arc melting, and the cooling rate after the melting was 50 K / sec to 200 K /. A sample substrate was prepared by rapid cooling with sec and the crystal structure was observed by EPMA.When x = 0.03, as shown in Fig. Is the main Si-rich phase, the white part in the photograph is the rich phase of the additive element Ge, and it can be seen that the structure is such that the Ge-rich phase is dispersed or formed at the grain boundaries of the Si-rich phase.
【0015】また、上記Si1-xGex溶湯にはPを微量ドープし
ていたが、このPのみを観察したところ、EPMA写真を図1
Bに示すごとく、白いところがドープしたPの存在箇所を
示し、上述した図1AのGeリッチ相が形成されたSiリッチ
相の粒界と同位置にPが偏析した組織であることが分か
る。[0015] In addition, although a small amount of P was doped into the above - mentioned Si 1-x Ge x molten metal, only this P was observed.
As shown in B, the white portion indicates the location of the doped P, and it can be seen that P is segregated at the same position as the grain boundary of the Si-rich phase where the Ge-rich phase shown in FIG. 1A was formed.
【0016】要するに、この発明による熱電変換材料の組織
は、図2の模式図に示すごとく、Siのみ、または添加元
素を含むがほとんどがSiであり、Siが主体となるSiリッ
チ相と、このSiリッチ相の粒界に添加元素が偏析した添
加元素リッチ相とが形成された組織である。[0016] In short, the structure of the thermoelectric conversion material according to the present invention is, as shown in the schematic diagram of FIG. 2, only Si or an Si-rich phase containing an additive element but mostly Si, This is a structure in which an additive element-rich phase in which an additive element segregates at the grain boundary of the Si-rich phase.
【0017】なお、溶解後の冷却速度を50K/secで冷却して
試料用基板を作製し、その後基板を粉砕して、平均粒径
30μmの粉末となし、放電プラズマ処理にて添加元素を
コーティングしたSi1-xGex(at%)粉末を作製し、さらに1
250〜1350℃で焼結して得た、試料の結晶組織をEPMAで
観察した結果、溶融凝固による図1と同様組織であるこ
と、さらにSiリッチ相のサイズが10〜100μmと比較的小
さいことを確認した。The sample was cooled at a cooling rate of 50 K / sec after melting to prepare a sample substrate.
30 μm powder, Si 1-x Ge x (at%) powder coated with additional elements by discharge plasma treatment, and
Observation by EPMA of the crystal structure of the sample obtained by sintering at 250-1350 ° C showed that it had the same structure as in Fig. 1 due to melt solidification, and that the size of the Si-rich phase was relatively small, 10-100 μm. It was confirmed.
【0018】また、Geに変えてPやBの添加元素の結晶粒界へ
の析出とn型とp型Siのキャリヤー濃度との関係を調査し
たところ、添加量とキャリヤー濃度との相関は一致して
増加することを確認し、Siリッチ相の粒界に前記添加元
素のリッチ相が形成された組織によって、結晶粒界に添
加元素を凝集させ、そこでキャリヤーの伝導を大きく
し、結晶粒内のSiリッチ相で高いゼーベック係数が得ら
れることを確認した。Further, when the relationship between the precipitation of added elements of P and B instead of Ge at the crystal grain boundaries and the carrier concentration of n-type and p-type Si was investigated, the correlation between the added amount and the carrier concentration was found to be one. It was confirmed that the additive element was agglomerated at the crystal grain boundary by the structure in which the rich phase of the additional element was formed at the grain boundary of the Si-rich phase, where the carrier conduction was increased and the It was confirmed that a high Seebeck coefficient can be obtained in the Si-rich phase.
【0019】さらに、このSi系熱電変換材料の熱伝導率は、
キャリヤー濃度を増加させるに従って小さくなることを
確認した。これは結晶中の添加元素による不純物の局在
フォノンの散乱によりκphが低下したためであると考え
られる。Further, the thermal conductivity of this Si-based thermoelectric conversion material is:
It was confirmed that it decreased as the carrier concentration increased. This is considered to be because κ ph decreased due to scattering of localized phonons of impurities due to the added element in the crystal.
【0020】焼結体からなるSi系熱電変換材料の特徴である
Siリッチ相の粒界にGeなどの添加元素のリッチ相が分
散、形成された組織は、焼結時に原料粉末粒子内あるい
は表面に着設している添加元素の偏折が起こり形成され
るものであり、また焼結用粉末自体の結晶組織を同様組
織としておくことも有効で、これは溶製後の冷却速度の
制御によって得られ、急冷により結晶粒径は比較的小さ
く抑えられ、結晶粒界に適度なSi以外の添加元素の偏析
が起こり、これによって高い電気伝導率にもかかわら
ず、高いゼーベック係数を示す材料、粉末が得られ、こ
の粉末を用いて焼結することにより、焼結時の添加元素
の偏折がより容易にかつ有効になり、高いゼーベック係
数を示す焼結体のSi系熱電変換材料が得られる。[0020] It is a feature of the Si-based thermoelectric conversion material composed of a sintered body.
A structure in which a rich phase of an additional element such as Ge is dispersed and formed at a grain boundary of a Si-rich phase is formed due to the deflection of the additional element attached to or inside the raw material powder particles during sintering. It is also effective to make the crystal structure of the sintering powder itself the same as that obtained by controlling the cooling rate after smelting. Moderate segregation of additional elements other than Si occurs in the field, resulting in materials and powders that exhibit a high Seebeck coefficient despite high electrical conductivity. The bending of the added element at the time becomes easier and more effective, and a sintered Si-based thermoelectric conversion material having a high Seebeck coefficient can be obtained.
【0021】この発明において、上記のごとく結晶粒界に適
度なSi以外の添加元素の偏析が少ない原料粉末であって
も、焼結時に所要の偏折が発生して、目的の組織を得る
ことができるため、Si系溶解材の冷却速度は、特に限定
されるものでない。In the present invention, even if the raw material powder has a small amount of additional elements other than Si at the crystal grain boundaries as described above, the required deviation occurs during sintering to obtain the desired structure. Therefore, the cooling rate of the Si-based melting material is not particularly limited.
【0022】この発明において、SiまたはSi系粉末を得るた
めの冷却方法としては、鋳塊のまま冷却する方法、ある
いは引き上げながら冷却する方法、例えば、公知の単結
晶シリコンを得るためのCZ法、FZ法を利用して、多結晶
シリコンが得られる条件で引上げ、冷却する方法が採用
できる。また、前述のZL法にて製造することも可能であ
る。[0022] In the present invention, as a cooling method for obtaining Si or Si-based powder, a method of cooling in an ingot, or a method of cooling while pulling up, for example, a CZ method for obtaining a known single crystal silicon, Using the FZ method, a method of pulling and cooling under conditions that can obtain polycrystalline silicon can be adopted. Further, it can be manufactured by the ZL method described above.
【0023】さらに、Si系溶解材を浅いプレートに流し込み
冷却してより薄板を作製する方法や、公知のメルトクエ
ンチ法などのロール冷却法を利用して、所要厚みの薄板
が得られるよう冷却速度を制御するなど、いずれの方法
であっても採用できる。Further, the cooling rate is adjusted so that a thin plate having a required thickness can be obtained by using a method of producing a thinner plate by pouring the Si-based molten material into a shallow plate and cooling it, or a roll cooling method such as a known melt quenching method. And any other method can be adopted.
【0024】また、SiまたはSi系粉末を得るため、メルトク
エンチなどのロール冷却法にてリボンを製造して粉末化
したり、ガスアトマイズなどの噴霧法などの方法で直接
粉末を得ることができ、いずれも結晶粒径を1〜50μmと
微細にでき、熱伝導率を低下させることが可能である。Further, in order to obtain Si or Si-based powder, a ribbon can be produced by a roll cooling method such as melt quenching or the like and powdered, or a powder can be directly obtained by a spraying method such as gas atomization. Also, the crystal grain size can be made as fine as 1 to 50 μm, and the thermal conductivity can be reduced.
【0025】この発明は、Siのみあるいは所要組成となした
Si系溶解原料を、アーク溶解法、高周波溶解法にて溶解
し、鋳造した鋳塊、薄板を粉砕して得られた所要粒度の
SiまたはSi系粉末粒の表面に不足する添加元素を付着さ
せておき、これを焼結して所要組成でかつ図2に示すSi
リッチ相の粒界に添加元素リッチ相が分散、形成された
組織を得るものである。According to the present invention, only Si or a required composition is obtained.
Si-based raw materials are melted by the arc melting method or high-frequency melting method.
Insufficient additional elements are adhered to the surface of Si or Si-based powder particles, and this is sintered to obtain the required composition and Si as shown in FIG.
This is to obtain a structure in which the additive element rich phase is dispersed and formed at the grain boundaries of the rich phase.
【0026】Si粉末またはSiに添加元素を含有したSi粉末の
表面に添加元素をコーティングする方法は、公知の蒸
着、スパッタリング、CVDなどの気相成長法、放電プラ
ズマ処理法、添加元素を含有するガスを用いたプラズマ
処理法などいずれの成長、成膜、固着、付着手段も採用
でき、さらにメカノフュージョン処理にてSi粉末の表面
に添加元素を埋めこむ方法も採用できる。The method of coating the surface of the Si powder or the Si powder containing the additive element with the additive element includes a known vapor deposition method such as vapor deposition, sputtering, and CVD, a discharge plasma treatment method, and a method including the additive element. Any growth, film formation, fixation, and adhesion means such as a plasma treatment method using a gas can be employed, and a method of embedding an additional element on the surface of Si powder by mechanofusion treatment can also be employed.
【0027】この発明で添加元素のコーティングとは、Si粒
表面への完全な成膜から単にSi粒表面に添加元素粒が付
着しているものまで意味する。すなわち、完全でなくと
も焼結処理時までSi粒表面に添加元素粒が付着していれ
ばよいのであり、また、後述するように添加元素はいず
れの元素も添加できるため、元素の種類によって採用さ
れる手段が選択可能な場合から、限定されるなど種々の
ケースが想定され、さらに、複合添加する場合の組み合
せる元素によって選定した手段の処理条件も種々異なる
ため、目的とする組成に応じて上記手段、条件を適宜選
定する必要がある。[0027] In the present invention, the coating of the additive element means from complete film formation on the surface of the Si particle to a state in which the additive element particle is simply attached to the surface of the Si particle. In other words, even if not complete, it is sufficient that the additive element particles adhere to the surface of the Si particles until the sintering process, and as described later, any of the additional elements can be added. From the case where the means to be selected is selectable, various cases such as limitation are assumed, and further, the processing conditions of the means selected according to the element to be combined in the case of composite addition are variously varied, so that depending on the intended composition, It is necessary to appropriately select the above means and conditions.
【0028】例えば図3Aに示す例は、前述の方法で、鋳塊、
薄板を粉砕して所定の粒度となしたSi粉末あるいは噴霧
法で直接得たSi粉末のSi粒表面に添加元素を固着させた
もので、固着方法は後述するような成長、成膜方法のい
ずれの手段であってもよく、固着量は焼結後に目的とす
る組成となるように適宜選定するとよい。また、Si粒自
体に所要の添加元素が含有されているSi系粒であっても
同様に処理できる。かかる所要の添加元素を表面に固着
したSi粒からなるSi粉末を用いて焼結することにより、
図2に示すSiリッチ相の粒界に添加元素リッチ相が分
散、形成された組織を得ることができる。[0028] For example, the example shown in FIG.
An additive element is fixed on the Si grain surface of a Si plate obtained by pulverizing a thin plate to a predetermined particle size or a Si powder directly obtained by a spraying method. The fixing amount may be appropriately selected so that the desired composition is obtained after sintering. In addition, the same treatment can be applied to a Si-based particle in which a required additive element is contained in the Si particle itself. By sintering using Si powder consisting of Si particles having such required additive elements fixed to the surface,
A structure in which the additive element-rich phase is dispersed and formed at the grain boundary of the Si-rich phase shown in FIG. 2 can be obtained.
【0029】また、図3Bに示す例は、Si粒表面にメカノフュ
ージョン処理にて添加元素を埋め込み、Si粒をSiリッチ
粒となしたもので、所要の添加元素を表面に埋め込んだ
Siリッチ粒からなるSiリッチ粉末を用いて焼結すること
により、図2に示すSiリッチ相の粒界に添加元素リッチ
相が分散、形成された組織を得ることができる。In the example shown in FIG. 3B, an additional element is buried in the surface of the Si grain by mechanofusion treatment to make the Si grain into a Si-rich grain, and the required additional element is buried in the surface.
By sintering using Si-rich powder composed of Si-rich grains, a structure in which the additive element-rich phase is dispersed and formed at the grain boundary of the Si-rich phase shown in FIG. 2 can be obtained.
【0030】この発明において、焼結方法は、Siの融点近傍
の1200〜1350℃程度で焼成できれば、いずれの方法でも
よく、圧縮成形してから焼結する通常焼成法、圧縮成形
しながら焼結するホットプレス、放電プラズマ焼結など
の公知の焼結手段を適宜選定できる。なお、選定した焼
結手段に応じて、真空又は不活性ガス中の雰囲気で、温
度は1200〜1350℃、焼結時間は0.5時間以上保持する好
適条件を適宜選定するとよい。In the present invention, any sintering method may be used as long as it can be fired at about 1200 to 1350 ° C. near the melting point of Si. Known sintering means such as hot pressing and spark plasma sintering can be appropriately selected. Depending on the selected sintering means, suitable conditions for maintaining the temperature in a vacuum or an inert gas atmosphere at a temperature of 1200 to 1350 ° C. and a sintering time of 0.5 hour or more may be appropriately selected.
【0031】この発明による熱電変換材料は、焼結により、
ダイヤモンド型結晶構造を有する多結晶Si半導体中に各
種不純物を添加した組織となして、キャリヤー濃度を調
整することにより、Si単体が有する本来的な長所を損ね
ることなく、電気抵抗を下げてゼーベック係数を向上さ
せて、性能指数を飛躍的に高めたP型半導体とN型半導体
の高効率のSi系熱電変換材料である。[0031] The thermoelectric conversion material according to the present invention is obtained by sintering.
By forming a structure in which various impurities are added to a polycrystalline Si semiconductor having a diamond-type crystal structure and adjusting the carrier concentration, the Seebeck coefficient can be reduced by lowering the electric resistance without impairing the intrinsic advantages of Si alone. It is a high-efficiency Si-based thermoelectric conversion material of P-type semiconductor and N-type semiconductor that has dramatically improved its figure of merit by improving its performance index.
【0032】ここで、熱電変換材料の用途を考慮すると、熱
源、使用箇所や形態、扱う電流、電圧の大小などの用途
に応じて異なる条件によって、ゼーベック係数、電気伝
導率、熱伝導率などの特性のいずれかに重きを置く必要
が生じるが、この発明の熱電変換材料は、選択元素の添
加量によりキャリヤー濃度を選定できる。Here, considering the application of the thermoelectric conversion material, the Seebeck coefficient, the electric conductivity, the thermal conductivity, etc. may be varied depending on the conditions such as the heat source, the place of use, the form, the current to be handled, and the magnitude of the voltage. Although it is necessary to place emphasis on any of the characteristics, in the thermoelectric conversion material of the present invention, the carrier concentration can be selected by the addition amount of the selected element.
【0033】例えば、前述の添加元素αの元素を単独又は複
合して0.001原子%〜0.5原子%含有して、キャリヤー濃度
が1017〜1020(M/m3)であるP型半導体が得られ、また、
添加元素αを0.5原子%〜5.0原子%含有して、キャリヤー
濃度が1019〜1021(M/m3)であるP型半導体が得られる。For example, a P-type semiconductor having a carrier concentration of 10 17 to 10 20 (M / m 3 ) containing 0.001 atomic% to 0.5 atomic% of the above-mentioned additive element α alone or in combination is obtained. And
A P-type semiconductor having a carrier concentration of 10 19 to 10 21 (M / m 3 ) containing 0.5 to 5.0 atomic% of the additional element α is obtained.
【0034】同様に、前述の添加元素βの元素を単独又は複
合して0.001原子%〜0.5原子%含有して、キャリヤー濃度
が1017〜1020(M/m3)であるN型半導体が得られ、また、
添加元素βを0.5原子%〜10原子%含有して、キャリヤー
濃度が1019〜1021(M/m3)であるN型半導体が得られる。Similarly, an N-type semiconductor containing 0.001 atomic% to 0.5 atomic% of the aforementioned additive element β alone or in combination and having a carrier concentration of 10 17 to 10 20 (M / m 3 ) is Obtained and also
An N-type semiconductor containing 0.5 to 10 atomic% of the additive element β and having a carrier concentration of 10 19 to 10 21 (M / m 3 ) is obtained.
【0035】前述の添加元素αあるいは添加元素βの元素を
含有させて、キャリヤー濃度が1019〜1021(M/m3)となる
ように0.5〜5.0原子%添加したとき、高効率な熱電変換
素子が得られ、優れた熱電変換効率を有するが、その熱
伝導率が室温で50〜150W/m・K程度であり、熱伝導率を
低下させることができれば、さらに性能指数ZTを向上さ
せることが期待できる。When the additive element α or the additive element β is contained and 0.5 to 5.0 atomic% is added so that the carrier concentration becomes 10 19 to 10 21 (M / m 3 ), a highly efficient thermoelectric Although the conversion element is obtained and has excellent thermoelectric conversion efficiency, its thermal conductivity is about 50 to 150 W / mK at room temperature, and if the thermal conductivity can be reduced, the figure of merit ZT is further improved. I can expect that.
【0036】一般に、固体の熱伝導率はフォノンによる伝導
とキャリヤーによる伝導との和で与えられる。Si系半導
体の熱電変換材料の場合、キャリヤー濃度が小さいた
め、フォノンによる伝導が支配的となる。よって、熱伝
導率を下げるためにはフォノンの吸収または散乱を大き
くしてやる必要がある。フォノンの吸収または散乱を大
きくするためには、結晶粒径や結晶構造の規則性を乱し
てやることが効果的である。Generally, the thermal conductivity of a solid is given by the sum of phonon conduction and carrier conduction. In the case of a Si-based semiconductor thermoelectric conversion material, phonon conduction is dominant because the carrier concentration is low. Therefore, in order to reduce the thermal conductivity, it is necessary to increase the absorption or scattering of phonons. In order to increase the absorption or scattering of phonons, it is effective to disturb the regularity of the crystal grain size and the crystal structure.
【0037】Siに、3族元素と5族元素の各々を少なくとも1
種ずつ添加して、キャリヤー濃度を1019〜1021(M/m3)に
制御することにより、Si中のキャリヤー濃度を変えずに
結晶構造を乱してやることが可能で、熱伝導率を30〜90
%低下させ、室温で150W/m・K以下にすることができ、高
効率な熱電変換材料が得られる。At least one of a Group 3 element and a Group 5 element is added to Si.
By adding the seeds one by one and controlling the carrier concentration to 10 19 to 10 21 (M / m 3 ), it is possible to disturb the crystal structure without changing the carrier concentration in Si, and to increase the thermal conductivity by 30%. ~ 90
% At room temperature to 150 W / m · K or less, and a highly efficient thermoelectric conversion material can be obtained.
【0038】また、上記構成の熱電変換材料において、3族
元素を5族元素より0.3〜5原子%多く含有させるとP型半
導体が得られ、5族元素を3族元素より0.3〜5原子%多く
含有させるとN型半導体が得られる。[0038] In the thermoelectric conversion material having the above structure, a P-type semiconductor is obtained when the Group 3 element is contained in an amount of 0.3 to 5 atomic% more than the Group 5 element, and the Group 5 element is contained in an amount of 0.3 to 5 atomic% than the Group 3 element. If a large amount is contained, an N-type semiconductor can be obtained.
【0039】さらに、3族元素と5族元素以外で熱伝導率の低
下が達成できるか検討したところ、Siに、3‐5族化合物
半導体あるいは2‐6族化合物半導体を添加して、さらに
3族元素または5族元素の少なくとも1種を添加し、キャ
リヤー濃度を1019〜1021(M/m3)に制御することにより、
Si中のキャリヤー濃度を変えずに結晶構造を乱してやる
ことが可能で、熱伝導率が室温で150W/m・K以下にする
ことができ、高効率な熱電変換材料が得られる。Further, it was examined whether a reduction in thermal conductivity could be achieved with elements other than Group 3 elements and Group 5 elements, and it was found that adding a Group 3-5 compound semiconductor or Group 2-6 compound semiconductor to Si further
By adding at least one of a Group 3 element or a Group 5 element and controlling the carrier concentration to 10 19 to 10 21 (M / m 3 ),
The crystal structure can be disturbed without changing the carrier concentration in Si, the thermal conductivity can be reduced to 150 W / mK or less at room temperature, and a highly efficient thermoelectric conversion material can be obtained.
【0040】また、Siへの他の添加元素について種々検討し
た結果、SiにGe,C,Snの4族元素を0.1〜5原子%含有し、S
iの元素の一部を原子量の異なる4族元素に置換させてや
ることにより、結晶中のフォノンの散乱が大きくなり、
半導体の熱伝導率を20〜90%低下させ、室温で150W/m・K
以下にすることが可能であること、さらに3族元素を0.1
〜5.0原子%含有させてP型半導体となした熱電変換材
料、さらに5族元素を0.1〜10原子%含有させてN型半導体
となした熱電変換材料が得られる。Further, as a result of various studies on other additional elements to Si, it was found that Si contained a Group 4 element of Ge, C, and Sn in an amount of 0.1 to 5 atomic%,
By substituting a part of the element i with a group 4 element with a different atomic weight, the scattering of phonons in the crystal increases,
Reduces the thermal conductivity of semiconductors by 20 to 90%, 150 W / mK at room temperature
It is possible to make
A thermoelectric conversion material containing a P-type semiconductor by containing 5.05.0 at% and a N-type semiconductor containing a Group V element by 0.1 to 10 at% can be obtained.
【0041】この発明の熱電変換材料において、以上の3族
元素や5族元素以外の元素で、同様にSiに添加可能であ
るかを調査したところ、P型、N型半導体になるものであ
れば、特に制限されるものはないが、あまりイオン半径
の異なる元素を添加すると、ほとんどが粒界相に析出し
てしまうので、イオン半径はSiのそれに比較的近い元素
が好ましく、P型半導体となすための添加元素αとし
て、また、N型半導体となすための添加元素βとして、
以下のグループの元素の単独又は複合添加が特に有効で
あることを確認した。In the thermoelectric conversion material of the present invention, it was investigated whether elements other than the above-mentioned Group 3 elements and Group 5 elements can be added to Si in the same manner. For example, although there is no particular limitation, if an element having a very different ionic radius is added, most of the element is precipitated in the grain boundary phase. As an additive element α for forming, and as an additional element β for forming an N-type semiconductor,
It has been confirmed that the single or combined addition of the following groups of elements is particularly effective.
【0042】添加元素αとしては、添加元素A(Be,Mg,Ca,Sr,
Ba,Zn,Cd,Hg,B,Al,Ga,In,Tl)、遷移金属元素M1(M1;Y,M
o,Zr)の各群であり、添加元素βとしては、添加元素B
(N,P,As,Sb,Bi,O,S,Se,Te)、遷移金属元素M2(M2;Ti,V,C
r,Mn,Fe,Co,Ni,Cu,Nb,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Os,Ir,P
t,Au、但しFeは10原子%以下)、希土類元素RE(RE;La,Ce,
Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu)の各群がある。As the additional element α, the additional element A (Be, Mg, Ca, Sr,
Ba, Zn, Cd, Hg, B, Al, Ga, In, Tl), transition metal element M 1 (M 1 ; Y, M
o, Zr), and the additive element β is the additive element B
(N, P, As, Sb, Bi, O, S, Se, Te), transition metal element M 2 (M 2 ; Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, P
t, Au, where Fe is 10 atomic% or less), rare earth element RE (RE; La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu).
【0043】またさらに、P型半導体となすための添加元素
αとN型半導体となすための添加元素βを、各群より少
なくとも1種ずつ総量で0.002原子%〜20原子%含有し、例
えば、P型半導体を得るには、添加元素αの総量が添加
元素βのそれを超えてP型半導体となるのに必要量だけ
含有すれば、各群の組合せは任意に選定できる。Further, the additive element α for forming a P-type semiconductor and the additional element β for forming an N-type semiconductor contain at least one kind from each group in a total amount of 0.002 to 20 atomic%, for example, In order to obtain a P-type semiconductor, the combination of each group can be arbitrarily selected as long as the total amount of the additional element α exceeds that of the additional element β and is contained in a necessary amount to become a P-type semiconductor.
【0044】[0044]
【実施例】実施例1 P型およびN型のSi熱電変換半導体の母粒子を作製するた
めに、高純度Si(10N)と添加元素を表1に示すように配合
した後、黒鉛るつぼを用いて高周波溶解炉で真空溶解し
た。溶解後10mm厚みの鋳型に鋳込み、その後インゴット
を砕いた後、スタンプミルおよびボールミルにて平均粒
径10〜50μmに粉砕した。ボールミルは湿式でキシレン
溶媒を用いた。粉砕した粉末(母粒子)を10-3Torrの真空
チャンバーに挿入し、表面に表1に示す元素をコーティ
ング(膜厚10〜100μm)させた。Example 1 In order to prepare mother particles of P-type and N-type Si thermoelectric conversion semiconductors, high-purity Si (10N) and additive elements were blended as shown in Table 1, and then a graphite crucible was used. And vacuum melted in a high frequency melting furnace. After melting, it was cast into a mold having a thickness of 10 mm, and then the ingot was crushed and then crushed by a stamp mill and a ball mill to an average particle size of 10 to 50 μm. The ball mill used a wet xylene solvent. The pulverized powder (base particles) was inserted into a vacuum chamber of 10 −3 Torr, and the surface was coated with an element shown in Table 1 (film thickness: 10 to 100 μm).
【0045】得られた粉末を1325K×1時間、1000kgf/cm2、A
r中でホットプレスを行い焼結体を得た。焼結体試料を5
×5×15mm、10×10×2mm、外径10×2mmの形状に切断加
工し、それぞれのゼーベック係数、ホール係数(キャリ
ヤー濃度と電気伝導率を含む)、熱伝導率を測定した。1
100Kにおける測定値と、性能指数(ZT=S2T/ρκ)を表2に
示す。The obtained powder was subjected to 1325K × 1 hour, 1000 kgf / cm 2 , A
Hot pressing was performed in r to obtain a sintered body. 5 samples of sintered body
It was cut into a shape of × 5 × 15 mm, 10 × 10 × 2 mm, and an outer diameter of 10 × 2 mm, and the Seebeck coefficient, the Hall coefficient (including the carrier concentration and the electric conductivity), and the thermal conductivity were measured. 1
Table 2 shows the measured values at 100 K and the figure of merit (ZT = S 2 T / ρκ).
【0046】ゼーベック係数は、昇温しながら高温部と低温
部の温度差を約6Kになるように設定し、試料の熱起電力
をデジタルマルチメーターで測定した後、温度差で割っ
た値として求めた。また、ホール係数の測定は、交流法
により行い、キャリヤー濃度と同時に四端子法により電
気抵抗を測定した。熱伝導率は、レーザーフラッシュ法
により測定を行った。The Seebeck coefficient is set as a value obtained by setting the temperature difference between the high temperature part and the low temperature part to about 6 K while raising the temperature, measuring the thermoelectromotive force of the sample with a digital multimeter, and dividing by the temperature difference. I asked. The Hall coefficient was measured by an AC method, and the electrical resistance was measured by a four-terminal method simultaneously with the carrier concentration. The thermal conductivity was measured by a laser flash method.
【0047】実施例2 P型およびN型のSi熱電変換半導体の母粒子を作製するた
めに、高純度Si(10N)と添加元素を表3に示すように配合
した後、黒鉛るつぼを用いて高周波溶解炉で真空溶解し
た。溶解後10mm厚みの鋳型に鋳込み、板状インゴットを
得た。その後インゴットを粉砕し、さらにスタンプミル
およびジェットミルにて平均粒径1〜10μmに微粉砕し
た。ジェットミルはN2ガスを用い、圧力は7kgf/mm2で行
った。Example 2 In order to prepare mother particles of P-type and N-type Si thermoelectric conversion semiconductors, high-purity Si (10N) and additive elements were blended as shown in Table 3, and then the graphite crucible was used. Vacuum melting was performed in a high frequency melting furnace. After melting, it was cast into a 10 mm thick mold to obtain a plate-like ingot. Thereafter, the ingot was pulverized, and further pulverized with a stamp mill and a jet mill to an average particle size of 1 to 10 μm. The jet mill used N 2 gas at a pressure of 7 kgf / mm 2 .
【0048】得られた粉末((母粒子)をチャンバー内に入
れ、SiH4ガスまたはGeH4ガスでプラズマ処理し、粉末に
B、Al、Ga、P、As、Sbをコーティングさせた。[0048] The obtained powder ((base particles) is put into a chamber, and plasma-treated with SiH 4 gas or GeH 4 gas to obtain a powder.
B, Al, Ga, P, As, and Sb were coated.
【0049】コーティングされた原料粉末を5×5×15mm、10
×10×2mm、外径10×2mmの形状に2000kgf/cm2の圧力で
圧縮成形し、1325K×5時間、真空中で焼結を行った。そ
の焼結体のゼーベック係数、ホール係数(キャリヤー濃
度と電気伝導率を含む)、熱伝導率を実施例1と同測定法
にて測定した。1100Kにおける測定値と、性能指数(ZT=S
2T/ρκ)を表4に示す。[0049] The coated raw material powder is 5 x 5 x 15 mm, 10
It was compression molded under a pressure of 2000 kgf / cm 2 into a shape of × 10 × 2 mm and an outer diameter of 10 × 2 mm, and sintered in vacuum at 1325 K × 5 hours. The Seebeck coefficient, the Hall coefficient (including the carrier concentration and the electrical conductivity), and the thermal conductivity of the sintered body were measured by the same measurement methods as in Example 1. Measured value at 1100K and figure of merit (ZT = S
2 T / ρκ) is shown in Table 4.
【0050】実施例3 P型およびN型のSi熱電変換半導体の母粒子を作製するた
めに、高純度Si(10N)と添加元素を表5に示すように配合
した後、黒鉛るつぼを用いて高周波溶解炉で真空溶解し
た。溶解後10mm厚みの鋳型に鋳込み、板状インゴットを
得た。その後インゴットを粉砕し、さらにスタンプミル
およびボールミルにて平均粒径10〜50μmに微粉砕し
た。ボールミルは湿式でキシレン溶媒を用いた。Example 3 In order to prepare base particles of P-type and N-type Si thermoelectric conversion semiconductors, high-purity Si (10N) and additive elements were blended as shown in Table 5, and then a graphite crucible was used. Vacuum melting was performed in a high frequency melting furnace. After melting, it was cast into a 10 mm thick mold to obtain a plate-like ingot. Thereafter, the ingot was pulverized, and further pulverized with a stamp mill and a ball mill to an average particle size of 10 to 50 μm. The ball mill used a wet xylene solvent.
【0051】また、Siの周りにコーティングさせる子粒子を
作製するために、高純度Si(10N)と添加元素を表5に示す
ように配合した後、黒鉛るつぼを用いて高周波溶解炉で
真空溶解した。溶解された溶湯は内径3mmのノズルから
出湯し、その溶湯にArガスを30kgf/cm3で吹きつけて急
冷し、平均粒径30〜100μmであった。得られた母粒子に
子粒子をメカノフュージョンにて子粒子が所定の重量比
に成るようにコーティングさせた。Further, in order to produce child particles to be coated around Si, high-purity Si (10N) and additive elements were blended as shown in Table 5, and then vacuum melted in a high-frequency melting furnace using a graphite crucible. did. The melt was discharged from a nozzle having an inner diameter of 3 mm, and the melt was quenched by blowing Ar gas at 30 kgf / cm 3 to have an average particle diameter of 30 to 100 μm. The obtained mother particles were coated with child particles by mechanofusion so that the child particles had a predetermined weight ratio.
【0052】コーティングされた原料粉末をAr雰囲気中で放
電プラズマ焼結した。焼結条件は1325K×3分間であっ
た。焼結した試料は、5×5×15mm、10×10×2mm、外径1
0×2mmの形状に切断加工し、それぞれのゼーベック係
数、ホール係数(キャリヤー濃度と電気伝導率を含む)、
熱伝導率を実施例1と同測定法にて測定した。1100Kにお
ける測定値と、性能指数(ZT=S2T/ρκ)を表6に示す。The coated raw material powder was subjected to spark plasma sintering in an Ar atmosphere. The sintering conditions were 1325K × 3 minutes. The sintered sample is 5 × 5 × 15mm, 10 × 10 × 2mm, outer diameter 1
Cut into a shape of 0 x 2 mm, each Seebeck coefficient, Hall coefficient (including carrier concentration and electric conductivity),
The thermal conductivity was measured by the same measuring method as in Example 1. Table 6 shows the measured values at 1100K and the figure of merit (ZT = S 2 T / ρκ).
【0053】[0053]
【表1】 【table 1】
【0054】[0054]
【表2】 [Table 2]
【0055】[0055]
【表3】 [Table 3]
【0056】[0056]
【表4】 [Table 4]
【0057】[0057]
【表5】 [Table 5]
【0058】[0058]
【表6】 [Table 6]
【0059】[0059]
【発明の効果】この発明による熱電変換材料は、主体の
Siが地球環境、地球資源さらに安全性の点からも優れて
おり、しかも比重が小さく軽いために自動車用の熱電変
換素子として非常に好都合であり、またバルク状のSiは
耐食性に優れているために、表面処理等が不要であると
いう利点がある。The thermoelectric conversion material according to the present invention comprises
Si is excellent in terms of global environment, global resources and safety, and it is very convenient as a thermoelectric conversion element for automobiles due to its small specific gravity and light weight.Since bulk Si has excellent corrosion resistance Another advantage is that no surface treatment or the like is required.
【0060】この発明による熱電変換材料は、Siを主体に用
いることから、高価なGeを多量に含んだSi-Ge系材料よ
りも安価であり、Fe-Si系よりも高い性能指数が得られ
る。さらに、この発明に用いるSiは、半導体デバイス用
に比べてはるかに純度が低いために原料は比較的安価に
入手でき、生産性が良く、品質が安定した安価な熱電変
換材料が得られる。[0060] Since the thermoelectric conversion material according to the present invention mainly uses Si, it is less expensive than a Si-Ge material containing a large amount of expensive Ge, and a higher figure of merit can be obtained than an Fe-Si material. . Further, since Si used in the present invention has much lower purity than semiconductor devices, the raw material can be obtained relatively inexpensively, and an inexpensive thermoelectric conversion material with good productivity and stable quality can be obtained.
【0061】この発明による熱電変換材料は、キャリヤー濃
度の大きいところでゼーベック係数が大きく、電気抵抗
も小さいSiの特徴を活かし、且つ熱伝導率の大きい欠点
を大幅に低下させて、性能指数の大きな材料を得るのに
有効な方法である。また、添加元素の種類や量によりそ
の物性値を制御できる利点がある。The thermoelectric conversion material according to the present invention makes use of the characteristics of Si having a large Seebeck coefficient and a small electric resistance where the carrier concentration is high, and greatly reduces the defect of a large thermal conductivity, and has a large figure of merit. Is an effective way to get Further, there is an advantage that the physical property value can be controlled by the type and amount of the added element.
【図1】この発明による熱電変換材料の結晶組織をEPMA
で観察した写真であり、Aは添加元素Geの偏折、Bは添加
元素Pの偏折を示す。FIG. 1 shows the EPMA crystal structure of the thermoelectric conversion material according to the present invention.
In the photograph observed by A, A shows the deflection of the additional element Ge, and B shows the deflection of the additional element P.
【図2】この発明による熱電変換材料の結晶組織を示す
模式説明図である。FIG. 2 is a schematic explanatory view showing a crystal structure of a thermoelectric conversion material according to the present invention.
【図3】この発明による熱電変換材料粉末のSi粒の状態
を示す模式説明図であり、Aは表面に添加元素を有する
場合、Bは添加元素が埋めこまれた場合を示す。FIG. 3 is a schematic explanatory view showing a state of Si grains of the thermoelectric conversion material powder according to the present invention, wherein A shows a case where an additive element is embedded on the surface, and B shows a case where the additive element is embedded.
Claims (4)
処理にてSiをP型及び/又はN型半導体となすための添加
元素をコーティングし、P型又はN型半導体となすための
添加元素を単独又は複合にて0.001原子%〜20原子%含有
するSi粉末となし、これを焼結し、Siが主体となるSiリ
ッチ相の粒界に前記添加元素のリッチ相が形成された組
織を有する焼結体を得る熱電変換材料の製造方法。Claims: 1. An additive element for forming Si into a P-type and / or N-type semiconductor by coating a Si powder with a vapor-phase growth method or a discharge plasma treatment to form a P-type and / or N-type semiconductor. Alone or in a composite to form a Si powder containing 0.001 at% to 20 at%, sintering the same, and forming a structure in which the rich phase of the additional element is formed at the grain boundary of the Si-rich phase mainly composed of Si. A method for producing a thermoelectric conversion material for obtaining a sintered body having the same.
型半導体となすための添加元素が含有されている熱電変
換材料の製造方法。2. The method according to claim 1, wherein the Si powder itself is P-type or N-type.
A method for producing a thermoelectric conversion material containing an additional element for forming a mold semiconductor.
元素を含有したSi粉末に、SiまたはP型又はN型半導体と
なすための添加元素を含有するガスを用いたプラズマ処
理により、SiまたはP型又はN型半導体となすための添加
元素をコーティングし、P型又はN型半導体となすための
添加元素を単独又は複合にて0.001原子%〜20原子%含有
するSi粉末となし、これを焼結し、Siが主体となるSiリ
ッチ相の粒界に前記添加元素のリッチ相が形成された組
織を有する焼結体を得る熱電変換材料の製造方法。3. A plasma treatment using a gas containing an additive element for forming a Si or P-type or N-type semiconductor in a Si powder containing an additional element for forming a P-type or N-type semiconductor in Si. , Si or an additive element for forming a P-type or N-type semiconductor and coating the additive element for forming a P-type or N-type semiconductor singly or in combination with a Si powder containing 0.001 at% to 20 at%. And sintering the same to obtain a sintered body having a structure in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si.
すための添加元素を含有したSi粉末に、メカノフュージ
ョン処理にてSiまたはP型又はN型半導体となすための添
加元素を埋めこみ、P型又はN型半導体となすための添加
元素を単独又は複合にて0.001原子%〜20原子%含有するS
i粉末となし、これを焼結し、Siが主体となるSiリッチ
相の粒界に前記添加元素のリッチ相が形成された組織を
有する焼結体を得る熱電変換材料の製造方法。4. An Si powder or an Si powder containing an additive element for forming a P-type or N-type semiconductor in Si is embedded with an additive element for forming Si or a P-type or N-type semiconductor by mechanofusion treatment. , S containing 0.001 atomic% to 20 atomic% of additional elements alone or in combination to form a P-type or N-type semiconductor
i. A method for producing a thermoelectric conversion material in which a powder is formed and sintered to obtain a sintered body having a structure in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11063093A JP2000261045A (en) | 1999-03-10 | 1999-03-10 | Manufacture of thermoelectric conversion material |
US09/674,978 US7002071B1 (en) | 1999-03-10 | 2000-03-10 | Thermoelectric conversion material and method of producing the same |
AU29415/00A AU752619B2 (en) | 1999-03-10 | 2000-03-10 | Thermoelectric conversion material and method of producing the same |
CA002331533A CA2331533A1 (en) | 1999-03-10 | 2000-03-10 | Thermoelectric conversion material and method of producing the same |
EP00908000A EP1083610A4 (en) | 1999-03-10 | 2000-03-10 | Thermoelectric conversion material and method of producing the same |
CNB008005028A CN100385694C (en) | 1999-03-10 | 2000-03-10 | thermoelectric conversion material and method of producing same |
PCT/JP2000/001469 WO2000054343A1 (en) | 1999-03-10 | 2000-03-10 | Thermoelectric conversion material and method of producing the same |
KR10-2000-7012611A KR100419488B1 (en) | 1999-03-10 | 2000-03-10 | Thermoelectric conversion material and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11063093A JP2000261045A (en) | 1999-03-10 | 1999-03-10 | Manufacture of thermoelectric conversion material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000261045A true JP2000261045A (en) | 2000-09-22 |
Family
ID=13219365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11063093A Pending JP2000261045A (en) | 1999-03-10 | 1999-03-10 | Manufacture of thermoelectric conversion material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000261045A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018142564A (en) * | 2017-02-27 | 2018-09-13 | 株式会社日立製作所 | Thermoelectric conversion material and manufacturing method of the same |
JP2019068037A (en) * | 2017-05-19 | 2019-04-25 | 日東電工株式会社 | Semiconductor sintered body, electric/electronic member, and method for manufacturing semiconductor sintered body |
-
1999
- 1999-03-10 JP JP11063093A patent/JP2000261045A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018142564A (en) * | 2017-02-27 | 2018-09-13 | 株式会社日立製作所 | Thermoelectric conversion material and manufacturing method of the same |
JP2019068037A (en) * | 2017-05-19 | 2019-04-25 | 日東電工株式会社 | Semiconductor sintered body, electric/electronic member, and method for manufacturing semiconductor sintered body |
US11508893B2 (en) | 2017-05-19 | 2022-11-22 | Nitto Denko Corporation | Method of producing semiconductor sintered body |
US11616182B2 (en) | 2017-05-19 | 2023-03-28 | Nitto Denko Corporation | Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100419488B1 (en) | Thermoelectric conversion material and method of producing the same | |
JP4399757B2 (en) | Thermoelectric conversion material and manufacturing method thereof | |
KR101087355B1 (en) | Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them | |
JP4569298B2 (en) | Thermoelectric material | |
EP0874406A2 (en) | A co-sb based thermoelectric material and a method of producing the same | |
JP2002064227A (en) | Thermoelectric conversion material and its manufacturing method | |
JP5333001B2 (en) | Thermoelectric material and manufacturing method thereof | |
Yamashita et al. | High performance n-type bismuth telluride with highly stable thermoelectric figure of merit | |
JP5528873B2 (en) | Composite thermoelectric material and method for producing the same | |
Zhao et al. | Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering | |
JP4504523B2 (en) | Thermoelectric material and manufacturing method thereof | |
JP5352860B2 (en) | Thermoelectric material and manufacturing method thereof | |
JP2000261044A (en) | Thermoelectric conversion material and its manufacture | |
WO2020149465A9 (en) | Thermoelectric material manufacturing method | |
JP2000261045A (en) | Manufacture of thermoelectric conversion material | |
Kajikawa et al. | Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements | |
JP2000261043A (en) | Thermoelectric conversion material and its manufacture | |
EP0948061B1 (en) | P-type thermoelectric converting substance and method of manufacturing the same | |
JP2000261046A (en) | Thermoelectric converting material and manufacture or the same | |
Choi et al. | Thermoelectric properties of n-type (Pb/sub 1-x/Ge/sub x/) Te fabricated by hot pressing method | |
WO2000054343A1 (en) | Thermoelectric conversion material and method of producing the same | |
JP4601206B2 (en) | Method for manufacturing thermoelectric element | |
KR102241257B1 (en) | A thermoelectric material and process for preparing the same | |
JP2001068744A (en) | Thermoelectric conversion material and thermoelectric conversion element | |
Lee et al. | Thermoelectric properties of the 0.05 wt.% SbI 3-Doped n-Type Bi 2 (Te 0. 95 Se 0. 05) 3 alloy fabricated by the hot pressing method |