JP2000257839A - Monitoring/controlling method for melting furnace slag discharge outlet - Google Patents

Monitoring/controlling method for melting furnace slag discharge outlet

Info

Publication number
JP2000257839A
JP2000257839A JP11064615A JP6461599A JP2000257839A JP 2000257839 A JP2000257839 A JP 2000257839A JP 11064615 A JP11064615 A JP 11064615A JP 6461599 A JP6461599 A JP 6461599A JP 2000257839 A JP2000257839 A JP 2000257839A
Authority
JP
Japan
Prior art keywords
process data
slag discharge
furnace
melting furnace
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11064615A
Other languages
Japanese (ja)
Other versions
JP3280338B2 (en
Inventor
Osamu Ishikawa
理 石川
Masaru Ishiwata
勝 石綿
Toshiaki Naito
利昭 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP06461599A priority Critical patent/JP3280338B2/en
Publication of JP2000257839A publication Critical patent/JP2000257839A/en
Application granted granted Critical
Publication of JP3280338B2 publication Critical patent/JP3280338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a monitoring/controlling method capable of easily controlling a slag discharge outlet where modeling with numerals is impossible and wasteful time is long without relying upon judgement of an operator. SOLUTION: A future behavior after the passage of wasteful time is predicted using a neural network taking as an input signal measurable process data of a melting furnace. Predicted values of the resulting process data are combinmed with each other as parameters together with past and present process data, and an expert system judges stability of the slag discharge outlet. When the situation is judged stable, a furnace is operated at a rated value while when unstable, the rated value is altered to operate the furnace such that it is stabilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融炉スラグ排出
口の監視制御方法に関するものである。
The present invention relates to a method for monitoring and controlling a slag discharge port of a melting furnace.

【0002】[0002]

【従来の技術】近年の汚泥処理技術のひとつとして、汚
泥焼却灰を溶融してスラグ化することにより、減容化と
無害化を図るシステムが普及しつつある。しかし投入さ
れる灰の性状が変動するために溶融特性が変化し、スラ
グ排出口(湯口)の状況を安定させることは容易ではな
い。すなわち、炉温や炉圧を一定に維持していても、投
入される灰の性状が変化することにより湯口が閉塞した
り、湯口の下部にスラグが垂直固化して安定排出が行え
なくなることがある。そのため、溶融炉の下部に監視カ
メラを設置して湯口を監視しているが、いつ安定性が崩
れるか予測できないために運転員の負担が少なくない。
2. Description of the Related Art As one of the recent sludge treatment technologies, a system for reducing the volume and detoxifying slag by melting sludge incineration ash is becoming widespread. However, the melting characteristics change due to the change in the properties of the ash to be charged, and it is not easy to stabilize the condition of the slag discharge port (gate). That is, even if the furnace temperature and the furnace pressure are kept constant, the properties of the ash to be charged change, so that the gate is blocked or the slag is solidified vertically at the lower part of the gate so that stable discharge cannot be performed. is there. For this reason, a monitoring camera is installed at the lower part of the melting furnace to monitor the sprue. However, since it is impossible to predict when stability will be lost, the burden on the operator is not small.

【0003】そこで本発明者等は溶融炉を数値モデル化
することにより、炉温や炉内圧等のプロセスデータから
その挙動を予測し、溶融炉の自動制御を行うことも検討
した。しかし、数値モデル化に必要な灰の性状、その溶
解熱、スラグ持ち出し熱等のいくつかのプロセスデータ
がリアルタイムでは測定不可能であるため、溶融炉の数
値モデル化は困難であることが判明した。しかも溶融炉
は、燃焼条件等を操作してから湯口の状況が変化するま
でのむだ時間が例えば15〜30分とかなり長いため、測定
されたプロセスデータに基づいて適切な制御を行うこと
は、この面からも困難であった。従って従来は運転員の
判断に基づいて操炉を行っており、判断に個人差が生ず
ることが避けられなかった。
[0003] The inventors of the present invention have studied the use of a numerical model of a melting furnace to predict its behavior from process data such as furnace temperature and furnace pressure, and to perform automatic control of the melting furnace. However, some process data, such as the properties of ash, heat of dissolution, and heat of taking out slag, required for numerical modeling cannot be measured in real time, so it has proved difficult to numerically model the melting furnace. . Moreover, since the melting furnace has a considerably long dead time, for example, 15 to 30 minutes, from operating the combustion conditions to changing the condition of the gate, it is necessary to perform appropriate control based on the measured process data. In this respect, it was difficult. Therefore, conventionally, the furnace operation is performed based on the judgment of the operator, and it is inevitable that there is an individual difference in the judgment.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決し、測定不可能なプロセスデータを含む
ために数値モデル化ができず、またむだ時間が長いため
に適切な制御が困難な溶融炉のスラグ排出口(湯口)
を、運転員の判断に頼ることなく安定に制御することが
できる溶融炉スラグ排出口の監視制御方法を提供するた
めになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and includes a process data that cannot be measured. Therefore, a numerical model cannot be formed. Slag discharge (gate) of difficult melting furnace
Has been made in order to provide a method for monitoring and controlling the melting furnace slag discharge port which can be controlled stably without relying on the judgment of the operator.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、測定不可能なプロセスデータを
含むために数値モデル化できない溶融炉のむだ時間経過
後の将来の挙動をニューラルネットワークにより予測
し、得られたプロセスデータの予測値を、過去と現在の
プロセスデータとともにパラメータとして組み合わせた
エキスパートシステムによりスラグ排出口の安定度を判
定し、不安定の場合には安定化させるように操炉を行わ
せることを特徴とするものである。なお、ニューラルネ
ットワークとして自己学習型のものを採用し、汎化性を
確保するためにプロセスデータを更新することが好まし
い。またエキスパートシステムのパラメータとして、湯
口開口度の変化、固化スラグの落下状況、湯口温度の変
化を選択することができる。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems. The present invention relates to a method for neurally predicting the future behavior of a melting furnace after a dead time which cannot be numerically modeled because it includes unmeasurable process data. The stability of the slag outlet is determined by an expert system that combines the predicted values of the obtained process data with the past and present process data as parameters together with the prediction by the network. It is characterized by operating a furnace. It is preferable to adopt a self-learning type neural network and update the process data in order to ensure generalization. Further, as the parameters of the expert system, the change of the gate opening degree, the falling state of the solidified slag, and the change of the gate temperature can be selected.

【0006】本発明によれば、ニューラルネットワーク
を用いることにより数値モデル化できない溶融炉の挙動
を測定可能なプロセスデータから予測し、現在よりもむ
だ時間経過後の将来のプロセスデータの予測値を得る。
そして得られたプロセスデータの予測値のうち複数を、
過去と現在のプロセスデータとともにパラメータとして
エキスパートシステムにより安定度を判定するため、む
だ時間経過後の将来の挙動を予測した溶融炉の制御が可
能となる。このため、運転員の個人的な判断に頼ること
なく湯口を安定に制御することができる。
According to the present invention, the behavior of a melting furnace that cannot be numerically modeled by using a neural network is predicted from measurable process data, and a predicted value of future process data after a lapse of dead time from the present is obtained. .
And multiple of the predicted values of the obtained process data,
Since the stability is determined by the expert system as a parameter together with the past and present process data, it is possible to control the melting furnace by predicting the future behavior after a lapse of dead time. Therefore, the gate can be controlled stably without relying on the operator's personal judgment.

【0007】[0007]

【発明の実施の形態】以下に本発明の好ましい実施形態
を示す。図1は溶融炉の断面図であり、1は炉本体、2
は旋回溶融部、3はスラグ排出口(湯口)、4は排ガス
出口、5はバーナである。投入灰は旋回溶融部2の先端
付近から接線方向に吹き込まれ、溶融スラグとなってス
ラグ排出口3から排出される。スラグ排出口3には湯口
排ガス出口6が設けられ、スラグ排出口3を加熱してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 is a sectional view of a melting furnace.
Is a swirl melting section, 3 is a slag discharge port (gate), 4 is an exhaust gas outlet, and 5 is a burner. The input ash is blown tangentially from the vicinity of the tip of the swirling melting portion 2, and is discharged from the slag discharge port 3 as molten slag. A gate exhaust gas outlet 6 is provided at the slag discharge port 3 to heat the slag discharge port 3.

【0008】炉本体1の下部には熱画像カメラ7が設置
され、スラグ排出口3の熱画像を撮影している。熱画像
は熱画像表示装置8を介して監視モニタ9に表示され
る。また熱画像のデータは画像処理装置10、通信装置
11を介してコンピュータ、例えばワークステーション
12に入力され、計装制御システム13との間でデータ
交換が行われる。計装制御システム13には計測可能な
プロセスデータが入力され、また本発明による制御信号
が出力される。なお、この制御信号は必ずしも炉の自動
制御に用いる必要はなく、運転員がこの制御信号に応じ
た操炉を行うことも可能である。
A thermal image camera 7 is provided below the furnace main body 1 to take a thermal image of the slag discharge port 3. The thermal image is displayed on the monitor 9 via the thermal image display 8. The thermal image data is input to a computer, for example, a workstation 12 via the image processing device 10 and the communication device 11, and data exchange is performed with the instrumentation control system 13. The instrumentation control system 13 receives measurable process data and outputs a control signal according to the present invention. Note that this control signal does not necessarily need to be used for automatic furnace control, and it is possible for an operator to operate the furnace in accordance with the control signal.

【0009】計測可能なプロセスデータとしては、湯口
排ガス流量、主排ガス流量、炉内圧、燃料流量、燃焼空
気流量、灰供給量等のほか、熱画像カメラ7により監視
されている湯口開口度や固化スラグ成長度等がある。本
発明ではこれらのプロセスデータを入力信号としたニュ
ーラルネットワークにより、炉の挙動を予測する。な
お、湯口開口度や固化スラグ成長度を定量化するための
フローは図2の通りである。
The measurable process data includes the flow rate of the sprue exhaust gas, the flow rate of the main exhaust gas, the furnace pressure, the fuel flow rate, the combustion air flow rate, the ash supply rate, etc., as well as the spout opening degree and the solidification monitored by the thermal image camera 7. There is slag growth degree. In the present invention, the behavior of the furnace is predicted by a neural network using these process data as input signals. FIG. 2 shows a flow for quantifying the gate opening degree and the solidified slag growth degree.

【0010】ニューラルネットワークは生物の神経系の
機能をモデル化したものであり、ここでは次式にて表す
モデルを適用した。
The neural network is a model of the function of the nervous system of an organism. Here, a model represented by the following equation is applied.

【数1】 ここでk(=0,1,2,・・・) は時間刻みであり、y は出力
である。またy(k), ・・・, y(k-n+1) をニューラルネ
ットワークへの入力とし、y(k+1)を出力としたデータの
組をネットワークに学習させ、関数f の近似関数をニュ
ーラルネットワークで構築させた。ここで採用したニュ
ーラルネットワークはバックプロパゲイション法による
3階層(入力層、中間層、出力層)ニューラルネットワ
ークである。
(Equation 1) Here, k (= 0, 1, 2,...) Is a time step, and y is an output. In addition, y (k), ..., y (k-n + 1) is input to the neural network, and a set of data with y (k + 1) as the output is learned by the network, and an approximate function of the function f Was constructed with a neural network. The neural network employed here is a three-layer (input layer, intermediate layer, output layer) neural network based on the back propagation method.

【0011】ニューラルネットワークの学習データは実
プラントから収集することとなるが、経時変化とともに
プロセスが変化するため汎化性が問題となる。そのため
自己学習可能なニューラルネットワークとし、プロセス
データを更新するようにすることが好ましい。実際に
は、学習データをバックグラウンドにて収集して新たな
ニューラルネットワークを計算し、その後切り替える方
法を採用することができる。本発明では、このようなニ
ューラルネットワークにより現在よりもむだ時間経過後
の将来の挙動を予測させる。
Although the learning data of the neural network is collected from the actual plant, generalization becomes a problem because the process changes with time. Therefore, it is preferable to use a self-learning neural network and update the process data. In practice, a method of collecting learning data in the background, calculating a new neural network, and then switching can be adopted. In the present invention, such a neural network is used to predict a future behavior after a lapse of dead time from the present.

【0012】本発明で採用した炉の制御の基本フロー
は、図3の通りである。すなわち、定格値で運転を行い
ながら安定度を判定し、不安定と判定されたら定格値を
一定幅だけ変更して運転を行い、それでもなお不安定で
あればその変動が一時的なものか恒久的なものかを判定
し、恒久的な変動であれば定格値自体を新定格値に置き
換えるという方法を取る。このフローは運転員の日常的
な操作方法に対応させたものである。
The basic flow of the furnace control employed in the present invention is as shown in FIG. That is, the stability is determined while operating at the rated value, and if it is determined that the operation is unstable, the operation is performed by changing the rated value by a certain width, and if it is still unstable, the fluctuation is temporary or permanent. Then, if the fluctuation is permanent, the rated value itself is replaced with a new rated value. This flow corresponds to the daily operation method of the operator.

【0013】そこで、前記ニューラルネットワークによ
り予測させたむだ時間経過後の将来の挙動が、安定であ
るのか不安定であるのかを判定し、もし不安定と予測さ
れた場合には、その予測される不安定性を回避するため
の操作を現在行うことにより、むだ時間によるプロセス
の遅れを回避しつつ湯口を安定に制御することができる
こととなる。しかしこの安定度の判断を運転員に依存す
ると個人差が生ずるため、本発明ではエキスパートシス
テムを用いた。
Then, it is determined whether the future behavior after the elapse of the dead time predicted by the neural network is stable or unstable. If the behavior is predicted to be unstable, the prediction is made. By performing the operation for avoiding instability at present, the gate can be controlled stably while avoiding the delay of the process due to dead time. However, if the judgment of the stability depends on the operator, individual differences occur. Therefore, the expert system is used in the present invention.

【0014】このエキスパートシステムでは、得られた
プロセスデータの予測値を過去と現在のプロセスデータ
とともに組み合わせ、その変化の傾向を一次近似した結
果をパラメータとして安定度の判断を行う。熟練した運
転員は、過去と現在の湯口温度、湯口開口度、固化スラ
グ成長度から今後の変化を予測しているため、ここでは
これらの3つのパラメータを組み合わせた次表の通りの
マトリックスを作成した。
In this expert system, the obtained predicted values of the process data are combined with the past and present process data, and the stability is determined using the result of the linear approximation of the change tendency as a parameter. Skilled operators predict future changes from past and present gate temperatures, gate openings, and solidified slag growth, so here we create a matrix as shown in the following table that combines these three parameters. did.

【0015】[0015]

【表1】 [Table 1]

【0016】この表に示されるマトリックスにプロセス
データの変化の傾向を当てはめれば、むだ時間経過後の
将来の炉の挙動の安定度が、熟練運転員と同様のレベル
で判定できる。そしてこのままでは不安定となるとの判
定がなされた場合には定格値を変更することとなるが、
炉の制御量は相互に干渉しており、一つを変更すると他
の制御量も変動する。そこでこの実施形態では、以下の
手順で各制御量の変更を行っている。 炉内圧を変更。 各排ガス流量は、指定範囲内であれば変更しない。 炉内圧が上限となっても安定化しない場合、湯口バ
ーナ流量を増加する。 安定化した場合には可能な限り元に戻す。
If the tendency of the change of the process data is applied to the matrix shown in this table, the stability of the future behavior of the furnace after the elapse of the dead time can be determined at the same level as that of the skilled operator. And if it is determined that it becomes unstable in this state, the rated value will be changed,
The control amounts of the furnace interfere with each other, and changing one changes the other control amounts. Therefore, in this embodiment, each control amount is changed in the following procedure. Change furnace pressure. Each exhaust gas flow rate is not changed if it is within the specified range. If stabilization is not achieved even when the furnace pressure reaches the upper limit, the gate burner flow rate is increased. If stabilized, restore as much as possible.

【0017】上記した本発明の方法により、実際の溶融
炉の監視制御を行った結果を図4に示した。破線が本発
明による予測値であり、実線が測定値である。ここでは
安定運転を0.5 時間継続した後、運転条件に変動を与え
て不安定状態とし、その状態から本発明の監視制御シス
テムを起動して湯口の安定化を行わせた。この炉のむだ
時間は15分であることが分かっているため、5分周期に
よる制御を行った。
FIG. 4 shows the results of actual monitoring and control of the melting furnace by the method of the present invention described above. The dashed line is the predicted value according to the invention and the solid line is the measured value. Here, after the stable operation was continued for 0.5 hour, the operating condition was changed to an unstable state, and the monitoring and control system of the present invention was started from that state to stabilize the gate. Since it was known that the dead time of this furnace was 15 minutes, control was performed in a 5-minute cycle.

【0018】本発明の監視制御システムを起動した際、
湯口排ガス温度は下降しており、湯口開口度は小さくな
っており、固化スラグは変化なしという状態にあった。
このためエキスパートシステムは不安定と判定し、炉内
圧を上昇させた。またその後、湯口開口度が大きくな
り、固化スラグの成長が減少したときは安定かつ一時的
変動との判定がなされ、炉内圧を元に戻す操作を行っ
た。このように本発明の監視制御を行えば湯口の安定制
御が可能となった。また破線で示した本発明による予測
値と実線で示した測定値とはよく一致しており、本発明
による予測精度の高いことが確認された。
When the supervisory control system of the present invention is started,
The gate exhaust gas temperature was falling, the gate opening degree was small, and the solidified slag was in a state of no change.
For this reason, the expert system determined that it was unstable, and increased the furnace pressure. Further, thereafter, when the opening of the gate was increased and the growth of the solidified slag was reduced, it was determined that the fluctuation was stable and temporary, and the operation of restoring the furnace pressure was performed. As described above, by performing the monitoring control according to the present invention, the stable control of the gate can be performed. In addition, the predicted value according to the present invention indicated by the broken line and the measured value indicated by the solid line agreed well, and it was confirmed that the prediction accuracy according to the present invention was high.

【0019】[0019]

【発明の効果】以上に説明したように、本発明によれば
数値モデル化ができず、またむだ時間が長い溶融炉のス
ラグ排出口(湯口)を、運転員の判断に頼ることなく安
定に制御することができる利点がある。
As described above, according to the present invention, numerical modeling cannot be performed, and the slag discharge port (grate) of the melting furnace having a long dead time can be stably provided without relying on the operator's judgment. There are advantages that can be controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す溶融炉の断面図であ
る。
FIG. 1 is a sectional view of a melting furnace showing an embodiment of the present invention.

【図2】湯口状況の定量化のフローを示すフローシート
である。
FIG. 2 is a flow sheet showing a flow of quantifying a gate state.

【図3】基本制御のフローを示すフローシートである。FIG. 3 is a flow sheet showing a flow of basic control.

【図4】実際の溶融炉の監視制御を行った結果を示すグ
ラフである。
FIG. 4 is a graph showing the result of actual monitoring control of a melting furnace.

【符号の説明】[Explanation of symbols]

1 炉本体、2 旋回溶融部、3 スラグ排出口(湯
口)、4 排ガス出口、5 バーナ、6 湯口排ガス出
口、7 熱画像カメラ、8 熱画像表示装置、9監視モ
ニタ、10 画像処理装置、11 通信装置、12 ワ
ークステーション、13 計装制御システム
1 Furnace main body, 2 swirl melting section, 3 slag discharge port (gate), 4 exhaust gas outlet, 5 burner, 6 gate exhaust gas outlet, 7 thermal image camera, 8 thermal image display device, 9 monitoring monitor, 10 image processing device, 11 Communication equipment, 12 workstations, 13 Instrumentation control system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内藤 利昭 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 3K061 NB27 NB30 4K045 AA04 BA10 DA01 RC11 4K056 AA05 AA19 FA01 FA11 FA12 FA13  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshiaki Naito 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Insulators Co., Ltd. F-term (reference) 3K061 NB27 NB30 4K045 AA04 BA10 DA01 RC11 4K056 AA05 AA19 FA01 FA11 FA12 FA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定不可能なプロセスデータを含むため
に数値モデル化できない溶融炉のむだ時間経過後の将来
の挙動をニューラルネットワークにより予測し、得られ
たプロセスデータの予測値を過去と現在のプロセスデー
タとともにパラメータとして組み合わせたエキスパート
システムによりスラグ排出口の安定度を判定し、不安定
の場合には安定化させるように操炉を行わせることを特
徴とする溶融炉スラグ排出口の監視制御方法。
1. A neural network predicts the future behavior of a melting furnace that cannot be numerically modeled because it includes unmeasurable process data, and predicts the future process behavior of the obtained process data by past and present values. A method for monitoring and controlling the slag discharge of a melting furnace, wherein the stability of the slag discharge is determined by an expert system combined as a parameter together with the process data, and in the case of instability, the furnace is operated so as to stabilize the slag discharge. .
【請求項2】 ニューラルネットワークとして自己学習
型のものを採用し、汎化性を確保するためにプロセスデ
ータを更新する請求項1に記載の溶融炉スラグ排出口の
監視制御方法。
2. The method according to claim 1, wherein a self-learning type neural network is employed and the process data is updated to ensure generalization.
【請求項3】 エキスパートシステムのパラメータとし
て、湯口開口度の変化、固化スラグの落下状況、湯口温
度の変化を選択した請求項1に記載の溶融炉スラグ排出
口の監視制御方法。
3. The method of monitoring and controlling a slag discharge port of a melting furnace according to claim 1, wherein a change in the opening of the gate, a falling state of the solidified slag, and a change in the gate temperature are selected as parameters of the expert system.
JP06461599A 1999-03-11 1999-03-11 Monitoring and control method of slag outlet of melting furnace Expired - Fee Related JP3280338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06461599A JP3280338B2 (en) 1999-03-11 1999-03-11 Monitoring and control method of slag outlet of melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06461599A JP3280338B2 (en) 1999-03-11 1999-03-11 Monitoring and control method of slag outlet of melting furnace

Publications (2)

Publication Number Publication Date
JP2000257839A true JP2000257839A (en) 2000-09-22
JP3280338B2 JP3280338B2 (en) 2002-05-13

Family

ID=13263352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06461599A Expired - Fee Related JP3280338B2 (en) 1999-03-11 1999-03-11 Monitoring and control method of slag outlet of melting furnace

Country Status (1)

Country Link
JP (1) JP3280338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068965B1 (en) 2007-09-20 2011-09-29 주식회사 포스코 Measuring apparatus for flame velocity of sintering furnace and method using it
JP2013047512A (en) * 2011-07-21 2013-03-07 Nuovo Pignone Spa System and method for auto-tuning combustion system of gas turbine
WO2018199288A1 (en) * 2017-04-28 2018-11-01 三菱重工環境・化学エンジニアリング株式会社 Blocking prevention device for gasification melting system and blocking prevention method for gasification melting system
JP2020148371A (en) * 2019-03-12 2020-09-17 Jfeスチール株式会社 Abnormality cause specifying method of heating furnace, abnormality cause specifying device of heating furnace, machine learning method, and abnormality cause specifying model of heating furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068965B1 (en) 2007-09-20 2011-09-29 주식회사 포스코 Measuring apparatus for flame velocity of sintering furnace and method using it
JP2013047512A (en) * 2011-07-21 2013-03-07 Nuovo Pignone Spa System and method for auto-tuning combustion system of gas turbine
WO2018199288A1 (en) * 2017-04-28 2018-11-01 三菱重工環境・化学エンジニアリング株式会社 Blocking prevention device for gasification melting system and blocking prevention method for gasification melting system
JP2018189287A (en) * 2017-04-28 2018-11-29 三菱重工環境・化学エンジニアリング株式会社 Occlusion prevention device for gasification melting system and occlusion prevention method for gasification melting system
EP3617595A4 (en) * 2017-04-28 2021-01-13 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Blocking prevention device for gasification melting system and blocking prevention method for gasification melting system
EA039142B1 (en) * 2017-04-28 2021-12-09 Мицубиси Хэви Индастриз Инвайронментал Энд Кемикал Инджиниринг Ко., Лтд. Blocking prevention device for gasification melting system and blocking prevention method for gasification melting system
US11353264B2 (en) 2017-04-28 2022-06-07 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd Blocking prevention device for gasification melting system and blocking prevention method for gasification melting system
JP2020148371A (en) * 2019-03-12 2020-09-17 Jfeスチール株式会社 Abnormality cause specifying method of heating furnace, abnormality cause specifying device of heating furnace, machine learning method, and abnormality cause specifying model of heating furnace
JP7305378B2 (en) 2019-03-12 2023-07-10 Jfeスチール株式会社 Machine learning method, heating furnace abnormality cause identification model, heating furnace abnormality cause identification method, and heating furnace abnormality cause identification device

Also Published As

Publication number Publication date
JP3280338B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US20090105852A1 (en) Control loop for regulating a process, in particular a combustion process
JP6310349B2 (en) Air volume control system and air volume control method
Moon et al. Hybrid algorithm with fuzzy system and conventional PI control for the temperature control of TV glass furnace
JP2011220668A (en) Device and method of controlling temperature of circulation type fluidized incinerator
KR20000022068A (en) Combustion control method and apparatus for waste incinerators
JP3280338B2 (en) Monitoring and control method of slag outlet of melting furnace
WO2019115655A1 (en) Method of controlling a gas furnace for melting metal and control system therefor
CN114610093B (en) Burning furnace air supply control method based on variable period prediction of hot blast stove
Demin Development of «whole» evaluation algorithm of the control quality of «cupola–mixer» melting duplex process
JP4024833B1 (en) Plasma ash melting furnace control method and plasma ash melting furnace
CN115198047B (en) Hot blast stove combustion monitoring system and method based on big data analysis
CN105624374B (en) A kind of air-cushion type quenching system and automatic control system
Koyfman et al. Using of Intelligence Analysis of Technological Parameters Database for Implementation of Control Subsystem of Hot Blast Stoves Block ACS.
TW202204838A (en) Furnace controller and method of operating a furnace
JP3868398B2 (en) Remote monitoring system for melting furnace
Warren et al. Development and implementation of a generic blast-furnace expert system
JP2001254111A (en) Method of controlling furnace heat in blast furnace and guidance device
JP2637529B2 (en) Furnace temperature and NOx control device
KR100286670B1 (en) Apparatus and method for diagnosing heat level of blast furnace using expert system
JP2001004116A (en) Method and apparatus for controlling combustion in incinerator
JP2024061437A (en) Automatic driving management method and automatic driving management device
JP3825579B2 (en) Image recognition method for molten slag flow
JPS6365230A (en) Burning control method for hot air furnace
JP4156575B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
CN205874485U (en) Air -cushion type quenching system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020201

R150 Certificate of patent or registration of utility model

Ref document number: 3280338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees