JP2000258550A - Magnetic compensation method of movable body - Google Patents

Magnetic compensation method of movable body

Info

Publication number
JP2000258550A
JP2000258550A JP6097899A JP6097899A JP2000258550A JP 2000258550 A JP2000258550 A JP 2000258550A JP 6097899 A JP6097899 A JP 6097899A JP 6097899 A JP6097899 A JP 6097899A JP 2000258550 A JP2000258550 A JP 2000258550A
Authority
JP
Japan
Prior art keywords
compensation
movable part
magnetic
parameter
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6097899A
Other languages
Japanese (ja)
Other versions
JP3376944B2 (en
Inventor
Hide Kobayashi
秀 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6097899A priority Critical patent/JP3376944B2/en
Publication of JP2000258550A publication Critical patent/JP2000258550A/en
Application granted granted Critical
Publication of JP3376944B2 publication Critical patent/JP3376944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To compensate for magnetic noise due to the movable parts of an aircraft, and to accurately detect magnetism. SOLUTION: In a first step, standard navigation is carried out at a high altitude in a first step, the measuring signals of a MAD sensor 1, a three-axis magnetometer 2, and a movable part position detection sensor 7 are taken into an arithmetic processing unit 3, and 16 items and a parameter 4 of a movable part are obtained. In s second step, the measuring signals of the three-axis magnetometer 2 and the movable part position detection sensor 7 obtained during the navigation by the arithmetic processing unit 3 are obtained, and the 16 items and the parameter of the movable part are substituted for a specific compensation expression for obtaining an amount of compensation 5, the amount of compensation 5 is subtracted from a MAD signal before the compensation by an adder/subtractor 6, and the MAD signal is obtained after the compensation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、航空機等の移動
体の磁気補償方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic compensation method for a moving body such as an aircraft.

【0002】[0002]

【従来の技術】一般に、海中等の物体を探知するのに、
航空機に磁気探知器を搭載し、磁気的に探知する方法が
ある。この種の磁気方法では、航空機が運動雑音を生じ
るので、従来は航空機を一体の剛体として仮定した補償
式より、磁気補償量を計算し、運動雑音を補償してい
る。
2. Description of the Related Art Generally, when detecting an object such as the sea,
There is a method of mounting a magnetic detector on an aircraft and detecting magnetically. In this type of magnetic method, the aircraft generates motion noise. Therefore, conventionally, a magnetic compensation amount is calculated by a compensation formula assuming that the aircraft is an integral rigid body to compensate for the motion noise.

【0003】磁気補償は、次の2つのステップにより行
われる。先ず、第1のステップは図1に示すように、磁
気探知用のMADセンサ1と、3軸磁力計2を備えた航
空機を高航空で飛ばし、西方向、南方向、東方向、北方
向と、向きを変え、各方向で機体をローリング、ピッチ
ング、ヨーイングさせ、その間、MADセンサ1と3軸
磁力計2よりのデータを収集する。この収集したデータ
を補償式に入れ、演算処理器3で16項目のパラメータ
を求める。
[0003] Magnetic compensation is performed in the following two steps. First, as shown in FIG. 1, the first step is to fly an aircraft equipped with a MAD sensor 1 for magnetic detection and a three-axis magnetometer 2 at high altitude, and to westward, southward, eastward, and northward. The aircraft is rolled, pitched, and yawed in each direction, and during that time, data from the MAD sensor 1 and the three-axis magnetometer 2 are collected. The collected data is put into a compensation equation, and the arithmetic processor 3 determines 16 parameters.

【0004】第2のステップは、実際に磁気探知を行う
段階であり、航行中にサンプリング毎にMADセンサ1
の3軸磁力計2の検出信号を図2に示すように、演算処
理器3に取り込む。演算処理器3では、第1のステップ
で求めた16項目のパラメータと、上記取り込んだデー
タを補償式によって補償量を計算する。そして、MAD
センサ1の検出信号、つまり磁探信号から補償量5を逐
次差し引いて、磁気補償する。
The second step is a step of actually performing magnetic detection, and the MAD sensor 1 is provided for each sampling during navigation.
The detection signal of the three-axis magnetometer 2 is taken into the arithmetic processor 3 as shown in FIG. The arithmetic processor 3 calculates a compensation amount of the 16 parameters obtained in the first step and the fetched data by a compensation formula. And MAD
Magnetic compensation is performed by sequentially subtracting the compensation amount 5 from the detection signal of the sensor 1, that is, the magnetic detection signal.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の航空機
による磁気探知の磁気補償は、航空機を一体の剛体と見
なしているが、実際には航空機は完全な剛体とは見なし
得ない。特に、磁気探知器の近くにあるラダー、エレベ
ータ及びそれらを駆動するアクチュエータ等の可動部品
が、その可動によって磁気雑音を発生する。従来の磁気
補償では、この可動部品の位置変化等による磁気雑音が
補償の対象とされていず、結果として、磁気探知の精度
が確保できないという問題があった。
The above-described magnetic compensation for magnetic detection by the conventional aircraft described above considers the aircraft as an integral rigid body, but in practice, the aircraft cannot be regarded as a completely rigid body. In particular, moving parts such as ladders, elevators, and actuators that drive them near the magnetic detector generate magnetic noise due to their movement. In the conventional magnetic compensation, magnetic noise due to a change in the position of the movable component or the like is not targeted for compensation, and as a result, there is a problem that the accuracy of magnetic detection cannot be ensured.

【0006】この発明は上記問題点に着目してなされた
ものであって、可動部品による磁気雑音も補償でき、高
精度の磁気探知を実現し得る移動体の磁気補償方法を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a magnetic compensation method for a moving body which can also compensate for magnetic noise due to movable parts and realize high-precision magnetic detection. And

【0007】[0007]

【課題を解決するための手段】この発明の移動体の磁気
補償方法は、移動体に磁気探知器と、3軸磁力計と、可
動部品の変位検出器を備えておき、第1の過程(ステッ
プ)で所定の標準の運動を行い、磁気探知器、3軸磁力
計及び変位検出器よりのデータで磁気補償用のパラメー
タを算出しておき、第2の過程で運動中に得られる前記
磁気探知器、3軸磁力計及び変位検出器の出力と、前記
パラメータから磁気補償量を算出するようにしている。
According to the magnetic compensation method for a moving body of the present invention, the moving body is provided with a magnetic detector, a three-axis magnetometer, and a displacement detector for a movable part, and the first step ( In step 2), a predetermined standard motion is performed, and parameters for magnetic compensation are calculated based on data from a magnetic detector, a three-axis magnetometer, and a displacement detector. The magnetic compensation amount is calculated from the output of the detector, the three-axis magnetometer and the displacement detector, and the parameters.

【0008】[0008]

【発明の実施の形態】以下、実施の形態により、この発
明をさらに詳細に説明する。以下の実施形態は、航空機
の磁気探知における磁気補償方法である。この実施形態
では、航空機にMADセンサ1、3軸磁力計2及び演算
処理器3を搭載している。MADセンサ1はスカラ量を
出力し、3軸磁力計2はベクトル量を出力し、演算処理
器3はCPUが使用される。これらの点は、図1に示し
た従来の場合と同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. The following embodiment is a magnetic compensation method in aircraft magnetic detection. In this embodiment, an MAD sensor 1, a three-axis magnetometer 2, and an arithmetic processor 3 are mounted on an aircraft. The MAD sensor 1 outputs a scalar quantity, the three-axis magnetometer 2 outputs a vector quantity, and the arithmetic processing unit 3 uses a CPU. These points are the same as in the conventional case shown in FIG.

【0009】この実施形態では、この他航空機に、図3
に示すように、可動部位置検出センサ7を設けている。
可動部とはラダー、エレベータ等である。この実施形態
の磁気補償方法も第1のステップと、第2のステップの
2段階で構成される。先ず、第1のステップでは、高空
での標準の運動を行い、データを収集する。すなわち、
最初に西方向に3分間飛び、その間でローリング、ピッ
チング、ヨーイングを行いながら、MADセンサ1のM
AD信号、3軸磁力計2のx、y、z軸信号、及び可動
部位置検出センサ7の可動部変位信号Pをサンプリング
して、演算処理器3に取り込む。同様に、高空を南方
向、東方向、北方向に、それぞれ3分間ずつ、それぞれ
でローリング、ピッチング、ヨーイングを繰り返し、デ
ータ収集を行う。サンプリング周波数が5HZの場合、
時間12分でデータ数は3600組(=12分×60秒
×5HZ)になる。
In this embodiment, the other aircraft is provided with
As shown in the figure, a movable portion position detection sensor 7 is provided.
The movable part is a ladder, an elevator, or the like. The magnetic compensation method according to this embodiment also includes two steps, a first step and a second step. First, in the first step, a standard altitude exercise is performed to collect data. That is,
First, fly westward for 3 minutes, during which rolling, pitching and yawing are performed while the MAD sensor 1
The AD signal, the x-, y-, and z-axis signals of the three-axis magnetometer 2 and the movable part displacement signal P of the movable part position detection sensor 7 are sampled and taken into the arithmetic processing unit 3. Similarly, rolling, pitching, and yawing are repeated for three minutes each in the high, south, east, and north directions to collect data. When the sampling frequency is 5HZ,
In 12 minutes, the number of data becomes 3600 sets (= 12 minutes × 60 seconds × 5HZ).

【0010】次に、収集したデータを補償式に入れる。
データ数が3600組であるなら、3600組の方程式
から未知のパラメータを求めることになる。未知数の数
より方程式の数が多い場合に、未知数を求める方法であ
る最小2乗法によりパラメータの値を求める。なお、1
6項目の運動雑音の補償量を求める式は、従来より定式
化されており(これについては後述する)、この実施形
態ではこの式に可動部補償項を追加している。
Next, the collected data is entered into a compensation equation.
If the number of data is 3600 sets, unknown parameters are determined from the 3600 sets of equations. When the number of equations is greater than the number of unknowns, the value of the parameter is determined by the least squares method, which is a method of determining the unknowns. In addition, 1
An equation for calculating the six items of motion noise compensation has been formulated in the past (this will be described later), and in this embodiment, a movable section compensation term is added to this equation.

【0011】第2のステップは、やはり実際の磁気探知
を行う段階であり、航行中のサンプリング毎に、3軸磁
力計の3軸信号(x、y、z)、及び可動部位置検出セ
ンサ7の可動部変位信号Pを演算処理器3に取り込む。
演算処理器3では、第1のステップで求めた16項目及
び可動部のパラメータ4と、3軸磁力計2及び可動部位
置検出センサ7から取り込んだデータを、補償式に入れ
て補償量を算出する。加減算器6で補償前MAD信号か
ら補償量5を逐次差し引き、補償後MAD信号を得る。
The second step is also a step of actually performing the magnetic detection. At each sampling during navigation, the three-axis signals (x, y, z) of the three-axis magnetometer and the movable part position detecting sensor 7 are used. Is taken into the arithmetic processing unit 3.
The arithmetic processor 3 calculates the amount of compensation by inputting the 16 items obtained in the first step and the parameters 4 of the movable part and the data taken from the three-axis magnetometer 2 and the movable part position detection sensor 7 into a compensation formula. I do. The adder / subtracter 6 sequentially subtracts the compensation amount 5 from the uncompensated MAD signal to obtain a compensated MAD signal.

【0012】図5に計算シミュレーションによる標準運
動時の雑音を示している。図5の(a)は、補償前のM
AD信号であり、図5の(b)は従来の方法による補償
後信号であり、図5の(c)は本発明の実施形態によ
る、つまり(従来方法+可動部雑音)補償後信号であ
り、従来方法による場合に比し、1桁以上雑音が低減さ
れている。
FIG. 5 shows the noise at the time of the standard exercise by the calculation simulation. FIG. 5A shows M before compensation.
FIG. 5B shows an AD signal, and FIG. 5B shows a signal after compensation according to the conventional method, and FIG. 5C shows a signal after compensation according to the embodiment of the present invention, that is, (the conventional method + movable part noise). The noise is reduced by one digit or more as compared with the conventional method.

【0013】ここで、上記で使用する磁気補償式につい
て説明する。運動雑音Mn、可動部雑音Knを次のよう
に定式化する。 Mn=1/HeX.(Prm+Ind.X’+Edy.DX’) ……(1) Kn=1/HeX.(Kp*dt) ……(2) ここで、He:地磁気の大きさ X:地磁気列ベクトル{x、y、x} “ ’”は転置の記号であり、例えば行ベクトルを列ベ
クトルに変換する。
Here, the magnetic compensation formula used above will be described. The motion noise Mn and the movable part noise Kn are formulated as follows. Mn = 1 / HeX. (Prm + Ind.X '+ Edy.DX') (1) Kn = 1 / HeX. (Kp * dt) (2) where He: magnitude of geomagnetism X: geomagnetic column vector {x, y, x} "" is a transposition symbol, for example, converting a row vector into a column vector. .

【0014】DX:地磁気時間微分列ベクトル{dx、
dy、dx} dt:可動部の変位量 全雑音(Tn)は上式の和となる。 Tm=Mn+Kn ……(3)
DX: Geomagnetic time differential column vector {dx,
dy, dx} dt: Displacement amount of the movable part The total noise (Tn) is the sum of the above equations. Tm = Mn + Kn (3)

【0015】[0015]

【数1】 (Equation 1)

【0016】上記パラメータのうち、永久項目、誘導項
目、渦電流項目の21項目は、16項目に絞ることがで
きる。これは従来より採用されているパラメータであ
る。可動部パラメータ{Ts、Is、Vs}は新たに導
入したパラメータである。次に、可動部雑音補償につい
て説明する。可動部雑音補償は可動部が変位する時の磁
気探知器のセンサ位置における可動部磁気を数式で表
し、変位量と可動部磁気の関係を上記(2)式で表せる
ことを示している。
Of the above parameters, 21 items of permanent items, induction items, and eddy current items can be reduced to 16 items. This is a parameter conventionally used. The movable part parameters {Ts, Is, Vs} are newly introduced parameters. Next, a description will be given of the noise compensation of the movable part. The movable part noise compensation indicates that the movable part magnetism at the sensor position of the magnetic detector when the movable part is displaced is represented by a mathematical expression, and the relationship between the displacement amount and the movable part magnetism can be represented by the above equation (2).

【0017】ここで、さらに可動部の回転及び変位によ
る磁気雑音を考える。 可動部磁気が微小回転する場合 磁気の公式より、磁気モーメントの位置から測定点に向
かう半径方向の磁気(Br)と半径方向と直角な方向の
磁気(Bt)を次のように表す。 Br=2mCos〔th0+dt〕/r3 ……(4) Bt=mSin〔th0+dt〕/r3 ……(5) ここで、m:可動部の磁気モーメント r:可動部とセンサとの距離 th0:磁気モーメントの方向とモーメントからセンサ
を見た方向のなす角度 dt:可動部磁気モーメントの微小回転量 水平軸(L軸)、鉛直軸(V軸)方向の磁気BL、BV
は次ように書ける。
Here, further consider magnetic noise due to rotation and displacement of the movable part. In the case where the movable part magnetism rotates minutely From the formula of magnetism, the magnetism in the radial direction (Br) from the position of the magnetic moment to the measurement point and the magnetism (Bt) in the direction perpendicular to the radial direction are expressed as follows. Br = 2mCos [th0 + dt] / r 3 ...... (4) Bt = mSin [th0 + dt] / r 3 ...... (5) where, m: magnetic moment of the movable portion r: distance between the movable portion and the sensor th0: Magnetic The angle between the direction of the moment and the direction in which the sensor is viewed from the moment dt: The minute rotation amount of the magnetic moment of the movable part Magnetic BL, BV in the horizontal axis (L axis) and vertical axis (V axis) directions
Can be written as

【0018】 BL=BrSin〔th0+dt〕+BtCos〔th0+dt〕 ……(6) BV=BrCos〔th0+dt〕−BtSin〔th0+dt〕 ……(7) th≪1の場合、thに関し、2次以上の微小項は無視
し、Cos〔th〕=1,sin〔th〕=thとす
る。式(4)〜(7)より、次の近似式を求める。
BL = BrSin [th0 + dt] + BtCos [th0 + dt] (6) BV = BrCos [th0 + dt] -BtSin [th0 + dt] (7) In the case of th≪1, the second or higher-order small term is Ignored, and set Cos [th] = 1 and sin [th] = th. The following approximate expression is obtained from Expressions (4) to (7).

【0019】 BL=3mSin〔2t0〕/(2r3 )+3mCos 〔2t0)/r3 *dt ……(8) BV=m(1+3Cos〔2t0〕/(2r3 ) −3mSin〔2t0)/r3 *dt ……(9) 以上より、可動部が回転した時の検知部位置に発生する
磁気変動は、可動部の回転量に比例することがわかる。
[0019] BL = 3mSin [2t0] / (2r 3) + 3mCos [2t0) / r 3 * dt ...... (8) BV = m (1 + 3Cos [2t0] / (2r 3) -3mSin [2t0) / r 3 * dt (9) From the above, it can be understood that the magnetic fluctuation generated at the position of the detection section when the movable section rotates is proportional to the rotation amount of the movable section.

【0020】可動部磁気が微小変位する場合 BL=3mSin〔2t0〕/(2r3 )+3m(Sin〔t0〕+ 5Sin〔3t0〕)/(4r4 )*a ……(10) BV=m(1+3Cos〔2t0〕/(2r3 )+3m (3Cos〔t0〕+5Cos〔3t0〕)/(4r4 )*a ……(11) ここで、a:可動部の微小変位量 これより、可動部が変位した時の検知部位置に発生する
磁気変動は、可動部の変位量に比例することがわかる。
[0020] When the movable portion magnetism to small displacement BL = 3mSin [2t0] / (2r 3) + 3m ( Sin [t0] + 5Sin [3t0]) / (4r 4) * a ...... (10) BV = m ( 1 + 3Cos [2t0] / (2r 3) + 3m ( 3Cos [t0] + 5Cos [3t0]) / (4r 4) * a ...... (11) where, a: from this small amount of displacement of the movable portion, the movable portion is displaced It can be understood that the magnetic fluctuation generated at the position of the detection unit when the detection is performed is proportional to the amount of displacement of the movable unit.

【0021】次に、永久磁気のみより、可動部磁気の補
償項を求める式(8)、(9)より、 {Ts、Ls、Vs}*dt={0,3mCos〔2t0〕/r3 , −3mSin〔2t0〕/r3 }*dt ……(12) ここで、{Ts、Ls、Vs}:センサ位置における可
動部回転による永久磁気の変動成分パラメータ 式(10)、(11)より、 {Ts、Ls、Vs}*a={0,3m(Sin〔t0〕+ 5Sin〔3t0〕)/(4r4 ), 3m(3Cos〔t0〕+5Cos〔3t0〕)/4r4 )}*a ……(13) ここで、{Ts、Ls、Vs}:センサ位置における可
動部変位による永久磁気の変動成分パラメータ なお、式(8)〜(11)において、第1項目は定数項
であり、運動雑音の永久項目と見分けが付かないため、
変動成分には入れない。
Next, from the equations (8) and (9) for finding the compensation term of the movable part magnetism from only the permanent magnetism, the following equation is obtained: {Ts, Ls, Vs} * dt = {0, 3 mCos [2t0] / r 3 , −3 mSin [2t0] / r 3 } * dt (12) where {Ts, Ls, Vs} is a parameter of a fluctuation component of permanent magnetism due to rotation of the movable part at the sensor position. From equations (10) and (11), {Ts, Ls, Vs} * a = {0,3m (Sin [t0] + 5Sin [3t0]) / (4r 4), 3m (3Cos [t0] + 5Cos [3t0]) / 4r 4)} * a ... (13) where {Ts, Ls, Vs}: a parameter of a fluctuation component of permanent magnetism due to displacement of the movable part at the sensor position. In equations (8) to (11), the first item is a constant term, and Indistinguishable from permanent items of noise Because,
Not included in the fluctuation component.

【0022】以上より、可動部の回転/変位による永久
磁気は可動部と検知部との相対的位置によって決まる定
数パラメータと回転量/変位量の積で表される。なお、
上記は2次元空間での検討であるが、3次元空間でも同
様の結果となる。すなわち、回転量/変位量に関し、2
次以上の微小項は無視すれば、次式になる。
As described above, the permanent magnetism due to the rotation / displacement of the movable part is represented by the product of the constant / parameter determined by the relative position of the movable part and the detector and the amount of rotation / displacement. In addition,
Although the above is a study in a two-dimensional space, a similar result is obtained in a three-dimensional space. That is, regarding the rotation amount / displacement amount, 2
The following equation can be obtained by ignoring small terms larger than the following.

【0023】 (可動部回転/変位雑音)={Ts、Ls、Vs}*dt(またはa) ……(14) また、可動部雑音の磁気補償量は、可動部雑音の地磁気
方向成分により表されるので、可動部雑音ベクトルと地
磁気の単位ベクトルの内積より求める。 (可動部雑音の磁気補償量)=1/He(X.Kp*dt(またはa)) ……(15) ここで、X:地磁気ベクトル{x、y、z} He:地磁気の大きさ Kp:可動部パラメータ{Ts、Ls、Vs} また、上記では可動部の永久項目のみ記したが、可動部
の誘導項目、渦電流項目も追加するのは同様の手順によ
る。
(Movable part rotation / displacement noise) = {Ts, Ls, Vs} * dt (or a) (14) Further, the magnetic compensation amount of the movable part noise is represented by a geomagnetic component of the movable part noise. Is obtained from the inner product of the noise vector of the movable part and the unit vector of the geomagnetism. (Magnetic compensation amount of movable part noise) = 1 / He (X.Kp * dt (or a)) (15) where X: geomagnetic vector {x, y, z} He: magnitude of geomagnetism Kp : Moving section parameters {Ts, Ls, Vs} Although only the permanent section of the moving section has been described above, the induction section and the eddy current section of the moving section are added in the same procedure.

【0024】なお、上記実施形態では、航空機について
説明したが、この発明は他の移動体、例えば艦船による
磁気補償にも適用することができる。
In the above embodiment, the aircraft is described. However, the present invention can be applied to magnetic compensation by another moving body, for example, a ship.

【0025】[0025]

【発明の効果】この発明によれば、移動体に可動部位置
検出器を設け、従来移動体を剛体として見なした場合の
補償パラメータに加え、可動部の変位も考慮したパラメ
ータも加味して、磁気補償を行うようにしているので、
可動部磁気雑音の影響を受けることなく、精度の良い磁
気探知を行うことができる。
According to the present invention, the movable body is provided with the movable part position detector, and in addition to the compensation parameter when the conventional movable body is regarded as a rigid body, a parameter considering the displacement of the movable part is also taken into consideration. , Because I am trying to perform magnetic compensation,
Accurate magnetic detection can be performed without being affected by the magnetic noise of the movable portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の航空機の標準運動時のデータ取り込み及
びパラメータ算出を説明するためのブロック図である。
FIG. 1 is a block diagram for explaining conventional data acquisition and parameter calculation during standard motion of an aircraft.

【図2】従来の航空機の磁気補償を説明するためのブロ
ック図である。
FIG. 2 is a block diagram for explaining magnetic compensation of a conventional aircraft.

【図3】この発明の一実施形態である航空機の標準運動
時のデータ取り込み及びパラメータ算出を説明するため
のブロック図である。
FIG. 3 is a block diagram for explaining data acquisition and parameter calculation during a standard motion of the aircraft according to an embodiment of the present invention.

【図4】同実施形態である航空機の磁気補償を説明する
ためのブロック図である。
FIG. 4 is a block diagram for explaining magnetic compensation of the aircraft according to the embodiment.

【図5】計算シミュレーションによる可動部雑音補償を
説明するための波形タイムチャートである。
FIG. 5 is a waveform time chart for explaining movable section noise compensation by calculation simulation.

【符号の説明】[Explanation of symbols]

1 MADセンサ 2 3軸磁力計 3 演算処理器 4 パラメータ 5 補償量 6 加減算器 7 可動部位置検出センサ DESCRIPTION OF SYMBOLS 1 MAD sensor 2 3-axis magnetometer 3 Operation processor 4 Parameter 5 Compensation amount 6 Adder / subtractor 7 Movable part position detection sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】移動体に磁気探知器と、3軸磁力計と、可
動部品の変位検出器を備えておき、 第1の過程で所定の標準の運動を行い、磁気探知器、3
軸磁力計及び変位検出器よりのデータで磁気補償用のパ
ラメータを算出しておき、 第2の過程で運動中に得られる前記磁気探知器、3軸磁
力計及び変位検出器の出力と、前記パラメータから磁気
補償量を算出するようにしたことを特徴とする移動体の
磁気補償方法。
A moving body is provided with a magnetic detector, a three-axis magnetometer, and a displacement detector for a movable part, and performs a predetermined standard movement in a first step.
A parameter for magnetic compensation is calculated based on data from the axial magnetometer and the displacement detector, and the outputs of the magnetic detector, the three-axis magnetometer and the displacement detector obtained during the movement in the second step, A magnetic compensation method for a moving object, wherein a magnetic compensation amount is calculated from a parameter.
JP6097899A 1999-03-09 1999-03-09 Magnetic compensation method for moving objects Expired - Fee Related JP3376944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6097899A JP3376944B2 (en) 1999-03-09 1999-03-09 Magnetic compensation method for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6097899A JP3376944B2 (en) 1999-03-09 1999-03-09 Magnetic compensation method for moving objects

Publications (2)

Publication Number Publication Date
JP2000258550A true JP2000258550A (en) 2000-09-22
JP3376944B2 JP3376944B2 (en) 2003-02-17

Family

ID=13158038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6097899A Expired - Fee Related JP3376944B2 (en) 1999-03-09 1999-03-09 Magnetic compensation method for moving objects

Country Status (1)

Country Link
JP (1) JP3376944B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003260A (en) * 2005-06-22 2007-01-11 Shimadzu Corp Hull magnetism measurement system
JP2009103545A (en) * 2007-10-23 2009-05-14 Shimadzu Corp Magnetic detection device
WO2011088519A1 (en) * 2010-01-22 2011-07-28 Minelab Electronics Pty Limited Improved noise cancellation in a metal detector with a movable sensor head
JP2012522210A (en) * 2009-03-27 2012-09-20 キネティック リミテッド Apparatus and method for ferromagnetic object detector
CN110568384A (en) * 2019-08-27 2019-12-13 中国科学院武汉物理与数学研究所 active magnetic compensation method for ultra-sensitive atomic magnetometer
CN112858959A (en) * 2021-02-28 2021-05-28 哈尔滨工业大学 Method and device for compensating magnetic interference caused by airborne electronic equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003260A (en) * 2005-06-22 2007-01-11 Shimadzu Corp Hull magnetism measurement system
JP4635732B2 (en) * 2005-06-22 2011-02-23 株式会社島津製作所 Hull magnetic measurement system
JP2009103545A (en) * 2007-10-23 2009-05-14 Shimadzu Corp Magnetic detection device
JP2012522210A (en) * 2009-03-27 2012-09-20 キネティック リミテッド Apparatus and method for ferromagnetic object detector
WO2011088519A1 (en) * 2010-01-22 2011-07-28 Minelab Electronics Pty Limited Improved noise cancellation in a metal detector with a movable sensor head
CN110568384A (en) * 2019-08-27 2019-12-13 中国科学院武汉物理与数学研究所 active magnetic compensation method for ultra-sensitive atomic magnetometer
CN110568384B (en) * 2019-08-27 2020-08-18 中国科学院武汉物理与数学研究所 Active magnetic compensation method for ultra-sensitive atomic magnetometer
CN112858959A (en) * 2021-02-28 2021-05-28 哈尔滨工业大学 Method and device for compensating magnetic interference caused by airborne electronic equipment

Also Published As

Publication number Publication date
JP3376944B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
Bai et al. A high-precision and low-cost IMU-based indoor pedestrian positioning technique
US6820002B2 (en) Moving direction detection method, moving direction detection apparatus, and program code
WO2014010727A1 (en) Device for estimating moving object travel direction and method for estimating travel direction
CN110553646B (en) Pedestrian navigation method based on inertia, magnetic heading and zero-speed correction
TWI490497B (en) Inertial device, method, and storage medium
CN106979780B (en) A kind of unmanned vehicle real-time attitude measurement method
JP4876204B2 (en) Small attitude sensor
EP3933166A1 (en) Attitude measurement method
CN107490378B (en) Indoor positioning and navigation method based on MPU6050 and smart phone
JP2011503571A (en) Object orientation measurement
Zhu et al. An efficient method for gyroscope-aided full magnetometer calibration
JP2006226810A (en) Azimuth measuring instrument
Majumder et al. A robust orientation filter for wearable sensing applications
Li et al. Gravitational apparent motion-based SINS self-alignment method for underwater vehicles
Wang et al. Improving the navigation performance of the MEMS IMU array by precise calibration
Tao et al. Precise displacement estimation from time-differenced carrier phase to improve PDR performance
JP3376944B2 (en) Magnetic compensation method for moving objects
CN110672095A (en) Pedestrian indoor autonomous positioning algorithm based on micro inertial navigation
Hu et al. Federated unscented particle filtering algorithm for SINS/CNS/GPS system
Belkhouche A differential accelerometer system: Offline calibration and state estimation
JP2013122384A (en) Kalman filter and state estimation device
CN109725284A (en) For determining the method and system of the direction of motion of object
CN109084765B (en) Indoor walking positioning method and device for pedestrian and storage medium
JP2006329758A (en) Magnetic search system
JP2001083224A (en) Method and apparatus for measuring magnetic field

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees