JP2000256616A - Non-aqueous solvent type binder composition, electrode formed therewith, and non-aqueous solvent type secondary battery - Google Patents

Non-aqueous solvent type binder composition, electrode formed therewith, and non-aqueous solvent type secondary battery

Info

Publication number
JP2000256616A
JP2000256616A JP11061862A JP6186299A JP2000256616A JP 2000256616 A JP2000256616 A JP 2000256616A JP 11061862 A JP11061862 A JP 11061862A JP 6186299 A JP6186299 A JP 6186299A JP 2000256616 A JP2000256616 A JP 2000256616A
Authority
JP
Japan
Prior art keywords
aqueous solvent
mixture
electrode
binder composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11061862A
Other languages
Japanese (ja)
Other versions
JP4507290B2 (en
Inventor
Shin Nishimura
西村  伸
Kenji Suzuki
健司 鈴木
Kenji Hara
賢二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP06186299A priority Critical patent/JP4507290B2/en
Publication of JP2000256616A publication Critical patent/JP2000256616A/en
Application granted granted Critical
Publication of JP4507290B2 publication Critical patent/JP4507290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Paints Or Removers (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aq. electrolyte secondary battery with improved charging/discharging cycle lifetime properties and safety. SOLUTION: This non-aq. electrolyte secondary battery has an electrode with a non-aq. solvent type binder compsn. layer formed by coating the surface of an electrode base with the binder compsn. obtd. by dissolving and/or dispersing a binder resin in a non-aq. solvent followed by elimination of the non-aq. solvent. The binder resin is obtd. by reacting a polyamide resin intermediate (A), an epoxy resin (B), and a polyoxyalkylene monoamine (C), and has the component (C) group at its side chain. The polyamide resin intermediate (A) is obtd. by reacting a diisocyanate or a diamine (a) with a dicarboxylic acid and/or a tricarboxylic acid anhydride (b) in an org. solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、電池容量を大きく
でき、充放電を繰り返しても活物質の剥離,脱落を抑制
することにより、電池の容量低下が小さい電池用の非水
溶媒系バインダ組成物に係わり、特に、非水溶媒系二次
電池用バインダ組成物、該組成物を形成した電極および
非水溶媒系二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent-based binder composition for a battery, which has a small capacity reduction by suppressing the peeling and falling off of an active material even after repeated charging and discharging. More particularly, the present invention relates to a binder composition for a non-aqueous solvent secondary battery, an electrode formed with the composition, and a non-aqueous solvent secondary battery.

【従来の技術】電子技術の進歩により、電子機器の性能
が向上し、小型、ポータブル化が進み、電源として高エ
ネルギー密度の電池が望まれている。従来の二次電池と
して、鉛蓄電池、ニッケル、カドミウム電池が挙げられ
るが、エネルギー密度の高い電池を得ると云う点では未
だ不十分である。そこで、これらの電池に替わるものと
して、高エネルギー密度の有機電解液二次電池(以下リ
チウム二次電池と云う)が開発され、急速に普及してい
る。リチウム二次電池は、正極にリチウムコバルト複合
酸化物等のリチウム複合金属酸化物を、負極にはリチウ
ムを吸蔵放出可能で優れた可とう性や、リチウムの析出
の恐れが少ない炭素材料が用いられ、これらとバインダ
樹脂とをN−メチルー2−ピロリドン(NMP)に分散
させてスラリーとしたものを集電体である金属箔上に両
面塗布し、溶剤を乾燥した後、ローラープレスにて圧縮
成形し正,負極板を得ている。バインダとしては主にポ
リフッ化ビニリデン(PVDF)が多く使用されてい
る。しかしながら、ポリフッ化ビニリデンをバインダと
して使用した場合、集電体と合剤層との界面の密着、お
よび、合剤層相互間の密着性が劣るため、極板の裁断工
程や捲回工程等の製造工程時に、合剤の一部が集電体か
ら剥離,脱落して微少短絡や電池容量ばらつきの原因と
なる。また、充放電を繰り返すことによって、特に、負
極の炭素材料は膨張,収縮するため、合剤が集電体から
剥離,脱落したり、合剤相互間の密着の低下により、集
電効率の低下、リチウムとの反応の不均一等が生じて電
池容量が次第に低下すると云う問題があった。さらに特
開平6−172452号公報に記載されているように、
フッ化ビニリデンを主成分とする単量体と、不飽和二塩
基性モノエステルとを共重合して得られたフッ化ビニリ
デン系共重合体をバインダとする場合、集電体との密着
強度は向上するものの、高電圧下での異常温度上昇によ
り分解してフッ化水素が発生し、負極板表面のリチウム
層間化合物(GIC)や、析出した金属リチウムと反応
して異常発熱し、電池が破裂,爆発する恐れがあった。
ポリフッ化ビニリデン等のフッ素樹脂以外のバインダと
して、例えば、特開平5−74461号公報に記載され
ているスチレンブタジエンゴム(SBR)系合成ゴム、
特開平9−87571号公報に記載されているジエン系
ゴムを含む合成ゴムや、特開平6−163031号公報
に記載されているポリイミド樹脂等の熱可塑性樹脂の使
用が提案されている。しかし、これらは電解液に対して
溶解、もしくは大きく膨潤して、集電体と合剤層との界
面の密着および合剤層相互間の密着を長期間維持できな
い。また、ポリイミド樹脂を合剤層に用いると可とう性
が低く、作製した電極を捲回する際に合剤層の割れや剥
離が生じて容量を低下させる。スチレンブタジエンゴム
等のジエン系合成ゴムは、耐電解液性を有するものの、
活物質とバインダ等との均一分散が非常に困難であり、
セルロースや界面活性剤等の添加が必要で、これらが電
解液に溶解して電池の充放電効率を低下させる。
2. Description of the Related Art With the advance of electronic technology, the performance of electronic equipment has been improved, miniaturization and portability have been advanced, and batteries with high energy density as power sources have been desired. Conventional secondary batteries include lead-acid batteries, nickel batteries, and cadmium batteries, but they are still insufficient in obtaining batteries with high energy density. Therefore, as a substitute for these batteries, a high energy density organic electrolyte secondary battery (hereinafter referred to as a lithium secondary battery) has been developed and rapidly spread. Lithium secondary batteries use a lithium composite metal oxide such as a lithium cobalt composite oxide for the positive electrode, and a carbon material that can store and release lithium and has excellent flexibility and a low risk of lithium deposition for the negative electrode. A slurry obtained by dispersing these and a binder resin in N-methyl-2-pyrrolidone (NMP) was applied on both sides of a metal foil as a current collector, and after drying the solvent, compression molding was performed by a roller press. Positive and negative electrode plates are obtained. As a binder, polyvinylidene fluoride (PVDF) is mainly used in many cases. However, when polyvinylidene fluoride is used as a binder, the adhesion at the interface between the current collector and the mixture layer, and the adhesion between the mixture layers are inferior, such as in the electrode plate cutting step and the winding step. At the time of the manufacturing process, a part of the mixture peels off and falls off from the current collector, causing a minute short circuit or a variation in battery capacity. In addition, since the carbon material of the negative electrode expands and contracts due to repetition of charge and discharge, the mixture may peel off or fall off from the current collector, or the adhesion between the mixture may decrease, thereby lowering the current collection efficiency. In addition, there is a problem that the battery capacity gradually decreases due to non-uniform reaction with lithium and the like. Further, as described in JP-A-6-172452,
When a vinylidene fluoride-based monomer and a vinylidene fluoride-based copolymer obtained by copolymerizing an unsaturated dibasic monoester as a binder are used as a binder, the adhesion strength with the current collector is Despite the improvement, abnormal temperature rise under high voltage decomposes to generate hydrogen fluoride, which reacts with the lithium intercalation compound (GIC) on the negative electrode plate surface and the deposited lithium metal, generates abnormal heat, and ruptures the battery. , I could explode.
As a binder other than a fluororesin such as polyvinylidene fluoride, for example, styrene-butadiene rubber (SBR) -based synthetic rubber described in JP-A-5-74461,
Use of synthetic rubbers containing diene rubbers described in JP-A-9-87571, and thermoplastic resins such as polyimide resins described in JP-A-6-16331 have been proposed. However, these dissolve or largely swell in the electrolytic solution, and cannot maintain the adhesion at the interface between the current collector and the mixture layer and the adhesion between the mixture layers for a long time. In addition, when a polyimide resin is used for the mixture layer, the flexibility is low, and when the produced electrode is wound, the mixture layer is cracked or peeled off to reduce the capacity. Diene-based synthetic rubbers such as styrene-butadiene rubber have electrolytic solution resistance,
It is very difficult to uniformly disperse the active material and the binder, etc.
Cellulose, a surfactant, and the like need to be added, and these dissolve in the electrolytic solution to lower the charge / discharge efficiency of the battery.

【発明が解決しようとする課題】本発明の目的は、集電
体と合剤層との界面の密着および合剤層相互間の密着性
を向上させて、微少短絡や電池容量ばらつきを抑制しつ
つ、バインダ添加量の低減により、電池の高容量化を図
り、充放電サイクルによる電池容量低下の改善と、か
つ、電池内温度が異常昇温した場合でも破裂,爆発等の
危険性の小さい安全な非水電解液二次電池を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the adhesion at the interface between the current collector and the mixture layer and the adhesion between the mixture layers, thereby suppressing minute short circuits and variations in battery capacity. At the same time, by increasing the capacity of the battery by reducing the amount of binder added, the battery capacity is reduced due to charge / discharge cycles, and the risk of rupture and explosion is reduced even if the battery temperature rises abnormally. To provide a nonaqueous electrolyte secondary battery.

【課題を解決するための手段】上記目的を達成する本発
明の要旨は知議のとおりである。 〔1〕 ジイソシアネートまたはジアミン(a)とジカ
ルボン酸および/またはトリカルボン酸無水物(b)と
を有機溶媒中で反応させて得られるポリアミド系樹脂中
間体(A)、エポキシ樹脂(B)およびポリオキシアル
キレンモノアミン(C)とを反応させて得られる側鎖に
(C)成分残基を有するバインダ樹脂を非水溶媒に溶解
および/または分散させたことを特徴とする非水溶媒系
バインダ組成物。 〔2〕 多官能化合物および/または熱可塑性樹脂とを
含む前記の非水溶媒系バインダ組成物。 〔3〕 前記の非水溶媒系バインダ組成物と活物質とを
混合し、電極基体表面に塗布後、非水溶媒を除去した非
水溶媒系バインダ組成物を形成したことを特徴とする電
極。 〔4〕 前記活物質が、充放電により可逆的にリチウム
イオンを挿入,放出できるものである前記の電極。 〔5〕 前記活物質が、充放電により可逆的にリチウム
イオンを挿入,放出できる遷移金属酸化物で、該遷移金
属酸化物が一般式LixMny0(xは0.2≦x≦2.
5であり、yは0.8≦y≦1.25である)で示される
リチウムマンガン複合酸化物である前記の電極。 〔6〕 非水溶媒系二次電池の少なくとも一方の極に、
前記の電極を用いたことを特徴とする非水溶媒系二次電
池。
The gist of the present invention to achieve the above object is as known. [1] A polyamide resin intermediate (A), an epoxy resin (B) and a polyoxy resin obtained by reacting a diisocyanate or a diamine (a) with a dicarboxylic acid and / or a tricarboxylic anhydride (b) in an organic solvent. A non-aqueous solvent-based binder composition, comprising: dissolving and / or dispersing a binder resin having a component (C) residue in a side chain obtained by reacting the alkylene monoamine (C) with a non-aqueous solvent. [2] The non-aqueous solvent-based binder composition containing a polyfunctional compound and / or a thermoplastic resin. [3] An electrode, wherein the non-aqueous solvent-based binder composition is prepared by mixing the non-aqueous solvent-based binder composition with an active material, coating the mixture on an electrode substrate surface, and removing the non-aqueous solvent. [4] The electrode as described above, wherein the active material is capable of reversibly inserting and releasing lithium ions by charging and discharging. [5] The active material, reversibly inserting lithium ions by charging and discharging, a transition metal oxide capable of releasing, the transition metal oxide is formula Li x Mn y O 0 (x is 0.2 ≦ x ≦ 2.
5 wherein y is 0.8 ≦ y ≦ 1.25.) [6] At least one pole of the non-aqueous solvent secondary battery,
A non-aqueous solvent-based secondary battery using the electrode.

【発明の実施の形態】ポリアミド系樹脂中間体(A)と
しては特に制限はないが、ジイソシアネートまたはジア
ミン(a)とジカルボン酸および/またはトリカルボン
酸無水物(b)成分中のカルボキシル基が1当量/
(A)成分中のイソシアネート基またはアミノ基が1当
量未満となるような割合で反応させて得たものが挙げら
れる。これらの(A)成分は、単独または二種以上組合
せて用いられる。上記ジイソシアネートまたはジアミン
は、いずれを使用してもよいが、(A)成分の製造の容
易さ、収率向上等の点ではジイソシアネートの方が好ま
しい。上記ジイソシアネートは、例えば、芳香族ジイソ
シアネートとしては4,4'−ジフェニルメタンジイソシ
アネート、2,6−トリレンジイソシアネート、2,4−
トリレンジイソシアネート、1,5−ナフタレンジイソ
シアネート、トリジンジイソシアネート、p−フェニレ
ンジイソシアネート、4,4'−ジフェニルエーテルジイ
ソシアネート、m−キシリレンジイソシアネート、m−
テトラメチルキシリレンジイソシアネート等が挙げられ
る。脂肪族ジイソシアネートとしては1,6−ヘキサメ
チレンジイソシアネート、2,2,4−トリメチルヘキサ
メチレンジイソシアネート、2,4,4−トリメチルヘキ
サメチレンジイソシアネート、リジンジイソシアネート
等が挙げられる。脂環式ジイソシアネート(イソホロン
ジイソシアネート、4,4'−ジシクロヘキシルメタンジ
イソシアネート(水添化4,4'−ジフェニルメタンジイ
ソシアネート)、トランスシクロヘキサン−1,4−ジ
イソシアネート、水添化m−キシリレンジイソシアネー
ト等)、複素環式ジイソシアネート(3,9−ビス(3
−イソシアネートプロピル)−2,4,8,10−テトラ
スピロ〔5,5〕ウンデカン等)などが挙げられる。上
記の中でも、耐熱性向上等の点で芳香族ジイソシアネー
トが好ましい。また、ジアミンとしては、例えば、脂肪
族ジアミン(アルキレンジアミン、ジアミノポリジメチ
ルシロキサン、ポリオキシアルキレンジアミン等)、脂
環式ジアミン(イソホロンジアミン、4,4'−ジシクロ
ヘキシルメタンジアミン等)、複素環式ジアミン(3,
9−ビス(3−アミノプロピル)−2,4,8,10−テ
トラスピロ〔5,5〕ウンデカン等)、芳香族ジアミン
(p−フェニレンジアミン、m−フェニレンジアミン、
p−キシリレンジアミン、m−キシリレンジアミン、
4,4'−(または3,4'−、3,3'−、2,4'−、2,
2'−)ジアミノジフェニルメタン、4,4'−(または
3,4'−、3,3'−、2,4'−、2,2'−)ジアミノジ
フェニルエーテル、4,4'−(または3,4'−、3,3'
−、2,4'−、2,2'−)ジアミノジフェニルスルホ
ン、4,4'−(または3,4'−、3,3'−、2,4'−、
2,2'−)ジアミノジフェニルスルフィド、4,4'−
(または3,3'−)ベンゾフェノンジアミン、2,2−
ビス〔4−(4−アミノフェノキシ)フェニル〕プロパ
ン、4,4'−ジアミノベンズアニリド等)などが挙げら
れる。これらの(a)ジイソシアネートまたはジアミン
は、1種以上用いることができる。(b)ジカルボン酸
および/またはトリカルボン酸無水物としては、特に制
限はなく、例えば、脂肪族ジカルボン酸としてコハク
酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン
酸、セバシン酸、ドデカン二酸、エイコサン二酸、アル
キレンエーテル結合含有ジカルボン酸、アルキレンカー
ボネート結合含有ジカルボン酸、ブタジエン結合含有ジ
カルボン酸、水添ブタジエン結合含有ジカルボン酸、ジ
メチルシロキサン結合含有ジカルボン酸等が挙げられ
る。また、脂環式ジカルボン酸(ダイマー酸、1,4−
シクロヘキサンジカルボン酸等)、複素環式ジカルボン
酸(ピリジンジカルボン酸等)、芳香族ジカルボン酸
(フタル酸、イソフタル酸、テレフタル酸、1,5−ナ
フタレンジカルボン酸、4,4'−ジフェニルエーテルジ
カルボン酸、4,4'−ジフェニルスルホンジカルボン
酸、4,4'−ベンゾフェノンジカルボン酸、ビス(4−
カルボキシメトキシフェニル)ジメチルメタン、トリメ
リット酸無水物/ジアミン=2モル/1モル反応生成物
であるイミド結合含有ジカルボン酸等)、芳香族トリカ
ルボン酸無水物(トリメリット酸無水物等)などが挙げ
られる。これらの(b)ジカルボン酸および/またはト
リカルボン酸無水物は、1種以上用いることができる。
(A)成分を製造するための(a)ジイソシアネートま
たはジアミンと、(b)ジカルボン酸との配合割合
〔(b)成分中のカルボキシル基/(a)成分中のイソ
シアネート基またはアミノ基〕は、1当量/1当量未満
とすることが好ましく、1当量/0.5当量〜1当量/
0.97当量がより好ましく、1当量/0.67当量〜1
当量/0.95当量が特に好ましく、1当量/0.75当
量〜1当量/0.91当量とすることが極めて好まし
い。この配合割合が1当量/1当量以上であると、
(a)成分が未反応物として残留し易い傾向があり、ま
た、反応生成物の末端がカルボン酸となりにくく、
(A)成分の収率が低下する傾向がある。(a)成分と
(b)成分の反応は、有機溶媒中で行うことができる。
有機溶媒としては、特に制限はなく、例えば、アミド系
溶媒(N−メチルー2−ピロリドン、N,N−ジメチル
アセトアミド、N,N−ジメチルホルムアミド等)、尿
素系溶媒(N,N−ジメチルエチレンウレア、N,N−ジ
メチルプロピレンウレア、テトラメチル尿素等)、ラク
トン系溶媒(γ−ブチロラクトン、γ−カプロラクトン
等)、カーボネート系溶媒(プロピレンカーボネート
等)、ケトン系溶媒(メチルエチルケトン、メチルイソ
ブチルケトン、シクロヘキサノン等)、エステル系溶媒
(酢酸エチル、酢酸n−ブチル、ブチルセロソルブアセ
テート、ブチルカルビトールアセテート、エチルセロソ
ルブアセテート、エチルカルビトールアセテート等)、
グライム系溶媒(ジグライム、トリグライム、テトラグ
ライム等)、炭化水素系溶媒(トルエン、キシレン、シ
クロヘキサン等)、スルホン系溶媒(スルホラン等)な
どが挙げられる。上記の中でも、高溶解性、高反応促進
性等の点で、アミド系溶媒、尿素系溶媒が好ましく、こ
れらの中では、(a)成分と(b)成分の反応を阻害し
易い活性水素をもたない等の点で、N−メチルー2−ピ
ロリドン、N,N−ジメチルアセトアミド、N,N−ジメ
チルエチレンウレア、N,N−ジメチルプロピレンウレ
ア、テトラメチル尿素がより好ましく、この中では、N
−メチル−2−ピロリドンが特に好ましい。有機溶媒の
使用量は、(a)成分と(b)成分との総量100重量
部に対して、30〜2000重量部が好ましく、50〜
1000重量部がより好ましく、70〜400が特に好
ましい。この溶媒の使用量が30重量部未満では溶解性
が乏しく、反応系の不均一化や高粘度化を起こし易い傾
向があり、2000重量部を超えると反応が進みにく
く、反応が完結しにくい傾向がある。これらの有機溶媒
は、1種以上用いることができる。(a)成分と(b)
成分の反応温度は、40〜300℃が好ましく、100
〜250℃がより好ましく、120〜220℃が特に好
ましい。この反応温度が40℃未満では反応が進みにく
く、反応が完結しにくい傾向があり、300℃を超える
と副反応によるゲル化等が起こり易く、反応が制御しに
くい傾向がある。本発明に用いる(B)エポキシ樹脂
は、特に制限はなく、例えば、二官能芳香族グリシジル
エーテルとしてビスフェノールA型エポキシ樹脂、テト
ラブロモビスフェノールA型エポキシ樹脂、ビスフェノ
ールF型エポキシ樹脂、ビスフェノールAD型エポキシ
樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキ
シ樹脂、テトラメチルビフェニル型エポキシ樹脂等が挙
げられる。多官能芳香族グリシジルエーテルとしてはフ
ェノールノボラック型エポキシ樹脂、クレゾールノボラ
ック型エポキシ樹脂、ジシクロペンタジエン−フェノー
ル型エポキシ樹脂、テトラフェニロールエタン型エポキ
シ樹脂等が、二官能脂肪族グリシジルエーテルとしては
ポリエチレングリコール型エポキシ樹脂、ポリプロピレ
ングリコール型エポキシ樹脂、ネオペンチルグリコール
型エポキシ樹脂、ジブロモネオペンチルグリコール型エ
ポキシ樹脂、ヘキサンジオール型エポキシ樹脂等が挙げ
られる。二官能脂環式グリシジルエーテル(水添化ビス
フェノールA型エポキシ樹脂等)、多官能脂肪族グリシ
ジルエーテル(トリメチロールプロパン型エポキシ樹
脂、ソルビトール型エポキシ樹脂、グリセリン型エポキ
シ樹脂等)、二官能芳香族グリシジルエステル(フタル
酸ジグリシジルエステル等)、二官能脂環式グリシジル
エステル(テトラヒドロフタル酸ジグリシジルエステ
ル、ヘキサヒドロフタル酸ジグリシジルエステル等)、
二官能芳香族グリシジルアミン(N,N−ジグリシジル
アニリン、N,N−ジグリシジルトリフルオロメチルア
ニリン等)、多官能芳香族グリシジルアミン(N,N,
N',N'−テトラグリシジルー4,4−ジアミノジフェニ
ルメタン、1,3−ビス(N,N−グリシジルアミノメチ
ル)シクロヘキサン、N,N,O−トリグリシジル−p−
アミノフェノール等)、二官能脂環式エポキシ樹脂(ア
リサイクリックジエポキシアセタール、アリサイクリッ
クジエポキシアジペート、アリサイクリックジエポキシ
カルボキシレート、ビニルシクロヘキセンジオキシド
等)、二官能複素環式エポキシ樹脂(ジグリシジルヒダ
ントイン等)、多官能複素環式エポキシ樹脂(トリグリ
シジルイソシアヌレート等)、二官能または多官能ケイ
素含有エポキシ樹脂(オルガノポリシロキサン型エポキ
シ樹脂等)などが挙げられ、その中でも、反応の制御し
易さ等の点で、二官能エポキシ樹脂が好ましい。二官能
エポキシ樹脂の中でも、耐熱性向上等の点で、二官能芳
香族グリシジルエーテルがより好ましく、その中でも、
廉価等の点でビスフェノールA型エポキシ樹脂が特に好
ましい。これらの(B)エポキシ樹脂は、1種以上用い
られる。本発明に用いる(C)ポリオキシアルキレンモ
ノアミンとしては、特に制限はなく、例えば一般式
〔1〕
BEST MODE FOR CARRYING OUT THE INVENTION The polyamide resin intermediate (A) is not particularly limited, but the carboxyl group in the diisocyanate or diamine (a) and the dicarboxylic acid and / or tricarboxylic anhydride (b) component is 1 equivalent. /
Those obtained by reacting at a ratio such that the isocyanate group or amino group in the component (A) is less than 1 equivalent are exemplified. These components (A) are used alone or in combination of two or more. Although any of the above-mentioned diisocyanates or diamines may be used, diisocyanates are more preferable in view of easiness of production of the component (A), improvement in yield, and the like. The diisocyanate is, for example, aromatic diisocyanate such as 4,4′-diphenylmethane diisocyanate, 2,6-tolylene diisocyanate, 2,4-
Tolylene diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl ether diisocyanate, m-xylylene diisocyanate, m-
Examples include tetramethylxylylene diisocyanate. Examples of the aliphatic diisocyanate include 1,6-hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and lysine diisocyanate. Alicyclic diisocyanate (isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate (hydrogenated 4,4'-diphenylmethane diisocyanate), transcyclohexane-1,4-diisocyanate, hydrogenated m-xylylene diisocyanate, etc.), complex Cyclic diisocyanate (3,9-bis (3
-Isocyanatopropyl) -2,4,8,10-tetraspiro [5,5] undecane and the like. Among these, aromatic diisocyanates are preferred in terms of improving heat resistance and the like. Examples of the diamine include aliphatic diamine (alkylenediamine, diaminopolydimethylsiloxane, polyoxyalkylenediamine, etc.), alicyclic diamine (isophorone diamine, 4,4′-dicyclohexylmethanediamine, etc.), and heterocyclic diamine. (3,
9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5,5] undecane, etc., aromatic diamines (p-phenylenediamine, m-phenylenediamine,
p-xylylenediamine, m-xylylenediamine,
4,4'- (or 3,4'-, 3,3'-, 2,4'-, 2,
2'-) diaminodiphenylmethane, 4,4'- (or 3,4'-, 3,3'-, 2,4'-, 2,2'-) diaminodiphenyl ether, 4,4'- (or 3, 4'-, 3,3 '
-, 2,4'-, 2,2'-) diaminodiphenyl sulfone, 4,4'- (or 3,4'-, 3,3'-, 2,4'-,
2,2 '-) diaminodiphenyl sulfide, 4,4'-
(Or 3,3 ′-) benzophenonediamine, 2,2-
Bis [4- (4-aminophenoxy) phenyl] propane, 4,4′-diaminobenzanilide and the like. One or more of these (a) diisocyanates or diamines can be used. (B) The dicarboxylic acid and / or tricarboxylic anhydride are not particularly limited, and examples thereof include succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, dodecandioic acid, and eicosan as aliphatic dicarboxylic acids. Examples include diacids, dicarboxylic acids containing an alkylene ether bond, dicarboxylic acids containing an alkylene carbonate bond, dicarboxylic acids containing a butadiene bond, dicarboxylic acids containing a hydrogenated butadiene bond, and dicarboxylic acids containing a dimethylsiloxane bond. In addition, alicyclic dicarboxylic acids (dimer acid, 1,4-
Cyclohexanedicarboxylic acid, etc.), heterocyclic dicarboxylic acid (pyridinedicarboxylic acid, etc.), aromatic dicarboxylic acid (phthalic acid, isophthalic acid, terephthalic acid, 1,5-naphthalenedicarboxylic acid, 4,4′-diphenylether dicarboxylic acid, 4 4,4'-diphenylsulfonedicarboxylic acid, 4,4'-benzophenonedicarboxylic acid, bis (4-
Carboxymethoxyphenyl) dimethylmethane, trimellitic anhydride / diamine = 2 mol / 1 mol imide bond-containing dicarboxylic acid as reaction product, etc.), aromatic tricarboxylic anhydride (trimellitic anhydride etc.), etc. Can be One or more of these (b) dicarboxylic acids and / or tricarboxylic anhydrides can be used.
The mixing ratio of (a) diisocyanate or diamine and (b) dicarboxylic acid for producing component (A) [carboxyl group in component (b) / isocyanate group or amino group in component (a)] is as follows: It is preferable to set the equivalent to less than 1 equivalent / 1 equivalent, preferably 1 equivalent / 0.5 equivalent to 1 equivalent /
0.97 equivalent is more preferred, 1 equivalent / 0.67 equivalent to 1 equivalent.
The equivalent weight / 0.95 equivalent is particularly preferable, and it is extremely preferable to be 1 equivalent / 0.75 equivalent to 1 equivalent / 0.91 equivalent. When the compounding ratio is 1 equivalent / 1 equivalent or more,
The component (a) tends to remain as an unreacted product, and the terminal of the reaction product is unlikely to become a carboxylic acid,
The yield of the component (A) tends to decrease. The reaction between the component (a) and the component (b) can be performed in an organic solvent.
The organic solvent is not particularly limited. For example, amide solvents (N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, etc.), urea solvents (N, N-dimethylethyleneurea) , N, N-dimethylpropylene urea, tetramethylurea, etc.), lactone solvents (γ-butyrolactone, γ-caprolactone, etc.), carbonate solvents (propylene carbonate, etc.), ketone solvents (methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.) ), Ester solvents (ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, etc.),
Examples include glyme-based solvents (diglyme, triglyme, tetraglyme, etc.), hydrocarbon-based solvents (toluene, xylene, cyclohexane, etc.), and sulfone-based solvents (sulfolane, etc.). Among the above, amide solvents and urea solvents are preferable in terms of high solubility, high reaction promoting property and the like. Among them, active hydrogen which easily inhibits the reaction between the component (a) and the component (b) is preferable. N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethylene urea, N, N-dimethylpropylene urea, and tetramethyl urea are more preferred in that they have no
-Methyl-2-pyrrolidone is particularly preferred. The amount of the organic solvent used is preferably 30 to 2,000 parts by weight, and more preferably 50 to 50 parts by weight based on 100 parts by weight of the total of the components (a) and (b).
1000 parts by weight is more preferable, and 70 to 400 is particularly preferable. If the amount of the solvent is less than 30 parts by weight, the solubility is poor, the reaction system tends to be non-uniform and the viscosity tends to be increased. If the amount exceeds 2,000 parts by weight, the reaction is difficult to proceed and the reaction is difficult to complete. There is. One or more of these organic solvents can be used. (A) component and (b)
The reaction temperature of the components is preferably from 40 to 300 ° C,
-250 ° C is more preferable, and 120-220 ° C is particularly preferable. If the reaction temperature is lower than 40 ° C., the reaction does not easily proceed and the reaction tends to be difficult to complete. If the reaction temperature exceeds 300 ° C., gelation or the like due to a side reaction tends to occur, and the reaction tends to be difficult to control. The epoxy resin (B) used in the present invention is not particularly limited. For example, bisphenol A epoxy resin, tetrabromobisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AD epoxy resin as a bifunctional aromatic glycidyl ether , Naphthalene type epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin and the like. Examples of the polyfunctional aromatic glycidyl ether include phenol novolak type epoxy resin, cresol novolak type epoxy resin, dicyclopentadiene-phenol type epoxy resin, and tetraphenylolethane type epoxy resin. Epoxy resins, polypropylene glycol-type epoxy resins, neopentyl glycol-type epoxy resins, dibromoneopentyl glycol-type epoxy resins, hexanediol-type epoxy resins, and the like. Bifunctional alicyclic glycidyl ether (hydrogenated bisphenol A type epoxy resin, etc.), polyfunctional aliphatic glycidyl ether (trimethylolpropane type epoxy resin, sorbitol type epoxy resin, glycerin type epoxy resin, etc.), bifunctional aromatic glycidyl Esters (such as diglycidyl phthalate), bifunctional alicyclic glycidyl esters (such as diglycidyl tetrahydrophthalate and diglycidyl hexahydrophthalate),
Bifunctional aromatic glycidylamine (N, N-diglycidylaniline, N, N-diglycidyltrifluoromethylaniline, etc.), polyfunctional aromatic glycidylamine (N, N,
N ', N'-tetraglycidyl-4,4-diaminodiphenylmethane, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, N, N, O-triglycidyl-p-
Aminophenol, etc.), bifunctional alicyclic epoxy resin (alicyclic diepoxy acetal, alicyclic diepoxy adipate, alicyclic diepoxycarboxylate, vinylcyclohexene dioxide, etc.), bifunctional heterocyclic epoxy resin ( Diglycidyl hydantoin), polyfunctional heterocyclic epoxy resin (triglycidyl isocyanurate, etc.), difunctional or polyfunctional silicon-containing epoxy resin (organopolysiloxane type epoxy resin, etc.). A bifunctional epoxy resin is preferred in terms of ease of use and the like. Among the bifunctional epoxy resins, bifunctional aromatic glycidyl ether is more preferable in terms of heat resistance improvement, among which,
A bisphenol A type epoxy resin is particularly preferred in terms of cost and the like. One or more of these (B) epoxy resins are used. The polyoxyalkylene monoamine (C) used in the present invention is not particularly limited, and for example, the general formula [1]

【化1】 (式中、Rは水素原子またはメチル基を示し、nは正の
整数)で表されるポリオキシアルキレンモノアミンが挙
げられ、その中でも、より低弾性率で柔軟性に優れた樹
脂が得られるなどの点でポリオキシアルキレンモノアミ
ンの分子量600〜2000のものが好ましい。このよ
うなポリオキシアルキレンモノアミンとしては、例え
ば、ハンツマンコーポレーション製商品名ジェファーミ
ンM−600、M−1000、M−2005、M−20
70等が挙げられる。これらの(C)ポリオキシアルキ
レンモノアミンは、1種以上用いられる。(A)成分、
(B)成分および(C)成分の配合割合は、(B)成分
中のエポキシ基/〔(A)成分中のカルボキシル基由来
の活性水素と(C)成分中のアミノ基由来の活性水素の
総量)〕は、1当量/1当量未満とすることが好まし
く、1当量/0.25当量〜1当量/0.90当量とする
ことがより好ましく、1当量/0.33当量〜1当量/
0.83当量とすることが特に好ましく、1当量/0.4
5当量〜1当量/0.67当量とすることが極めて好ま
しい。この配合割合が1当量/1当量以上であると、熱
硬化性が損われ易く、耐薬品性が低下する傾向がある。
(A)成分、(B)成分および(C)成分の反応におい
て、(A)成分と(C)成分とは直接反応させないこと
が好ましい。具体的には、(B)成分と(C)成分とを
反応させた後、この反応生成物に(A)成分を反応させ
ることがより好ましく、特に、(A)成分と(B)成分
との反応生成物に(C)成分を反応させることが好まし
い。(A)成分と(C)成分とを直接反応させると、末
端に(C)成分残基を有する樹脂が副生し易く、側鎖に
(C)成分残基を有する本発明の熱硬化性ポリアミド系
樹脂の収率が低下する傾向がある。(A)成分、(B)
成分および(C)成分の反応は、有機溶媒中で実施され
る。有機溶媒としては、特に制限はなく、例えば、先に
述べた(A)成分を製造する際に用いることのできる有
機溶媒が挙げられる。これらの中では、高溶解性、高反
応促進性等の点で、含窒素系極性溶媒(アミド系溶媒、
尿素系溶媒)が好ましく、これらの中では、(A)成
分、(B)成分および(C)成分の反応を阻害し易い活
性水素を持たない等の点で、N−メチル−2−ピロリド
ン、N,N−ジメチルアセトアミド、N,N−ジメチルエ
チレンウレア、N,N−ジメチルプロピレンウレア、テ
トラメチル尿素がより好ましく、この中では、N−メチ
ル−2−ピロリドンが特に好ましい。有機溶媒の使用量
は、(A)成分、(B)成分および(C)成分との総量
100重量部に対して、30〜2000重量部が好まし
く、50〜1000重量部がより好ましく、70〜40
0が特に好ましい。有機溶媒量が30重量部未満では溶
解性が乏しく、反応系の不均一化や高粘度化を起こし易
い傾向があり、2000重量部を超えると反応が進みに
くく、反応が完結しにくい傾向がある。これらの有機溶
媒は、1種以上用いられる。(A)成分、(B)成分お
よび(C)成分の反応温度は、40〜300℃が好まし
く、100〜250℃がより好ましく、120〜220
℃が特に好ましい。この反応温度が40℃未満では反応
が進みにくく、反応が完結しにくい傾向があり、反応温
度が300℃を超えると副反応によるゲル化等が起こり
易く、反応が制御しにくい傾向がある。本発明において
は、必要に応じて触媒を用いることができる。反応触媒
としては、例えば、三級アミンとしてトリエチルアミ
ン、トリエチレンジアミン、N,N−ジメチルアニリ
ン、N,N−ジエチルアニリン、N,N−ジメチルベンジ
ルアミン、N−メチルモルフォリン、N−エチルモルフ
ォリン、N,N'−ジメチルピペラジン、ピリジン、ピコ
リン、1,8−ジアザビシクロ〔5,4,0〕ウンデセン
−7等が挙げられる。イミダゾール化合物として2−メ
チルイミダゾール、2−エチルイミダゾール、2−エチ
ル−4−メチルイミダゾール、2−メチル−4−メチル
イミダゾール、1−シアノエチル−2−メチルイミダゾ
ール、1−シアノエチル−2−フェニルイミダゾール、
2−フェニル−4−メチル−5−ヒドロキシメチルイミ
ダゾール、2−フェニル−4,5−ジヒドロキシメチル
イミダゾール、1−アジン−2−メチルイミダゾール等
がある。有機スズ化合物(ジブチルチンジラウレート、
1,3−ジアセトキシテトラブチルジスタノキサン
等)、四級オニウム塩(臭化テトラエチルアンモニウ
ム、臭化テトラブチルアンモニウム、塩化ベンジルトリ
エチルアンモニウム、塩化トリオクチルメチルアンモニ
ウム、臭化セチルトリメチルアンモニウム、ヨウ化テト
ラブチルアンモニウム、ヨウ化ドデシルトリメチルアン
モニウム、ベンジルジメチルテトラデシルアンモニウム
アセテート、塩化テトラフェニルホスホニウム、塩化ト
リフェニルメチルホスホニウム、臭化テトラメチルホス
ホニウム等)、有機リン化合物(3−メチル−1−フェ
ニル−2−ホスフォレン−1−オキシド等)、有機酸ア
ルカリ金属塩(安息香酸ナトリウム、安息香酸カリウム
等)、無機塩(塩化亜鉛、塩化鉄、塩化リチウム、臭化
リチウム等)、金属カルボニル化合物(オクタカルボニ
ル二コバルト(コバルトカルボニル)等)などが挙げら
れる。これらの触媒は、1種以上用いることができる。
以上に述べた方法で得られるバインダ樹脂は、そのアミ
ド結合の窒素原子と炭素原子の結合間に高い極性と強い
水素結合を有し、大きな結合エネルギーを持っているこ
とから耐熱性、接着性および耐電解液性に優れている。
また、側鎖のポリオキシアルキレンモノアミン(C)成
分残基により可とう性に優れている。これら非水溶媒系
バインダ組成物に、さらに上記のエポキシ樹脂やビスマ
レイミド、ブロックイソシアネート化合物、メラミン化
合物等の多官能化合物を架橋剤として添加することによ
り、耐熱性、接着性および耐電解液性がより優れた非水
溶媒系バインダ組成物が得られる。エポキシ樹脂として
は、前記エポキシ樹脂(B)を用いることができる。ブ
ロックイソシアネート化合物としては、トリレンジイソ
シアネート、ヘキサメチレンイソシアネート、イソホロ
ンジイソシアネートおよびこれらの誘導体などがあり、
例えば、日本ポリウレタン工業(株)製コロネート25
13、2507、2515、2512、住友バイエルウ
レタン(株)製デスモジュールBL3175、BL41
65などが挙げられる。メラミン化合物としては、アメ
リカン・サイアナミド社や三井東圧サイメル社製のメラ
ミン、例えばサイメル(登録商標)300、301、3
03、350、370、380、1116および113
0、サイメル(登録商標)1123および1125のよ
うなベンゾグアナミン、グリコルリル樹脂サイメル(登
録商標)1170、1171および1172、並びに、
尿素ベースの樹脂ビートル(登録商標)60、65およ
び80が挙げられる。ビスマレイミドとしては、ビス
(4−マレイミドフェニル)メタン、2,2−ビス〔4−
(4−マレイミドフェノキシ)フェニル〕プロパンなどが
挙げられる。多官能化合物の添加量としては、非水溶媒
系バインダ組成物100重量部に対し0.1〜10重量
部、好ましくは0.5〜5重量部添加することが望まし
い。また、非水溶媒系バインダ組成物とポリアミド樹
脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエス
テル樹脂、ポリフッ化ビニリデン樹脂、ポリテトラフル
オロエチレン等の熱可塑性樹脂とを混合したバインダ組
成物は、優れた耐熱性、接着性および耐電解液性を維持
させたまま、良好な可とう性を付与することが可能であ
る。但し、ポリフッ化ビニリデン樹脂、ポリテトラフル
オロエチレン等のフッ素原子を含む熱可塑性樹脂を混合
すると、高温下でフッ化水素を発生する恐れがあるた
め、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミ
ド樹脂、ポリエステル樹脂等のフッ素原子を含まない熱
可塑性樹脂の方が好ましい。上記非水溶媒系バインダ組
成物と活物質とを混合し、電極基体表面に塗布し、極性
非水溶媒を除去した電極は、活物質を含む合剤層と電極
基体である金属箔との密着性に優れ、耐電解液性および
耐熱性に優れ、高温下で使用されても長期間電極基体と
合剤層および合剤層相互間の密着強度を維持できる。電
極基体と合剤層および合剤層相互間の密着強度が向上す
ると、合剤中の非水溶媒系バインダ組成物の添加量を低
減でき、その結果、活物質量を増やすことが可能で、こ
うした電極を用いた電池は体積エネルギー密度を増大で
きる。長期間の電極基体と合剤層および合剤層相互間の
密着強度を維持した電極を用いた電池は、充放電を繰り
返しても電極基体と合剤層および合剤層相互間の導電ネ
ットワークを維持でき、充電反応および放電反応が均一
に行えるので、サイクル寿命特性も向上できる。前記の
活物質としては、可逆的にリチウムイオンを挿入,放出
できる遷移金属酸化物であればよく、リチウムコバルト
複合酸化物,リチウムニッケル複合酸化物並びにやこれ
らの混合物でもよい。また、リチウムニッケル複合酸化
物においても、Al、V、Cr、Fe、Co、Sr、M
o、W、Mn、B、Mgから選ばれる1種の金属で、ニ
ッケルサイトまたはリチウムサイトを置換したリチウム
ニッケル複合酸化物でもよい。リチウムマンガン複合酸
化物においても、Li、Al、V、Cr、Fe、Co、
Ni、Mo、W、Zn、B、Mgから選ばれる少なくと
も1種の金属でマンガンサイトまたはリチウムサイトを
置換したリチウムマンガン複合酸化物でもよい。一方、
負極炭素材料としてはピッチコークス、石油コークス、
黒鉛、炭素繊維、活性炭等もしくはこれらの混合物でも
よい。分散溶媒として、N−メチル−2−ピロリドンを
用いたが、非水溶媒系バインダ組成物を均一に溶解また
は分散できる有機溶媒であればよく、複数の有機溶媒の
混合液でも構わない。使用できる溶媒は、バインダ樹脂
の合成に用いることのできる前記の溶媒がそのまま使用
できるが、N−メチル−2−ピロリドンおよびN−メチ
ル−2−ピロリドンとエステル系溶媒(酢酸エチル、酢
酸n−ブチル、ブチルセロソルブアセテート、ブチルカ
ルビトールアセテート、エチルセロソルブアセテート、
エチルカルビトールアセテート等)あるいはグライム系
溶媒(ジグライム、トリグライム、テトラグライム等)
との混合溶媒が特に好ましい。
Embedded image (Wherein, R represents a hydrogen atom or a methyl group, and n is a positive integer). Among them, a polyoxyalkylene monoamine represented by the following formula is obtained. In this respect, polyoxyalkylene monoamines having a molecular weight of 600 to 2,000 are preferred. Examples of such polyoxyalkylene monoamines include, for example, Jeffamine M-600, M-1000, M-2005, and M-20 manufactured by Huntsman Corporation.
70 and the like. One or more of these (C) polyoxyalkylene monoamines are used. (A) component,
The mixing ratio of the component (B) and the component (C) is such that the active hydrogen derived from the epoxy group in the component (B) / the active hydrogen derived from the carboxyl group in the component (A) and the active hydrogen derived from the amino group in the component (C). Is preferably less than 1 equivalent / 1 equivalent, more preferably 1 equivalent / 0.25 equivalent to 1 equivalent / 0.90 equivalent, and more preferably 1 equivalent / 0.33 equivalent to 1 equivalent /.
It is particularly preferred that the equivalent amount be 0.83 equivalent, that is, 1 equivalent / 0.4.
It is extremely preferred that the amount be 5 equivalents to 1 equivalent / 0.67 equivalents. When the mixing ratio is 1 equivalent / 1 equivalent or more, the thermosetting property is easily deteriorated, and the chemical resistance tends to decrease.
In the reaction of the components (A), (B) and (C), it is preferable that the components (A) and (C) are not directly reacted. Specifically, after reacting the component (B) and the component (C), it is more preferable to react the component (A) with the reaction product. In particular, the components (A) and (B) The component (C) is preferably reacted with the reaction product of (1). When the component (A) and the component (C) are directly reacted, a resin having a component (C) residue at a terminal is easily produced as a by-product, and the thermosetting resin of the present invention having a component (C) residue in a side chain. The yield of the polyamide resin tends to decrease. (A) component, (B)
The reaction of the component and the component (C) is performed in an organic solvent. The organic solvent is not particularly limited, and includes, for example, the organic solvents that can be used in producing the component (A) described above. Among them, nitrogen-containing polar solvents (amide solvents, amide solvents,
Urea-based solvents). Among them, N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone, and the like in that they do not have active hydrogen which easily inhibits the reaction of the components (A), (B) and (C). N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, and tetramethylurea are more preferred, and among them, N-methyl-2-pyrrolidone is particularly preferred. The amount of the organic solvent to be used is preferably 30 to 2,000 parts by weight, more preferably 50 to 1,000 parts by weight, and more preferably 70 to 1,000 parts by weight, per 100 parts by weight of the total of the components (A), (B) and (C). 40
0 is particularly preferred. If the amount of the organic solvent is less than 30 parts by weight, the solubility is poor, and the reaction system tends to be non-uniform or highly viscous. If the amount exceeds 2,000 parts by weight, the reaction does not easily proceed and the reaction tends to be difficult to complete. . One or more of these organic solvents are used. The reaction temperature of the component (A), the component (B) and the component (C) is preferably 40 to 300 ° C, more preferably 100 to 250 ° C, and 120 to 220 ° C.
C is particularly preferred. If the reaction temperature is lower than 40 ° C., the reaction does not easily proceed and the reaction tends to be difficult to complete. If the reaction temperature exceeds 300 ° C., gelation or the like due to side reactions tends to occur, and the reaction tends to be difficult to control. In the present invention, a catalyst can be used if necessary. Examples of the reaction catalyst include tertiary amines such as triethylamine, triethylenediamine, N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, N, N'-dimethylpiperazine, pyridine, picoline, 1,8-diazabicyclo [5,4,0] undecene-7 and the like. 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-methyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole as an imidazole compound,
2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 1-azine-2-methylimidazole and the like. Organotin compounds (dibutyltin dilaurate,
1,3-diacetoxytetrabutyldistannoxane, etc., quaternary onium salts (tetraethylammonium bromide, tetrabutylammonium bromide, benzyltriethylammonium chloride, trioctylmethylammonium chloride, cetyltrimethylammonium bromide, tetraiodide Butylammonium, dodecyltrimethylammonium iodide, benzyldimethyltetradecylammonium acetate, tetraphenylphosphonium chloride, triphenylmethylphosphonium chloride, tetramethylphosphonium bromide, etc., and organic phosphorus compounds (3-methyl-1-phenyl-2-phospholene) -1-oxide, etc.), organic acid alkali metal salts (sodium benzoate, potassium benzoate, etc.), inorganic salts (zinc chloride, iron chloride, lithium chloride, lithium bromide, etc.), metal carb Carbonyl compounds (eg, octacarbonyldicobalt (cobaltcarbonyl)). One or more of these catalysts can be used.
The binder resin obtained by the method described above has a high polarity and a strong hydrogen bond between the bond between the nitrogen atom and the carbon atom of the amide bond, and has a large bond energy, so that heat resistance, adhesiveness and Excellent electrolyte resistance.
In addition, the polyoxyalkylene monoamine (C) component residue in the side chain is excellent in flexibility. By adding a polyfunctional compound such as an epoxy resin or bismaleimide, a blocked isocyanate compound, or a melamine compound as a cross-linking agent to these non-aqueous solvent-based binder compositions, heat resistance, adhesiveness, and electrolyte resistance are improved. A better non-aqueous solvent-based binder composition is obtained. The epoxy resin (B) can be used as the epoxy resin. Examples of the blocked isocyanate compound include tolylene diisocyanate, hexamethylene isocyanate, isophorone diisocyanate and derivatives thereof,
For example, Coronate 25 manufactured by Nippon Polyurethane Industry Co., Ltd.
13, 2507, 2515, 2512, Desmodule BL3175, BL41 manufactured by Sumitomo Bayer Urethane Co., Ltd.
65 and the like. Examples of the melamine compound include melamine manufactured by American Cyanamid and Mitsui Toatsu Cymel, for example, Cymel (registered trademark) 300, 301, 3
03, 350, 370, 380, 1116 and 113
0, benzoguanamines such as Cymel® 1123 and 1125, the glycoluril resin Cymel® 1170, 1171 and 1172, and
Urea-based resin Beetle® 60, 65 and 80. As bismaleimide, bis
(4-maleimidophenyl) methane, 2,2-bis [4-
(4-maleimidophenoxy) phenyl] propane and the like. The amount of the polyfunctional compound to be added is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight of the non-aqueous solvent-based binder composition. Further, a binder composition obtained by mixing a non-aqueous solvent-based binder composition with a thermoplastic resin such as a polyamide resin, a polyimide resin, a polyamide-imide resin, a polyester resin, a polyvinylidene fluoride resin, and polytetrafluoroethylene has excellent heat resistance. It is possible to impart good flexibility while maintaining the adhesiveness and the resistance to the electrolytic solution. However, if a fluorine-containing thermoplastic resin such as polyvinylidene fluoride resin or polytetrafluoroethylene is mixed, hydrogen fluoride may be generated at a high temperature, so that polyamide resin, polyimide resin, polyamideimide resin, polyester resin Thermoplastic resins containing no fluorine atom are preferred. The electrode obtained by mixing the non-aqueous solvent-based binder composition and the active material, applying the mixture on the surface of the electrode substrate, and removing the polar non-aqueous solvent adheres the mixture layer containing the active material and the metal foil as the electrode substrate. It is excellent in electrolyte properties, excellent in electrolyte solution resistance and heat resistance, and can maintain the adhesion strength between the electrode substrate and the mixture layer and between the mixture layers for a long period of time even when used at a high temperature. When the adhesion strength between the electrode substrate and the mixture layer and the mixture layer is improved, the amount of the non-aqueous solvent-based binder composition in the mixture can be reduced, and as a result, the amount of the active material can be increased, A battery using such an electrode can increase the volume energy density. Batteries using electrodes that maintain the adhesion strength between the electrode base and the mixture layer and between the mixture layers for a long period of time can maintain a conductive network between the electrode substrate and the mixture layer and between the mixture layers even after repeated charging and discharging. Since the charge and discharge reactions can be maintained uniformly, the cycle life characteristics can be improved. The active material may be a transition metal oxide capable of reversibly inserting and releasing lithium ions, and may be a lithium cobalt composite oxide, a lithium nickel composite oxide, or a mixture thereof. Also, in the lithium nickel composite oxide, Al, V, Cr, Fe, Co, Sr, M
It may be a lithium-nickel composite oxide in which nickel sites or lithium sites are substituted by one kind of metal selected from o, W, Mn, B, and Mg. In the lithium manganese composite oxide, Li, Al, V, Cr, Fe, Co,
A lithium manganese composite oxide in which a manganese site or a lithium site is substituted by at least one metal selected from Ni, Mo, W, Zn, B, and Mg may be used. on the other hand,
Pitch coke, petroleum coke,
Graphite, carbon fiber, activated carbon and the like or a mixture thereof may be used. Although N-methyl-2-pyrrolidone was used as the dispersion solvent, any organic solvent capable of uniformly dissolving or dispersing the non-aqueous solvent-based binder composition may be used, and a mixture of a plurality of organic solvents may be used. As the solvent that can be used, the above-mentioned solvents that can be used for the synthesis of the binder resin can be used as they are, but N-methyl-2-pyrrolidone and N-methyl-2-pyrrolidone and ester solvents (ethyl acetate, n-butyl acetate) can be used. , Butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate,
Ethyl carbitol acetate, etc.) or glyme solvents (diglyme, triglyme, tetraglyme, etc.)
Is particularly preferred.

【実施例】1.非水溶媒系バインダ組成物の調製 本発明の非水溶媒系バインダ組成物の代表的な例を挙げ
て具体的に説明する。 〔調製例 1〕撹拌機、温度計、冷却コンデンサーおよ
び窒素ガス導入管を装備した1リットルのセパラブルフ
ラスコ内に、窒素雰囲気下で(a)ジイソシアネートと
して4,4'−ジフェニルメタンジイソシアネート11
5.87g(0.463モル)、(b)ジカルボン酸およ
び/またはトリカルボン酸無水物としてアジピン酸2
4.36g(0.167モル)、セバシン酸44.95g
(0.222モル)、ドデカン二酸38.39g(0.1
67モル)および有機溶媒としてN−メチル−2−ピロ
リドン252.8gを仕込んで130℃まで昇温した。
途中、約100℃で反応系が均一な溶液状態になり、ア
ミド化反応に伴なう炭酸ガスが発生し始めた。130℃
で2時間、次いで170℃で2時間反応を進めると炭酸
ガスの発生がなくなり、(A)ポリアミド系樹脂中間体
の溶液が得られた。続いて、この(A)ポリアミド系樹
脂中間体の溶液を170℃に保温した状態で、これに
(B)エポキシ樹脂としてN−メチル−2−ピロリドン
92.6gに溶解させたビスフェノールA型エポキシ樹
脂(エポキシ当量187g/eq.)88.75g(0.
238モル)の溶液を5分間かけて滴下した。同温度で
1時間反応を進めたところで、ここに(C)ポリオキシ
アルキレンモノアミンとしてN−メチル−2−ピロリド
ン103.8gに溶解させたハンツマンコーポレーショ
ン製商品名ジェファーミンM−1000(前記一般式
〔1〕でn:22、R:水素原子/メチル基=19/
3、一級アミノ基換算分子量:1205、以上カタログ
値)27.90g(0.023モル)の溶液を5分間かけ
て滴下した。同温度でさらに1時間反応を進めた後、N
−メチル−2−ピロリドン249.6gを添加して冷却
し、側鎖に(C)成分残基を有する本発明の非水溶媒系
バインダ組成物を得た。 〔調製例 2〕撹拌機、温度計、冷却コンデンサおよび
窒素ガス導入管を装備した1リットルのセパラブルフラ
スコ内に、窒素雰囲気下(a)ジイソシアネートとして
4,4'−ジフェニルメタンジイソシアネート100.1
0g(0.400モル)(b)ジカルボン酸および/ま
たはトリカルボン酸無水物としてアジピン酸21.04
g(0.144モル)、セバシン酸38.83g(0.1
92モル)、ドデカン二酸33.16g(0.144モ
ル)および有機溶媒としてN−メチル−2−ピロリドン
218.4gを仕込んで130℃まで昇温した。途中、
約100℃で反応系が均一な溶液状態になり、アミド化
反応に伴なう炭酸ガスが発生し始めた。130℃で2時
間、次いで170℃で2時間反応を進めると炭酸ガスの
発生がなくなり、(A)ポリアミド系樹脂中間体の溶液
が得られた。続いて、この(A)ポリアミド系樹脂中間
体の溶液を170℃に保温した状態とし、これに(B)
エポキシ樹脂としてN−メチル−2−ピロリドン120
gに溶解させたビスフェノールA型エポキシ樹脂(エポ
キシ当量187g/eq.)92.00g(0.246モ
ル)の溶液を5分間かけて滴下した。同温度で1時間反
応を進めたところで、ここに(C)ポリオキシアルキレ
ンモノアミンとしてN−メチル−2−ピロリドン10
8.8gに溶解させたハンツマンコーポレーション製商
品名ジェファーミンM−1000(前記一般式〔1〕で
n:22、R:水素原子/メチル基=19/3、一級ア
ミノ基換算分子量:1205、以上カタログ値)48.
20g(0.040モル)の溶液を5分間かけて滴下し
た。同温度でさらに1時間反応を進めた後、N−メチル
−2−ピロリドン248.5gを添加して冷却し、側鎖
に(C)成分残基を有する本発明の非水溶媒系バインダ
組成物を得た。 〔調製例 3〕撹拌機、温度計、冷却コンデンサーおよ
び窒素ガス導入管を装備した1リットルのセパラブルフ
ラスコ内に、窒素雰囲気下(a)ジイソシアネートとし
て4,4'−ジフェニルメタンジイソシアネート115.
12g(0.460モル)(b)ジカルボン酸および/
またはトリカルボン酸無水物としてアジピン酸24.2
0g(0.166モル)、セバシン酸44.66g(0.
221モル)、ドデカン二酸38.14g(0.166モ
ル)および有機溶媒としてN−メチル−2−ピロリドン
251.2gを仕込んで130℃まで昇温した。途中、
約100℃で反応系が均一な溶液状態になり、アミド化
反応に伴なう炭酸ガスが発生し始めた。130℃で2時
間、次いで170℃で2時間反応を進めると炭酸ガスの
発生がなくなり、(A)ポリアミド系樹脂中間体の溶液
が得られた。続いて、この(A)ポリアミド系樹脂中間
体の溶液を170℃に保温した状態とし、これに(B)
エポキシ樹脂としてN−メチル−2−ピロリドン10
5.3gに溶解させたビスフェノールA型エポキシ樹脂
(エポキシ当量187g/eq.)61.93g(0.1
66モル)の溶液を5分間かけて滴下した。同温度で1
時間反応を進めたところで、ここに(C)ポリオキシア
ルキレンモノアミンとしてN−メチル−2−ピロリドン
92.0gに溶解させたハンツマンコーポレーション製
商品名ジェファーミンM−1000(前記一般式〔1〕
でn:22、R:水素原子/メチル基=19/3、一級
アミノ基換算分子量:1205、以上カタログ値)5
5.43g(0.046モル)の溶液を5分間かけて滴下
した。同温度でさらに1時間反応を進めた後、N−メチ
ル−2−ピロリドン249.2gを添加して冷却し、側
鎖に(C)成分残基を有する本発明の非水溶媒系バイン
ダ組成物を得た。 〔調製例 4〕調製例1で得られたバインダ樹脂のN−
メチル−2−ピロリドン溶液100.0g(固形分42
%)にブロックポリイソシアネート架橋剤(ヘキサメチ
レンジイソシアネート三量体の2−ブタノンオキシムブ
ロック体)8.3gを添加し、バインダ組成物溶液を得
た。 〔調製例 5〕調製例1で得られたバインダ樹脂のN−
メチル−2−ピロリドン溶液100.0g(固形分42
%)にメラミン樹脂架橋剤(へキサメトキシメチロール
メラミン)8.3gを添加し、バインダ組成物溶液を得
た。 〔調製例 6〕調製例1で得られたバインダ樹脂のN−
メチル−2−ピロリドン溶液100.0g(固形分42
%)にエポキシ樹脂架橋剤(4,4'−イソプロピリデン
ビスフェノールジグリシジルエーテル)8.3gを添加
し、バインダ組成物溶液を得た。 〔調製例 7〕調製例1で得られたバインダ樹脂のN−
メチル−2−ピロリドン溶液100.0g(固形分42
%)にビスマレイミド架橋剤(ビス(4−マレイミドフ
ェニル)メタン)8.3gを添加し、バインダ組成物溶
液を得た。調製例1〜7で得られたバインダ組成物溶
液、および、比較樹脂組成物としてポリフッ化ビニリデ
ンのN−メチル−2−ピロリドン溶液(呉羽化学製KF
−1100)を、乾燥膜厚約30μmとなるように、圧
延銅箔またはアルミ箔上に、アプリケーター法で流延し
た後、90℃で10分間予備乾燥し、次いで、150℃
で1時間乾燥硬化させて、硬化塗膜を作製した。この硬
化塗膜上に二液硬化型エポキシ樹脂接着剤を塗布して、
塗布面をガラス板に押付け、室温で12時間硬化させて
得られた両面接着硬化塗膜を得た。この硬化塗膜につい
て、接着性(圧延銅箔面またはアルミ箔面に対するピー
ル強度)を評価した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preparation of Non-Aqueous Solvent-Based Binder Composition A specific example of the non-aqueous solvent-based binder composition of the present invention will be specifically described. [Preparation Example 1] In a 1-liter separable flask equipped with a stirrer, a thermometer, a cooling condenser, and a nitrogen gas inlet tube, (a) 4,4'-diphenylmethane diisocyanate 11 as a diisocyanate in a nitrogen atmosphere.
5.87 g (0.463 mol) of (b) adipic acid 2 as dicarboxylic acid and / or tricarboxylic anhydride
4.36 g (0.167 mol), sebacic acid 44.95 g
(0.222 mol), 38.39 g of dodecanedioic acid (0.1
67 mol) and 252.8 g of N-methyl-2-pyrrolidone as an organic solvent, and the mixture was heated to 130 ° C.
On the way, the reaction system became a homogeneous solution at about 100 ° C., and carbon dioxide gas accompanying the amidation reaction began to be generated. 130 ° C
When the reaction was advanced for 2 hours and then at 170 ° C. for 2 hours, the generation of carbon dioxide gas disappeared, and a solution of the (A) polyamide-based resin intermediate was obtained. Subsequently, a bisphenol A-type epoxy resin obtained by dissolving this (A) polyamide-based resin intermediate solution in 92.6 g of N-methyl-2-pyrrolidone as an epoxy resin in a state where the solution of the polyamide resin intermediate was kept at 170 ° C. (Epoxy equivalent 187 g / eq.) 88.75 g (0.
(238 mol) was added dropwise over 5 minutes. When the reaction was allowed to proceed for 1 hour at the same temperature, the product (C) was dissolved in 103.8 g of N-methyl-2-pyrrolidone as a polyoxyalkylene monoamine, and was manufactured by Huntsman Corporation under the trade name Jeffamine M-1000 (the above-mentioned general formula [ 1], n: 22, R: hydrogen atom / methyl group = 19 /
3, a solution of 27.90 g (0.023 mol) of a primary amino group-equivalent molecular weight: 1205, catalog value above was added dropwise over 5 minutes. After further proceeding the reaction at the same temperature for 1 hour, N
After adding 249.6 g of -methyl-2-pyrrolidone and cooling, a non-aqueous solvent-based binder composition of the present invention having a component (C) residue in a side chain was obtained. [Preparation Example 2] In a 1-liter separable flask equipped with a stirrer, a thermometer, a cooling condenser and a nitrogen gas inlet tube, under a nitrogen atmosphere (a) 4,4'-diphenylmethane diisocyanate as a diisocyanate 1000.1
0 g (0.400 mol) (b) 21.04 adipic acid as dicarboxylic and / or tricarboxylic anhydride
g (0.144 mol), 38.83 g of sebacic acid (0.1
92 mol), 33.16 g (0.144 mol) of dodecanedioic acid and 218.4 g of N-methyl-2-pyrrolidone as an organic solvent were charged and heated to 130 ° C. On the way,
At about 100 ° C., the reaction system became a homogeneous solution state, and carbon dioxide gas began to be generated due to the amidation reaction. When the reaction was allowed to proceed at 130 ° C. for 2 hours and then at 170 ° C. for 2 hours, the generation of carbon dioxide gas disappeared, and a solution of (A) a polyamide resin intermediate was obtained. Subsequently, the solution of this (A) polyamide-based resin intermediate was kept at 170 ° C.
N-methyl-2-pyrrolidone 120 as an epoxy resin
A solution of 92.00 g (0.246 mol) of bisphenol A type epoxy resin (epoxy equivalent: 187 g / eq.) dissolved in g was added dropwise over 5 minutes. When the reaction was allowed to proceed for 1 hour at the same temperature, (C) N-methyl-2-pyrrolidone 10 as polyoxyalkylene monoamine was added.
Jeffamine M-1000 (trade name, manufactured by Huntsman Corporation) dissolved in 8.8 g (n: 22, R: hydrogen atom / methyl group = 19/3 in the general formula [1], molecular weight in terms of primary amino group: 1,205, or more) Catalog value) 48.
20 g (0.040 mol) of the solution were added dropwise over 5 minutes. After further proceeding the reaction at the same temperature for 1 hour, 248.5 g of N-methyl-2-pyrrolidone was added and cooled, and the non-aqueous solvent-based binder composition of the present invention having the component (C) residue in the side chain was added. I got [Preparation Example 3] In a 1-liter separable flask equipped with a stirrer, a thermometer, a cooling condenser, and a nitrogen gas inlet tube, under a nitrogen atmosphere (a) 4,4'-diphenylmethane diisocyanate as a diisocyanate 115.
12 g (0.460 mol) (b) dicarboxylic acid and / or
Or adipic acid 24.2 as tricarboxylic anhydride
0 g (0.166 mol), 44.66 g of sebacic acid (0.16 mol).
221 mol), 38.14 g (0.166 mol) of dodecanedioic acid and 251.2 g of N-methyl-2-pyrrolidone as an organic solvent were charged and heated to 130 ° C. On the way,
At about 100 ° C., the reaction system became a homogeneous solution state, and carbon dioxide gas began to be generated due to the amidation reaction. When the reaction was allowed to proceed at 130 ° C. for 2 hours and then at 170 ° C. for 2 hours, the generation of carbon dioxide gas disappeared, and a solution of (A) a polyamide resin intermediate was obtained. Subsequently, the solution of this (A) polyamide-based resin intermediate was kept at 170 ° C.
N-methyl-2-pyrrolidone 10 as an epoxy resin
Bisphenol A type epoxy resin (epoxy equivalent: 187 g / eq.) Dissolved in 5.3 g (61.93 g, 0.1 g)
66 mol) was added dropwise over 5 minutes. 1 at the same temperature
After proceeding with the time reaction, Jeffamine M-1000 (trade name, manufactured by Huntsman Corporation) (C) was dissolved in 92.0 g of N-methyl-2-pyrrolidone as a polyoxyalkylene monoamine (C).
N: 22, R: hydrogen atom / methyl group = 19/3, molecular weight in terms of primary amino group: 1,205, catalog value above 5)
5.43 g (0.046 mol) of the solution were added dropwise over 5 minutes. After further proceeding the reaction at the same temperature for 1 hour, 249.2 g of N-methyl-2-pyrrolidone was added and cooled, and the non-aqueous solvent-based binder composition of the present invention having the component (C) residue in the side chain was added. I got [Preparation Example 4] N- of the binder resin obtained in Preparation Example 1
100.0 g of a methyl-2-pyrrolidone solution (solid content: 42
%), 8.3 g of a blocked polyisocyanate crosslinking agent (hexamethylene diisocyanate trimer 2-butanone oxime block) was added to obtain a binder composition solution. [Preparation Example 5] N- of the binder resin obtained in Preparation Example 1
100.0 g of a methyl-2-pyrrolidone solution (solid content: 42
%), 8.3 g of a melamine resin crosslinking agent (hexamethoxymethylol melamine) was added to obtain a binder composition solution. [Preparation Example 6] N- of the binder resin obtained in Preparation Example 1
100.0 g of a methyl-2-pyrrolidone solution (solid content: 42
%), 8.3 g of an epoxy resin crosslinking agent (4,4'-isopropylidenebisphenol diglycidyl ether) was added to obtain a binder composition solution. [Preparation Example 7] N- of the binder resin obtained in Preparation Example 1
100.0 g of a methyl-2-pyrrolidone solution (solid content: 42
%), 8.3 g of a bismaleimide crosslinking agent (bis (4-maleimidophenyl) methane) was added to obtain a binder composition solution. The binder composition solutions obtained in Preparation Examples 1 to 7 and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride (KF manufactured by Kureha Chemical Co., Ltd.) as a comparative resin composition
-1100) was cast on a rolled copper foil or aluminum foil by an applicator method so as to have a dry film thickness of about 30 μm, and was preliminarily dried at 90 ° C. for 10 minutes, and then dried at 150 ° C.
For 1 hour to prepare a cured coating film. Apply a two-part curing type epoxy resin adhesive on this cured coating film,
The coated surface was pressed against a glass plate and cured at room temperature for 12 hours to obtain a double-sided adhesive cured coating film. This cured coating film was evaluated for adhesiveness (peel strength to the rolled copper foil surface or aluminum foil surface).

【表1】 調製例1〜3に示した樹脂組成物では、バインダ樹脂組
成物の基材に対する接着力が、比較樹脂組成物であるポ
リフッ化ビニリデンに比べ向上した。また、調製例1の
樹脂に対し各種の架橋剤を添加した調製例4〜7では、
架橋剤の添加により更なる接着力の向上が観測された。 2.正極電極の作製 〔実施例 1〕平均粒径10μmのマンガン酸リチウム
と、平均粒径3μmの炭素粉末と、調製例1の非水溶媒
系バインダ組成物とを80:10:10割合(体積%)
で混合し、N−メチル−2−ピロリドンを加えてスラリ
状の溶液を作製し、厚み20μmのアルミニウム箔の両
面に上記溶液を塗布、乾燥する。合剤塗布量は片面29
0g/m2である。合剤嵩密度が2.6g/cm3になる
ように、ロールプレス機で圧延し、54mm幅に切断し
て短冊状の正極合剤電極シートを作製した。上記正極合
剤電極シートの端部にアルミニウム製の集電タブを超音
波溶着し、その後、電極内の残留溶媒、吸着水の除去並
びに非水溶媒系バインダ組成物の架橋のため、150℃
で16時間真空乾燥して正極合剤電極を得た。なお、本
実施例では可逆的にリチウムイオンを挿入,放出できる
遷移金属酸化物としてLi1. 12Mn1.884と云う組成
のリチウムマンガン複合酸化物を用いた。 〔実施例 2〕スラリ状の溶液の作製時に用いる分散溶
媒として、N−メチル−2−ピロリドンとトリグライム
を60:40重量%混合液を用いる以外は、実施例1と
同様にして正極電極を得た。 〔実施例 3〕スラリ状の溶液の作製時に用いる分散溶
媒としてN−メチル−2−ピロリドンとエチルカルビト
ールアセテートを60:40重量%混合液を用いる以外
は実施例1と同様にして正極電極を得た。 〔実施例 4〕非水溶媒系バインダ組成物として調製例
2のものを用いる以外は実施例1と同様にして正極電極
を得た。 〔実施例 5〕非水溶媒系バインダ組成物として調製例
3のものを用いる以外は実施例1と同様にして正極電極
を得た。 〔実施例 6〕平均粒径10μmのマンガン酸リチウム
と、平均粒径3μmの炭素粉末と調製例1で得られたバ
インダ樹脂と、ブロックポリイソシアネート架橋剤(ヘ
キサメチレンジイソシアネート三量体の2−ブタノンオ
キシムブロック体)とを80:10:8:2の割合(体
積%)で混合し、N−メチル−2−ピロリドンに投入混
合しスラリ状の溶液を作製する。厚み20μmのアルミ
ニウム箔の両面にこの溶液を塗布、乾燥する。合剤塗布
量は片面290g/m2である。合剤嵩密度が2.6g/
cm3になるように、ロールプレス機で圧延し、54m
m幅に切断して短冊状の正極合剤電極シートを作製し
た。正極合剤電極シートの端部にアルミニウム製の集電
タブを超音波溶着し、その後、電極内の残留溶媒や吸着
水の除去およびバインダ樹脂の熱硬化のため、150℃
で16時間真空乾燥して正極合剤電極を得た。 〔実施例 7〕平均粒径10μmのマンガン酸リチウム
と、平均粒径3μmの炭素粉末と、調製例1で得られた
バインダ樹脂と、メラミン樹脂架橋剤(へキサメトキシ
メチロールメラミン)とを80:10:9.5:0.5の
割合(体積%)で混合し、N−メチル−2−ピロリドン
を加えてスラリ状の溶液を作製する。厚み20μmのア
ルミニウム箔の両面にこの溶液を塗布、乾燥する。合剤
塗布量は片面290g/m2である。合剤嵩密度が2.6
g/cm3になるように、ロールプレス機で圧延し、5
4mm幅に切断して短冊状の正極合剤電極シートを作製
した。正極合剤電極シートの端部にアルミニウム製の集
電タブを超音波溶着し、その後、電極内の残留溶媒や吸
着水の除去およびバインダ樹脂の熱硬化のため、150
℃で16時間真空乾燥して正極合剤電極を得た。 〔実施例 8〕平均粒径10μmのマンガン酸リチウム
と、平均粒径3μmの炭素粉末と、調製例1で得られた
バインダ樹脂と、エポキシ樹脂架橋剤(4,4'−イソプ
ロピリデンビスフェノールジグリシジルエーテル)とを
80:10:9.5:0.5の割合(体積%)で混合し、
N−メチル−2−ピロリドンを加えてスラリ状の溶液を
作製する。厚み20μmのアルミニウム箔の両面にこの
溶液を塗布、乾燥する。合剤塗布量は片面290g/m
2である。合剤嵩密度が2.6g/cm3になるように、
ロールプレス機で圧延し、54mm幅に切断して短冊状
の正極合剤電極シートを作製した。正極合剤電極シート
の端部にアルミニウム製の集電タブを超音波溶着し、そ
の後、電極内の残留溶媒や吸着水の除去およびバインダ
樹脂の熱硬化のため、150℃で16時間真空乾燥して
正極合剤電極を得た。 〔実施例 9〕平均粒径10μmのマンガン酸リチウム
と、平均粒径3μmの炭素粉末と、調製例1で得られた
バインダ樹脂と、ビスマレイミド架橋剤〔ビス(4−マ
レイミドフェニル)メタン〕とを80:10:9.5:
0.5の割合(体積%)で混合し、N−メチル−2−ピ
ロリドンを加えてスラリ状の溶液を作製する。厚み20
μmのアルミニウム箔の両面にこの溶液を塗布、乾燥す
る。合剤塗布量は片面290g/m2である。合剤嵩密
度が2.6g/cm3になるように、ロールプレス機で圧
延し、54mm幅に切断して短冊状の正極合剤電極シー
トを作製した。正極合剤電極シートの端部にアルミニウ
ム製の集電タブを超音波溶着し、その後、電極内の残留
溶媒や吸着水の除去およびバインダ樹脂の熱硬化のた
め、150℃で16時間真空乾燥して正極合剤電極を得
た。 〔実施例 10〕平均粒径10μmのコバルト酸リチウ
ムと、平均粒径3μmの炭素粉末と、調製例1の非水溶
媒系バインダ組成物とを80:10:10の割合(体積
%)で混合し、N−メチル−2−ピロリドンを加えてス
ラリ状の溶液を作製する。厚み20μmのアルミニウム
箔の両面にこの溶液を塗布、乾燥する。合剤塗布量は片
面289g/m2である。合剤嵩密度が3.6g/cm3
になるように、ロールプレス機で圧延し、54mm幅に
切断して短冊状の正極合剤電極シートを作製した。正極
合剤電極シートの端部にアルミニウム製の集電タブを超
音波溶着し、その後電極内の残留溶媒、吸着水の除去お
よび非水溶媒系バインダ組成物の架橋のため、150℃
で16時間真空乾燥して正極合剤電極を得た。 〔実施例 11〕平均粒径10μmのニッケル酸リチウ
ムと、平均粒径3μmの炭素粉末と、調製例1の非水溶
媒系バインダ組成物とを80:10:10の割合(体積
%)で混合し、N−メチル−2−ピロリドンを加えてス
ラリ状の溶液を作製する。厚み20μmのアルミニウム
箔の両面にこの溶液を塗布、乾燥する。合剤塗布量は片
面220g/m2である。合剤嵩密度が3.5g/cm3
になるように、ロールプレス機で圧延し、54mm幅に
切断して短冊状の正極合剤電極シートを作製した。正極
合剤電極シートの端部にアルミニウム製の集電タブを超
音波溶着し、その後電極内の残留溶媒、吸着水の除去お
よび非水溶媒系バインダ組成物の架橋のため、150℃
で16時間真空乾燥して正極合剤電極を得た。 〔比較例 1〕平均粒径10μmのマンガン酸リチウム
と、平均粒径3μmの炭素粉末と、ポリフッ化ビニリデ
ン樹脂とを80:10:10の割合(体積%)で混合
し、N−メチル−2−ピロリドンを加えてスラリー状の
溶液を作製する。厚み20μmのアルミニウム箔の両面
にこの溶液を塗布、乾燥する。合剤塗布量は片面290
g/m2である。合剤嵩密度が2.6g/cm3になるよ
うに、ロールプレス機で圧延し、54mm幅に切断して
短細状の正極合剤電極シートを作製した。正極合剤電極
シートの端部にアルミニウム製の集電タブを超音波溶着
し、その後電極内の残留溶媒や吸着水の除去およびバイ
ンダ樹脂の熱硬化のため、150℃で16時間真空乾燥
して正極合剤電極を得た。 〔比較例 2〕正極活物質として平均粒径10μmのコ
バルト酸リチウムを用いる以外は比較例1と同様にして
正極電極を得た。 〔比較例 3〕正極活物質として平均粒径10μmのニ
ッケル酸リチウムを用いる以外は比較例1と同様にして
正極電極を得た。 3.負極電極の作製 〔実施例 12〕平均粒径20μmの非晶質炭素と調製
例1の非水溶媒系バインダ組成物とを90:10の割合
(体積%)で混合し、N−メチル−2−ピロリドンを加
えて、スラリ状の溶液を作製する。厚み10μmの銅箔
の両面にこの溶液を塗布、乾燥する。合剤塗布量は片面
65g/m2である。合剤嵩密度が1.0g/cm3にな
るように、ロールプレス機で圧延し、56mm幅に切断
して短冊状の負極合剤電極シートを作製した。負極合剤
電極シートの端部にニッケル製の集電タブを超音波溶着
し、その後、電極内の残留溶媒、吸着水の除去および非
水溶媒系バインダ組成物の架橋のため、150℃で16
時間真空乾燥して負極合剤電極を得た。 〔実施例 13〕スラリ状の溶液の作製時に用いる分散
溶媒として、N−メチル−2−ピロリドンとトリグライ
ムを60:40重量%混合液を用いる以外は、実施例1
2と同様にして負極電極を得た。 〔実施例 14〕スラリ状の溶液の作製時に用いる分散
溶媒として、N−メチル−2−ピロリドンとエチルカル
ビトールアセテートを60:40重量%混合液を用いる
以外は、実施例12と同様にして負極電極を得た。 〔実施例 15〕非水溶媒系バインダ組成物として、調
製例2のものを用いる以外は、実施例12と同様にして
負極電極を得た。 〔実施例 16〕非水溶媒系バインダ組成物として調製
例3のものを用いる以外は、実施例12と同様にして負
極電極を得た。 〔実施例 17〕平均粒径20μmの非晶質炭素と、調
製例1の非水溶媒系バインダ組成物と、ブロックポリイ
ソシアネート架橋剤(ヘキサメチレンジイソシアネート
三量体の2−ブタノンオキシムブロック体)とを90:
8:2の割合(体積%)で混合し、N−メチル−2−ピ
ロリドンを加えて、スラリ状の溶液を作製する。厚み1
0μmの銅箔の両面にこの溶液を塗布、乾燥する。合剤
塗布量は片面65g/m2である。合剤嵩密度が1.0g
/cm3になるように、ロールプレス機で圧延し、56
mm幅に切断して短冊状の負極合剤電極シートを作製し
た。負極合剤電極シートの端部にニッケル製の集電タブ
を超音波溶着し、その後、電極内の残留溶媒、吸着水の
除去および非水溶媒系バインダ組成物の架橋のため、1
50℃で16時間真空乾燥して負極合剤電極を得た。 〔実施例 18〕平均粒径20μmの非晶質炭素と、調
製例1の非水溶媒系バインダ組成物と、メラミン樹脂架
橋剤(へキサメトキシメチロールメラミン)とを90:
9.5:0.5の割合(体積%)で混合し、N−メチル−
2−ピロリドンを加えて、スラリ状の溶液を作製する。
厚み10μmの銅箔の両面にこの溶液を塗布、乾燥す
る。合剤塗布量は片面65g/m2である。合剤嵩密度
が1.0g/cm3になるように、ロールプレス機で圧延
し、56mm幅に切断して短冊状の負極合剤電極シート
を作製した。負極合剤電極シートの端部にニッケル製の
集電タブを超音波溶着し、その後、電極内の残留溶媒、
吸着水の除去および非水溶媒系バインダ組成物の架橋の
ため、150℃で16時間真空乾燥して負極合剤電極を
得た。 〔実施例 19〕平均粒径20μmの非晶質炭素と、調
製例1の非水溶媒系バインダ組成物と、エポキシ樹脂架
橋剤(4,4'−イソプロピリデンビスフェノールジグリ
シジルエーテル)とを90:9.5:0.5の割合(体積
%)で混合し、N−メチル−2−ピロリドンを加えて、
スラリ状の溶液を作製する。厚み10μmの銅箔の両面
にこの溶液を塗布、乾燥する。合剤塗布量は片面65g
/m2である。合剤嵩密度が1.0g/cm3になるよう
に、ロールプレス機で圧延し、56mm幅に切断して短
冊状の負極合剤電極シートを作製した。負極合剤電極シ
ートの端部にニッケル製の集電タブを超音波溶着し、そ
の後、電極内の残留溶媒、吸着水の除去および非水溶媒
系バインダ組成物の架橋のため、150℃で16時間真
空乾燥して負極合剤電極を得た。 〔実施例 20〕平均粒径20μmの非晶質炭素と、調
製例1の非水溶媒系バインダ組成物と、ビスマレイミド
架橋剤〔ビス(4−マレイミドフェニル9メタン〕とを9
0:9.5:0.5の割合(体積%)で混合し、N−メチ
ル−2−ピロリドンを加えて、スラリ状の溶液を作製す
る。厚み10μmの銅箔の両面にこの溶液を塗布、乾燥
する。合剤塗布量は片面65g/m2である。合剤嵩密
度が1.0g/cm3になるように、ロールプレス機で圧
延し、56mm幅に切断して短冊状の負極合剤電極シー
トを作製した。負極合剤電極シートの端部にニッケル製
の集電タブを超音波溶着し、その後、電極内の残留溶
媒、吸着水の除去および非水溶媒系バインダ組成物の架
橋のため、150℃で16時間真空乾燥して負極合剤電
極を得た。 〔実施例 21〕平均粒径20μmの人造黒鉛と、調製
例1の非水溶媒系バインダ組成物とを90:10の割合
(体積%)で混合し、N−メチル−2−ピロリドンを加
えて、スラリ状の溶液を作製する。厚み10μmの銅箔
の両面にこの溶液を塗布、乾燥する。合剤塗布量は正極
電極と対向する単位面積当りの活物質利用率が負極/正
極が1以上になるように塗布した。実施例1などの正極
活物質にリチウムマンガン複合酸化物を用いた場合、片
面130g/m2で、実施例11の正極活物質にリチウ
ムニッケル複合酸化物を用いた場合、片面150g/m
2である。合剤嵩密度はいずれの場合も1.5g/cm3
になるように、ロールプレス機で圧延し、56mm幅に
切断して短冊状の負極合剤電極シートを作製した。負極
合剤電極シートの端部にニッケル製の集電タブを超音波
溶着し、その後、電極内の残留溶媒、吸着水の除去およ
び非水溶媒系バインダ組成物の架橋のため、150℃で
16時間真空乾燥して負極合剤電極を得た。 〔比較例 4〕負極は平均粒径20μmの非晶質炭素
と、ポリフッ化ビニリデン樹脂とを90:10の割合
(体積%)で混合し、N−メチル−2−ピロリドンを加
えて、スラリ状の溶液を作製する。厚み10μmの銅箔
の両面にこの溶液を塗布、乾燥する。合剤塗布量は正極
電極と対向する単位面積当りの活物質利用率が負極/正
極が1以上になるように塗布した。実施例1などの正極
活物質にリチウムマンガン複合酸化物を用いた場合、片
面65g/m2で、実施例10の正極活物質にリチウム
コバルト複合酸化物を用いた場合、片面100g/m2
である。合剤嵩密度はいずれの場合も1.0g/cm3
なるように、ロールプレス機で圧延し、56mm幅に切
断して短冊状の負極合剤電極シートを作製した。負極合
剤電極シートの端部にニッケル製の集電タブを超音波溶
着し、その後、電極内の残留溶媒や吸着水の除去および
バインダ樹脂の熱硬化のため、150℃で16時間真空
乾燥して負極合剤電極を得た。 〔比較例 5〕非水溶媒系バインダ組成物に替えて、ポ
リフッ化ビニリデン樹脂を用いる以外は実施例21と同
様にして負極電極を得た。得られた電極について、耐電
解液性を評価した。なお、これに用いた電解液として、
(1)N−メチル−2−ピロリドン、または、(2)濃
度が1MとなるようにLiPF6を溶解させたエチレン
カーボネート/ジメチルカーボネート=1/2(体積
比)の混合液を用い、これらに50℃で24時間浸漬後
の電子顕微鏡(倍率1000倍)による外観異常の有無
を調べた。これらの結果をまとめて表2に示した。
[Table 1] In the resin compositions shown in Preparation Examples 1 to 3, the adhesive strength of the binder resin composition to the base material was improved as compared with polyvinylidene fluoride as the comparative resin composition. In Preparation Examples 4 to 7 in which various crosslinking agents were added to the resin of Preparation Example 1,
A further improvement in adhesion was observed with the addition of the crosslinking agent. 2. Preparation of Positive Electrode [Example 1] A lithium manganate having an average particle diameter of 10 µm, a carbon powder having an average particle diameter of 3 µm, and the nonaqueous solvent-based binder composition of Preparation Example 1 were mixed at a ratio of 80:10:10 (% by volume). )
, And N-methyl-2-pyrrolidone is added to form a slurry-like solution. The solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. The mixture application amount is 29 per side
0 g / m 2 . The mixture was rolled with a roll press so that the bulk density of the mixture became 2.6 g / cm 3 , and cut into a width of 54 mm to produce a strip-shaped positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and thereafter, a residual solvent in the electrode, 150 ° C. for removal of adsorbed water and crosslinking of the non-aqueous solvent-based binder composition.
For 16 hours to obtain a positive electrode mixture electrode. Incidentally, it was used reversibly intercalate lithium ions, Li 1. 12 Mn 1.88 O 4 and refers to the composition of lithium-manganese composite oxide as the transition metal oxide capable of releasing in this embodiment. Example 2 A positive electrode was obtained in the same manner as in Example 1, except that a 60: 40% by weight mixture of N-methyl-2-pyrrolidone and triglyme was used as a dispersion solvent used for preparing a slurry-like solution. Was. Example 3 A positive electrode was prepared in the same manner as in Example 1 except that a 60: 40% by weight mixture of N-methyl-2-pyrrolidone and ethyl carbitol acetate was used as a dispersion solvent used when preparing a slurry-like solution. Obtained. Example 4 A positive electrode was obtained in the same manner as in Example 1 except that the nonaqueous solvent-based binder composition used in Preparation Example 2 was used. Example 5 A positive electrode was obtained in the same manner as in Example 1 except that the nonaqueous solvent-based binder composition used in Preparation Example 3 was used. [Example 6] Lithium manganate having an average particle size of 10 µm, carbon powder having an average particle size of 3 µm, the binder resin obtained in Preparation Example 1, and a blocked polyisocyanate crosslinking agent (2-butanone of hexamethylene diisocyanate trimer) (Oxime block) at a ratio (volume%) of 80: 10: 8: 2, and the mixture is added to and mixed with N-methyl-2-pyrrolidone to prepare a slurry-like solution. This solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. The amount of the mixture applied is 290 g / m 2 on one side. The mixture bulk density is 2.6 g /
so as to be in cm 3, it was rolled by a roll press machine, 54m
By cutting into a width of m, a strip-shaped positive electrode mixture electrode sheet was prepared. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then 150 ° C. for removal of residual solvent and adsorbed water in the electrode and thermal curing of the binder resin.
For 16 hours to obtain a positive electrode mixture electrode. Example 7 80 parts of lithium manganate having an average particle size of 10 μm, carbon powder having an average particle size of 3 μm, the binder resin obtained in Preparation Example 1, and a melamine resin crosslinking agent (hexamethoxymethylolmelamine) were used. Mix at a ratio of 10: 9.5: 0.5 (vol%) and add N-methyl-2-pyrrolidone to make a slurry-like solution. This solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. The amount of the mixture applied is 290 g / m 2 on one side. The mixture bulk density is 2.6
g / cm 3 and rolled with a roll press
It was cut to a width of 4 mm to produce a strip-shaped positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then removed to remove residual solvent and adsorbed water in the electrode and to cure the binder resin by heat.
Vacuum drying was performed at 16 ° C. for 16 hours to obtain a positive electrode mixture electrode. [Example 8] Lithium manganate having an average particle size of 10 µm, carbon powder having an average particle size of 3 µm, the binder resin obtained in Preparation Example 1, and an epoxy resin crosslinking agent (4,4'-isopropylidenebisphenol diglycidyl) Ether) in a ratio of 80: 10: 9.5: 0.5 (% by volume),
N-methyl-2-pyrrolidone is added to make a slurry-like solution. This solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. 290 g / m on one side
2 So that the mixture bulk density becomes 2.6 g / cm 3
It was rolled with a roll press and cut into a width of 54 mm to produce a strip-shaped positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then vacuum-dried at 150 ° C. for 16 hours to remove the residual solvent and adsorbed water in the electrode and thermally cure the binder resin. Thus, a positive electrode mixture electrode was obtained. Example 9 Lithium manganate having an average particle size of 10 μm, carbon powder having an average particle size of 3 μm, the binder resin obtained in Preparation Example 1, and a bismaleimide crosslinking agent [bis (4-maleimidophenyl) methane] To 80: 10: 9.5:
Mix at a ratio of 0.5 (vol%) and add N-methyl-2-pyrrolidone to make a slurry-like solution. Thickness 20
This solution is applied to both sides of a μm aluminum foil and dried. The amount of the mixture applied is 290 g / m 2 on one side. The mixture was rolled with a roll press so that the bulk density of the mixture became 2.6 g / cm 3 , and cut into a width of 54 mm to produce a strip-shaped positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then vacuum-dried at 150 ° C. for 16 hours to remove the residual solvent and adsorbed water in the electrode and thermally cure the binder resin. Thus, a positive electrode mixture electrode was obtained. Example 10 Lithium cobalt oxide having an average particle diameter of 10 μm, carbon powder having an average particle diameter of 3 μm, and the nonaqueous solvent-based binder composition of Preparation Example 1 were mixed at a ratio of 80:10:10 (vol%). Then, N-methyl-2-pyrrolidone is added to prepare a slurry-like solution. This solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. The amount of the mixture applied is 289 g / m 2 on one side. The mixture bulk density is 3.6 g / cm 3
Was rolled with a roll press, and cut into a width of 54 mm to produce a strip-shaped positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then 150 ° C. for removing residual solvent and adsorbed water in the electrode and crosslinking the non-aqueous solvent-based binder composition.
For 16 hours to obtain a positive electrode mixture electrode. Example 11 Lithium nickelate having an average particle size of 10 μm, carbon powder having an average particle size of 3 μm, and the nonaqueous solvent-based binder composition of Preparation Example 1 were mixed at a ratio of 80:10:10 (vol%). Then, N-methyl-2-pyrrolidone is added to prepare a slurry-like solution. This solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. The mixture application amount is 220 g / m 2 on one side. The bulk density of the mixture is 3.5 g / cm 3
Was rolled with a roll press, and cut into a width of 54 mm to produce a strip-shaped positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then 150 ° C. for removing residual solvent and adsorbed water in the electrode and crosslinking the non-aqueous solvent-based binder composition.
For 16 hours to obtain a positive electrode mixture electrode. Comparative Example 1 Lithium manganate having an average particle size of 10 μm, carbon powder having an average particle size of 3 μm, and polyvinylidene fluoride resin were mixed at a ratio (volume%) of 80:10:10, and N-methyl-2 was added. -Add pyrrolidone to make a slurry-like solution. This solution is applied to both sides of an aluminum foil having a thickness of 20 μm and dried. The mixture application amount is 290 on one side
g / m 2 . The mixture was rolled with a roll press so that the bulk density of the mixture became 2.6 g / cm 3 , and cut into a width of 54 mm to produce a short positive electrode mixture electrode sheet. A current collector tab made of aluminum was ultrasonically welded to the end of the positive electrode mixture electrode sheet, and then vacuum-dried at 150 ° C. for 16 hours for removal of residual solvent and adsorbed water in the electrode and thermal curing of the binder resin. A positive electrode mixture electrode was obtained. Comparative Example 2 A positive electrode was obtained in the same manner as in Comparative Example 1, except that lithium cobaltate having an average particle size of 10 μm was used as the positive electrode active material. Comparative Example 3 A positive electrode was obtained in the same manner as in Comparative Example 1, except that lithium nickelate having an average particle size of 10 μm was used as the positive electrode active material. 3. Preparation of Negative Electrode [Example 12] Amorphous carbon having an average particle diameter of 20 µm and the nonaqueous solvent-based binder composition of Preparation Example 1 were mixed at a ratio of 90:10 (vol%), and N-methyl-2 was added. Add pyrrolidone to make a slurry-like solution. This solution is applied to both sides of a copper foil having a thickness of 10 μm and dried. The amount of the mixture applied is 65 g / m 2 on one side. The mixture was rolled with a roll press so that the bulk density of the mixture became 1.0 g / cm 3 , and cut into a width of 56 mm to prepare a strip-shaped negative electrode mixture electrode sheet. A current collector tab made of nickel was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then removed at 150 ° C. for removal of residual solvent and adsorbed water in the electrode and crosslinking of the non-aqueous solvent-based binder composition.
After vacuum drying for an hour, a negative electrode mixture electrode was obtained. Example 13 Example 1 was repeated except that a 60: 40% by weight mixture of N-methyl-2-pyrrolidone and triglyme was used as a dispersion solvent used when preparing a slurry-like solution.
In the same manner as in 2, a negative electrode was obtained. Example 14 A negative electrode was prepared in the same manner as in Example 12, except that a 60: 40% by weight mixture of N-methyl-2-pyrrolidone and ethyl carbitol acetate was used as a dispersion solvent for preparing the slurry-like solution. An electrode was obtained. [Example 15] A negative electrode was obtained in the same manner as in Example 12, except that Preparation Example 2 was used as the nonaqueous solvent-based binder composition. Example 16 A negative electrode was obtained in the same manner as in Example 12 except that the nonaqueous solvent-based binder composition used in Preparation Example 3 was used. [Example 17] Amorphous carbon having an average particle diameter of 20 µm, the nonaqueous solvent-based binder composition of Preparation Example 1, and a blocked polyisocyanate crosslinking agent (2-butanone oxime block of hexamethylene diisocyanate trimer) To 90:
Mix at a ratio of 8: 2 (volume%) and add N-methyl-2-pyrrolidone to prepare a slurry-like solution. Thickness 1
This solution is applied to both sides of a 0 μm copper foil and dried. The amount of the mixture applied is 65 g / m 2 on one side. The mixture bulk density is 1.0g
/ Cm 3 , and rolled to 56
The resultant was cut to a width of mm to prepare a strip-shaped negative electrode mixture electrode sheet. A nickel current-collecting tab was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then a residual solvent, adsorbed water in the electrode was removed, and a non-aqueous solvent-based binder composition was cross-linked.
Vacuum drying was performed at 50 ° C. for 16 hours to obtain a negative electrode mixture electrode. [Example 18] Amorphous carbon having an average particle diameter of 20 µm, the non-aqueous solvent-based binder composition of Preparation Example 1, and a melamine resin crosslinking agent (hexamethoxymethylolmelamine) 90:
9.5: 0.5 (vol.%) Mixed in N-methyl-
Add 2-pyrrolidone to make a slurry-like solution.
This solution is applied to both sides of a copper foil having a thickness of 10 μm and dried. The amount of the mixture applied is 65 g / m 2 on one side. The mixture was rolled with a roll press so that the bulk density of the mixture became 1.0 g / cm 3 , and cut into a width of 56 mm to prepare a strip-shaped negative electrode mixture electrode sheet. A current collector tab made of nickel was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then the residual solvent in the electrode,
Vacuum drying was performed at 150 ° C. for 16 hours to remove the adsorbed water and crosslink the non-aqueous solvent-based binder composition to obtain a negative electrode mixture electrode. Example 19 Amorphous carbon having an average particle diameter of 20 μm, the non-aqueous solvent-based binder composition of Preparation Example 1, and an epoxy resin crosslinking agent (4,4′-isopropylidenebisphenol diglycidyl ether) were mixed with 90: Mix at a ratio of 9.5: 0.5 (% by volume), add N-methyl-2-pyrrolidone,
Make a slurry-like solution. This solution is applied to both sides of a copper foil having a thickness of 10 μm and dried. The mixture application amount is 65g per side
/ M 2 . The mixture was rolled with a roll press so that the bulk density of the mixture became 1.0 g / cm 3 , and cut into a width of 56 mm to prepare a strip-shaped negative electrode mixture electrode sheet. A current collector tab made of nickel was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then removed at 150 ° C. for removal of residual solvent and adsorbed water in the electrode and crosslinking of the non-aqueous solvent-based binder composition. After vacuum drying for an hour, a negative electrode mixture electrode was obtained. Example 20 Amorphous carbon having an average particle diameter of 20 μm, the non-aqueous solvent-based binder composition of Preparation Example 1, and a bismaleimide crosslinking agent [bis (4-maleimidophenyl 9 methane)]
Mix at a ratio of 0: 9.5: 0.5 (vol%) and add N-methyl-2-pyrrolidone to make a slurry-like solution. This solution is applied to both sides of a copper foil having a thickness of 10 μm and dried. The amount of the mixture applied is 65 g / m 2 on one side. The mixture was rolled with a roll press so that the bulk density of the mixture became 1.0 g / cm 3 , and cut into a width of 56 mm to prepare a strip-shaped negative electrode mixture electrode sheet. A current collector tab made of nickel was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then removed at 150 ° C. for removal of residual solvent and adsorbed water in the electrode and crosslinking of the non-aqueous solvent-based binder composition. After vacuum drying for an hour, a negative electrode mixture electrode was obtained. [Example 21] Artificial graphite having an average particle diameter of 20 µm and the nonaqueous solvent-based binder composition of Preparation Example 1 were mixed at a ratio of 90:10 (vol%), and N-methyl-2-pyrrolidone was added. To produce a slurry-like solution. This solution is applied to both sides of a copper foil having a thickness of 10 μm and dried. The mixture was applied such that the active material utilization rate per unit area facing the positive electrode was 1 or more for the negative electrode / positive electrode. When the lithium manganese composite oxide is used for the positive electrode active material of Example 1 or the like, 130 g / m 2 on one side, and when the lithium nickel composite oxide is used for the positive electrode active material of Example 11 is 150 g / m 2 for one side.
2 The bulk density of the mixture was 1.5 g / cm 3 in each case.
Was rolled by a roll press and cut into a width of 56 mm to produce a strip-shaped negative electrode mixture electrode sheet. A current collector tab made of nickel was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then removed at 150 ° C. for removal of residual solvent and adsorbed water in the electrode and crosslinking of the non-aqueous solvent-based binder composition. After vacuum drying for an hour, a negative electrode mixture electrode was obtained. [Comparative Example 4] A negative electrode was prepared by mixing amorphous carbon having an average particle diameter of 20 µm and polyvinylidene fluoride resin in a ratio of 90:10 (volume%), adding N-methyl-2-pyrrolidone, and forming a slurry. To prepare a solution. This solution is applied to both sides of a copper foil having a thickness of 10 μm and dried. The mixture was applied such that the active material utilization rate per unit area facing the positive electrode was 1 or more for the negative electrode / positive electrode. When the lithium manganese composite oxide is used as the positive electrode active material of Example 1 and the like, the surface is 65 g / m 2 on one side, and when the lithium cobalt composite oxide is used as the positive electrode active material of Example 10, the surface is 100 g / m 2 on one side.
It is. The mixture was rolled by a roll press so that the bulk density was 1.0 g / cm 3 in each case, and cut into a width of 56 mm to prepare a strip-shaped negative electrode mixture electrode sheet. A nickel current collecting tab was ultrasonically welded to the end of the negative electrode mixture electrode sheet, and then vacuum-dried at 150 ° C. for 16 hours to remove the residual solvent and adsorbed water in the electrode and thermally cure the binder resin. Thus, a negative electrode mixture electrode was obtained. Comparative Example 5 A negative electrode was obtained in the same manner as in Example 21 except that a polyvinylidene fluoride resin was used instead of the nonaqueous solvent-based binder composition. The obtained electrode was evaluated for electrolytic solution resistance. In addition, as an electrolytic solution used for this,
(1) N-methyl-2-pyrrolidone or (2) a mixed solution of ethylene carbonate / dimethyl carbonate = 1/2 (volume ratio) in which LiPF 6 is dissolved to a concentration of 1 M, and After the immersion at 50 ° C. for 24 hours, the presence or absence of abnormal appearance was examined by an electron microscope (1000 times magnification). The results are summarized in Table 2.

【表2】 表2に示したとおり、ポリフッ化ビニリデンをバインダ
樹脂として用いた場合、電極合剤を50℃で電解液に浸
漬すると表面のバインダ樹脂が膨潤し、電極合剤の基材
からの剥離やバインダ樹脂が活物質を被覆する状況が観
察されたのに対し、実施例1〜21ではバインダ樹脂組
成物の電解液に対する耐性が向上し、これらの現象は観
察されなかった。 4.電池の作製 上記実施例1〜11、および、比較例1で作製した正極
合剤電極と、実施例12〜21、および、比較例2で作
製した負極合剤電極を表3に示すように組み合わせて、
厚さ25μm×幅58mmのポリエチレン微多孔膜から
なるセパレータを介して捲回し、スパイラル状の捲回群
を作製する。
[Table 2] As shown in Table 2, when polyvinylidene fluoride is used as the binder resin, when the electrode mixture is immersed in the electrolytic solution at 50 ° C., the binder resin on the surface swells, and the electrode mixture is separated from the base material and the binder resin is removed. In contrast, in Examples 1 to 21, the resistance of the binder resin composition to the electrolytic solution was improved, and these phenomena were not observed. 4. Production of Battery The positive electrode mixture electrodes prepared in Examples 1 to 11 and Comparative Example 1 and the negative electrode mixture electrodes prepared in Examples 12 to 21 and Comparative Example 2 were combined as shown in Table 3. hand,
It is wound through a separator made of a microporous polyethylene film having a thickness of 25 μm and a width of 58 mm to form a spiral wound group.

【表3】 上記スパイラル状の捲回群を電池缶に挿入し、予め、負
極集電体の銅箔に溶接しておいたニッケルタブ端子を電
池缶底に溶接する。次に、エチレンカーボネートとジメ
チルカーボネートを体積比で1:1に混合した溶液にL
iPF6を1mol/lの濃度で溶解した電解液を電池
容器に5ml注入した。次に、予め正極集電体のアルミ
ニウム箔に溶接したアルミニウムタブ端子を蓋に溶接し
て、蓋を絶縁性のガスケットを介して電池缶の上部に配
置し、この部分をかしめて密閉し、直径18mm×高さ
65mmの円筒型電池を作製した。本実施例では、エチ
レンカーボネートとジメチルカーボネートを体積比で
1:1に混合した溶液にLiPF6を1mol/lの濃
度で溶解した電解液を用いたが、有機溶媒としては、カ
ーボネート類、エステル類、エーテル類、ケトン類、ラ
クトン類、ニトリル類、アミン類、アミド類、硫黄化合
物類、塩素化炭化水素類、スルホラン系化合物類などが
挙げられる。この中でも、プロピレンカーボネート、エ
チレンカーボネート、1,2―ジメトキシエタン、1,2
―ジエトキシエタン、ジエチルカーボネート、γ−ブチ
ロラクトン、テトラヒドロフラン、ジエチルエーテル、
スルホラン、アセトニトリル等を1種以上用いられ、特
に、混合溶媒が好ましい。電解質もLiClO4、Li
PF6、LiPF4、LiBF4、LiCl、LiBr、
CH3SO3Li、LiAsF6等が使用できる。本発明
品1〜15、および、比較品1の電池は、充電電流40
0mA、制限電圧4.2Vで定電圧充電した後、放電電
流800mAで放電終止電圧2.7Vに至るまで放電し
て初回容量を測定した。また、正極活物質から電解液へ
のマンガン溶出量を確認するため、完全充電状態の電池
を解体し、正極電極のみを新しい電解液に浸漬して密閉
する。50℃に設定した恒温槽内に7日間放置して、電
解液中に溶出したマンガン量をプラズマ発光分光分析装
置(ICP)を用いて測定した。本発明品16、17お
よび比較品2の電池は、充電電流750mA、制限電圧
4.2Vで定電圧充電した後、放電電流1500mAで
放電終止電圧2.5Vに至るまで放電して初回容量を測
定した。本発明品18、および、比較品3の電池は、充
電電流900mA、制限電圧4.15Vで定電圧充電し
た後、放電電流1800mAで放電終止電圧3.0Vに
至るまで放電して初回容量を測定した。これらの条件で
の充電・放電を1サイクルとして、周囲温度50℃で充
放電を初回容量の70%以下に至るまで繰り返し、サイ
クル寿命試験を行った。その結果を表4並びに図1に示
す。
[Table 3] The spiral wound group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can. Next, L was added to a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1.
5 ml of an electrolyte solution in which iPF 6 was dissolved at a concentration of 1 mol / l was injected into the battery container. Next, an aluminum tab terminal, which was previously welded to the aluminum foil of the positive electrode current collector, was welded to the lid, and the lid was placed on top of the battery can via an insulating gasket. A cylindrical battery having a size of 18 mm × a height of 65 mm was produced. In this embodiment, an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 was used. , Ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, sulfolane compounds and the like. Among them, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2
-Diethoxyethane, diethyl carbonate, γ-butyrolactone, tetrahydrofuran, diethyl ether,
One or more of sulfolane, acetonitrile and the like are used, and a mixed solvent is particularly preferable. The electrolyte is also LiClO 4 , Li
PF 6 , LiPF 4 , LiBF 4 , LiCl, LiBr,
CH 3 SO 3 Li, LiAsF 6 and the like can be used. The batteries of the present invention products 1 to 15 and the comparative product 1 have a charging current of 40
After charging at a constant voltage of 0 mA and a limit voltage of 4.2 V, the battery was discharged at a discharge current of 800 mA until the discharge end voltage reached 2.7 V, and the initial capacity was measured. In addition, in order to confirm the amount of manganese eluted from the positive electrode active material into the electrolyte, the battery in a fully charged state is disassembled, and only the positive electrode is immersed in a new electrolyte and sealed. It was left in a thermostat set at 50 ° C. for 7 days, and the amount of manganese eluted in the electrolytic solution was measured using a plasma emission spectrometer (ICP). The batteries of the products 16 and 17 of the present invention and the battery of the comparative product 2 were charged at a constant voltage of 750 mA and a limit voltage of 4.2 V, then discharged at a discharge current of 1500 mA until the discharge end voltage reached 2.5 V, and the initial capacity was measured. did. The batteries of the invention product 18 and the comparison product 3 were charged at a constant voltage of 900 mA and a limit voltage of 4.15 V, then discharged at a discharge current of 1800 mA until the discharge end voltage reached 3.0 V, and the initial capacity was measured. did. The charge / discharge under these conditions was defined as one cycle, and the charge / discharge was repeated at an ambient temperature of 50 ° C. until the capacity reached 70% or less of the initial capacity, and a cycle life test was performed. The results are shown in Table 4 and FIG.

【表4】 表4および図1が示すように、活物質としてマンガン酸
リチウム、バインダとしてポリフッ化ビニリデン樹脂を
用いた正極と、バインダとしてポリフッ化ビニリデン樹
脂を用いた負極とを組み合わせた比較品1の電池は、1
00サイクルで寿命に至った。上記に対し、正極、負極
の少なくとも一方の電極のバインダを、非水溶媒系バイ
ンダ組成物を用いた非水電解液二次電池(本発明品1〜
15,19,20)は、200サイクル以上とその寿命
が延びていることが分かる。特に、負極バインダに非水
溶媒系バインダ組成物を用いた非水電解液二次電池(本
発明品1,3,4,6,8,10,12〜15,19,
20)は、サイクル寿命特性が向上している。また、分
散溶媒としてN−メチル−2−ピロリドン単独より、ト
リグライムやエチルカルビトールアセテートなどの貧溶
媒との混合溶媒を用いた電池(本発明品4〜7)は、さ
らにサイクル寿命特性が向上している。これは、貧溶媒
を混合することによって、分散溶媒除去時において非水
溶媒系バインダ組成物の表面への移行・偏析を抑制し、
正極または負極合剤中の非水溶媒系バインダ組成物の分
布を均一にしているためと考える。寿命後の電池を解体
すると、比較品1は負極合剤が電極基体である銅箔から
剥離し、この部分に金属リチウムの析出が確認された
が、本発明の非水溶媒系バインダ組成物を用いた電極に
は見られない。このことから、本発明の非水溶媒系バイ
ンダ組成物を用いた電池は、電極基体と合剤層界面およ
び合剤層相互間の優れた密着性を維持しているため、容
量低下が小さいものと考える。次に、充電状態の正極電
極を50℃で7日間放置した後、電解液に溶出したマン
ガン量の測定結果を表5に示す。
[Table 4] As shown in Table 4 and FIG. 1, the battery of Comparative Product 1 in which a positive electrode using lithium manganate as an active material, a polyvinylidene fluoride resin as a binder, and a negative electrode using polyvinylidene fluoride resin as a binder was used, 1
The life was reached in 00 cycles. On the other hand, the binder for at least one of the positive electrode and the negative electrode is a non-aqueous electrolyte secondary battery using a non-aqueous solvent-based binder composition (the present invention products 1 to 4).
15, 19, 20), it can be seen that the life is extended to 200 cycles or more. In particular, a non-aqueous electrolyte secondary battery using the non-aqueous solvent-based binder composition for the negative electrode binder (the present invention products 1, 3, 4, 6, 8, 10, 12 to 15, 19,
20) has improved cycle life characteristics. In addition, batteries using the mixed solvent of N-methyl-2-pyrrolidone alone and a poor solvent such as triglyme or ethyl carbitol acetate rather than N-methyl-2-pyrrolidone alone (Products 4 to 7 of the present invention) have further improved cycle life characteristics. ing. This suppresses migration and segregation to the surface of the non-aqueous solvent-based binder composition during the removal of the dispersion solvent by mixing the poor solvent,
This is probably because the distribution of the non-aqueous solvent-based binder composition in the positive electrode or negative electrode mixture was made uniform. When the battery after the life was disassembled, in Comparative Product 1, the negative electrode mixture was peeled off from the copper foil as the electrode substrate, and deposition of metallic lithium was confirmed in this portion. However, the non-aqueous solvent-based binder composition of the present invention was used. It is not seen in the electrode used. From this, the battery using the non-aqueous solvent-based binder composition of the present invention maintains excellent adhesion between the electrode substrate and the mixture layer interface and between the mixture layers. Think. Next, Table 5 shows the measurement results of the amount of manganese eluted in the electrolytic solution after the charged positive electrode was left at 50 ° C. for 7 days.

【表5】 活物質としてマンガン酸リチウム、バインダとして本発
明の非水溶媒系バインダ組成物を用いた正極電極は、比
較例1の正極電極に比べ、電解液中に溶出したマンガン
量が小さい。これは、リチウムマンガン複合酸化物の粒
子表面の一部を覆うようにバインダが存在するため、電
解液との接触面積が低下し、正極活物質から溶出するマ
ンガン量を低減できたと考える。正極活物質からのマン
ガンの溶出を抑制できると、正極活物質の結晶構造が安
定して電子伝導性を確保し、一方で溶出したマンガンに
よる負極の劣化も抑制できることから、本発明品1,
2,4〜15,19の電池は、サイクル寿命特性が向上
したと考える。
[Table 5] The positive electrode using lithium manganate as the active material and the non-aqueous solvent-based binder composition of the present invention as the binder has a smaller amount of manganese eluted in the electrolyte than the positive electrode of Comparative Example 1. This is considered to be because the binder was present so as to cover a part of the surface of the lithium manganese composite oxide particles, so that the contact area with the electrolytic solution was reduced and the amount of manganese eluted from the positive electrode active material could be reduced. When the elution of manganese from the positive electrode active material can be suppressed, the crystal structure of the positive electrode active material is stabilized and the electron conductivity is secured, and on the other hand, the deterioration of the negative electrode due to the eluted manganese can be suppressed.
The batteries of 2, 4 to 15, 19 are considered to have improved cycle life characteristics.

【発明の効果】本発明のジイソシアネートまたはジアミ
ン(a)とジカルボン酸および/またはトリカルボン酸
無水物(b)とを有機溶媒中で反応させて得られるポリ
アミド系樹脂中間体(A)、エポキシ樹脂(B)および
ポリオキシアルキレンモノアミン(C)とを反応させて
得た非水溶媒系バインダ組成物は、そのアミド結合の窒
素原子と炭素原子の結合間に高い極性と強い水素結合を
有し、大きな結合エネルギーを持っていることから、接
着性および高温での耐電解液性に優れている。非水溶媒
系バインダ組成物に、さらにエポキシ樹脂,ビスマレイ
ミドやブロックイソシアネート化合物,メラミン化合物
等の多官能化合物を架橋剤として添加すると、さらに接
着性および高温での耐電解液性の優れた非水溶媒系バイ
ンダ組成物が得られる。上記非水溶媒系バインダ組成物
を用いた電極、および、この電極を用いた電池は、活物
質を含む合剤層と電極基体である金属箔との密着性に優
れ、耐電解液性および耐熱性に優れ、高温下で使用され
ても長期間電極基体と合剤層および合剤層相互間の密着
強度を維持できる。電極基体と合剤層および合剤層相互
間の密着強度が向上すると、合剤中の非水溶媒系バイン
ダ組成物の添加量を低減でき、その結果、活物質量を増
やすことが可能で、この電極を用いた電池は体積エネル
ギー密度を増大できる。長期間電極基体と合剤層および
合剤層相互間の密着強度を維持した電極を用いた電池
は、充放電を繰り返しても電極基体と合剤層および合剤
層相互間の導電ネットワークを維持でき、充電反応およ
び放電反応を均一に行うことができるので、サイクル寿
命特性も向上できる。特に可逆的にリチウムイオンを挿
入,放出できる遷移金属酸化物として、一般式Lix
y2(xは0.2≦x≦2.5で、yは0.8≦y≦1.
25)で示されるリチウムマンガン複合酸化物を、正極
活物質として用いた有機電解液二次電池は、リチウムマ
ンガン複合酸化物の粒子表面の一部を覆うように非水溶
媒系バインダ組成物が存在するため、正極活物質から溶
出するMn量を低減でき、正極の電子伝導性を確保し、
一方で溶出したMnによる負極の劣化も抑制できるた
め、充放電サイクルによる電池容量低下を改善した有機
電解液二次電池が得られる。
The polyamide resin intermediate (A) and the epoxy resin (A) obtained by reacting the diisocyanate or diamine (a) of the present invention with a dicarboxylic acid and / or tricarboxylic anhydride (b) in an organic solvent. The non-aqueous solvent-based binder composition obtained by reacting B) with the polyoxyalkylene monoamine (C) has a high polarity and a strong hydrogen bond between the bond between the nitrogen atom and the carbon atom of the amide bond, and Since it has binding energy, it is excellent in adhesiveness and resistance to electrolytic solutions at high temperatures. When a polyfunctional compound such as an epoxy resin, a bismaleimide, a blocked isocyanate compound, or a melamine compound is further added as a crosslinking agent to the non-aqueous solvent-based binder composition, the non-aqueous solvent has excellent adhesion and electrolytic solution resistance at high temperatures. A solvent-based binder composition is obtained. The electrode using the non-aqueous solvent-based binder composition and the battery using the electrode have excellent adhesion between the mixture layer containing the active material and the metal foil serving as the electrode substrate, and have excellent electrolytic solution resistance and heat resistance. It is excellent in property and can maintain the adhesion strength between the electrode substrate and the mixture layer and the mixture layer for a long period of time even when used at a high temperature. When the adhesion strength between the electrode substrate and the mixture layer and the mixture layer is improved, the amount of the non-aqueous solvent-based binder composition in the mixture can be reduced, and as a result, the amount of the active material can be increased, A battery using this electrode can increase the volume energy density. Batteries using electrodes that maintain the adhesion strength between the electrode substrate and the mixture layer and between the mixture layers for a long period of time maintain the conductive network between the electrode substrate and the mixture layer and between the mixture layers even after repeated charging and discharging. Since the charging reaction and the discharging reaction can be performed uniformly, the cycle life characteristics can be improved. In particular, as a transition metal oxide capable of reversibly inserting and releasing lithium ions, a general formula Li x M
n y O 2 (x is 0.2 ≦ x ≦ 2.5, and y is 0.8 ≦ y ≦ 1.
In the organic electrolyte secondary battery using the lithium manganese composite oxide shown in 25) as a positive electrode active material, a non-aqueous solvent-based binder composition exists so as to cover a part of the particle surface of the lithium manganese composite oxide. Therefore, the amount of Mn eluted from the positive electrode active material can be reduced, the electron conductivity of the positive electrode is secured,
On the other hand, the deterioration of the negative electrode due to the eluted Mn can be suppressed, so that an organic electrolyte secondary battery in which the reduction in battery capacity due to charge / discharge cycles is improved is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例の非水電解液二次電池のサイクル寿命
試験結果を示した図である。
FIG. 1 is a view showing a cycle life test result of a non-aqueous electrolyte secondary battery of this example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 伸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 健司 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 (72)発明者 原 賢二 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 4J038 DB002 DB391 DB471 DB491 DH001 EA012 HA216 JB34 MA07 PB09 PC02 5H003 AA02 AA04 AA10 BB05 BB11 BC05 BD00 5H014 AA02 BB03 BB06 BB08 EE01 EE03 EE10 HH00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shin Nishimura 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kenji Suzuki 4--13 Higashimachi, Hitachi City, Ibaraki Prefecture 1 Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd. (72) Inventor Kenji Hara 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 4J038 DB002 DB391 DB471 DB491 DH001 EA012 HA216 JB34 MA07 PB09 PC02 5H003 AA02 AA04 AA10 BB05 BB11 BC05 BD00 5H014 AA02 BB03 BB06 BB08 EE01 EE03 EE10 HH00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ジイソシアネートまたはジアミン(a)
とジカルボン酸および/またはトリカルボン酸無水物
(b)とを有機溶媒中で反応させて得られるポリアミド
系樹脂中間体(A)、エポキシ樹脂(B)およびポリオ
キシアルキレンモノアミン(C)とを反応させて得られ
る側鎖に(C)成分残基を有するバインダ樹脂を非水溶
媒に溶解および/または分散させたことを特徴とする非
水溶媒系バインダ組成物。
1. Diisocyanate or diamine (a)
And a dicarboxylic acid and / or tricarboxylic anhydride (b) in an organic solvent to react with a polyamide resin intermediate (A), an epoxy resin (B) and a polyoxyalkylene monoamine (C). A non-aqueous solvent-based binder composition obtained by dissolving and / or dispersing a binder resin having a component residue (C) in a side chain obtained in the above method.
【請求項2】 多官能化合物および/または熱可塑性樹
脂とを含む請求項1に記載の非水溶媒系バインダ組成
物。
2. The non-aqueous solvent-based binder composition according to claim 1, comprising a polyfunctional compound and / or a thermoplastic resin.
【請求項3】 請求項1または2に記載の非水溶媒系バ
インダ組成物と活物質とを混合し、電極基体表面に塗布
後、非水溶媒を除去した非水溶媒系バインダ組成物を形
成したことを特徴とする電極。
3. A non-aqueous solvent-based binder composition from which the non-aqueous solvent-based binder composition according to claim 1 or 2 is mixed with an active material, applied to the surface of an electrode substrate, and then the non-aqueous solvent is removed. An electrode characterized in that:
【請求項4】 前記活物質が、充放電により可逆的にリ
チウムイオンを挿入,放出できるものである請求項3に
記載の電極。
4. The electrode according to claim 3, wherein the active material is capable of reversibly inserting and releasing lithium ions by charging and discharging.
【請求項5】 前記活物質が、充放電により可逆的にリ
チウムイオンを挿入,放出できる遷移金属酸化物で、該
遷移金属酸化物が一般式LixMny0(xは0.2≦x
≦2.5であり、yは0.8≦y≦1.25である)で示
されるリチウムマンガン複合酸化物である請求項3に記
載の電極。
Wherein said active material, reversibly inserting lithium ions by charging and discharging, a transition metal oxide capable of releasing, the transition metal oxide is formula Li x Mn y O 0 (x is 0.2 ≦ x
≤ 2.5, and y is 0.8 ≤ y ≤ 1.25).
【請求項6】 非水溶媒系二次電池の少なくとも一方の
極に、請求項3,4または5に記載の電極を用いたこと
を特徴とする非水溶媒系二次電池。
6. A non-aqueous solvent-based secondary battery, wherein the electrode according to claim 3, 4 or 5 is used for at least one pole of the non-aqueous solvent-based secondary battery.
JP06186299A 1999-03-09 1999-03-09 Non-aqueous solvent secondary battery electrode and non-aqueous solvent secondary battery using the same Expired - Fee Related JP4507290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06186299A JP4507290B2 (en) 1999-03-09 1999-03-09 Non-aqueous solvent secondary battery electrode and non-aqueous solvent secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06186299A JP4507290B2 (en) 1999-03-09 1999-03-09 Non-aqueous solvent secondary battery electrode and non-aqueous solvent secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000256616A true JP2000256616A (en) 2000-09-19
JP4507290B2 JP4507290B2 (en) 2010-07-21

Family

ID=13183362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06186299A Expired - Fee Related JP4507290B2 (en) 1999-03-09 1999-03-09 Non-aqueous solvent secondary battery electrode and non-aqueous solvent secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4507290B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073678A1 (en) 2010-11-29 2012-06-07 Jsr株式会社 Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries
WO2019156086A1 (en) * 2018-02-07 2019-08-15 日本ゼオン株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
JPWO2022044538A1 (en) * 2020-08-31 2022-03-03
CN114447438A (en) * 2020-10-30 2022-05-06 泰星能源解决方案有限公司 Method for producing nonaqueous electrolyte solution for lithium ion secondary battery and method for producing lithium ion secondary battery using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258526A (en) * 1988-08-25 1990-02-27 Ajinomoto Co Inc Solid polyelectrolyte
JPH02218717A (en) * 1988-11-04 1990-08-31 Imperial Chem Ind Plc <Ici> Water-dispersible polyester polymer, its nanufacture, and aqueous dispersion thereof
JPH10302772A (en) * 1997-04-22 1998-11-13 Toyobo Co Ltd Negative electrode for secondary battery and secondary battery using the same
JP2000021408A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000095835A (en) * 1998-09-24 2000-04-04 Hitachi Chem Co Ltd Thermosetting polyamide-based resin and its production
JP2000133273A (en) * 1998-10-30 2000-05-12 Hitachi Chem Co Ltd Secondary battery
JP2001043896A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd Manufacture of polymeric solid electrolyte, polymeric solid electrolyte, and electrochemical device
JP2001043731A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd High molecular solid electrolyte, manufacture thereof and electrochemical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258526A (en) * 1988-08-25 1990-02-27 Ajinomoto Co Inc Solid polyelectrolyte
JPH02218717A (en) * 1988-11-04 1990-08-31 Imperial Chem Ind Plc <Ici> Water-dispersible polyester polymer, its nanufacture, and aqueous dispersion thereof
JPH10302772A (en) * 1997-04-22 1998-11-13 Toyobo Co Ltd Negative electrode for secondary battery and secondary battery using the same
JP2000021408A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2000095835A (en) * 1998-09-24 2000-04-04 Hitachi Chem Co Ltd Thermosetting polyamide-based resin and its production
JP2000133273A (en) * 1998-10-30 2000-05-12 Hitachi Chem Co Ltd Secondary battery
JP2001043896A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd Manufacture of polymeric solid electrolyte, polymeric solid electrolyte, and electrochemical device
JP2001043731A (en) * 1999-07-29 2001-02-16 Hitachi Chem Co Ltd High molecular solid electrolyte, manufacture thereof and electrochemical device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073678A1 (en) 2010-11-29 2012-06-07 Jsr株式会社 Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries
US9172092B2 (en) 2010-11-29 2015-10-27 Jsr Corporation Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrode, and all-solid-state battery
WO2019156086A1 (en) * 2018-02-07 2019-08-15 日本ゼオン株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
JPWO2019156086A1 (en) * 2018-02-07 2021-02-18 日本ゼオン株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element and electrochemical element
JP7276160B2 (en) 2018-02-07 2023-05-18 日本ゼオン株式会社 Binder composition for electrochemical element, slurry composition for electrochemical element, functional layer for electrochemical element, and electrochemical element
CN116057120A (en) * 2020-08-31 2023-05-02 株式会社吴羽 Binder, electrode mixture, electrode, and nonaqueous electrolyte secondary battery
WO2022044538A1 (en) * 2020-08-31 2022-03-03 株式会社クレハ Binder, electrode mixture, electrode, and nonaqueous electrolyte secondary battery
JPWO2022044538A1 (en) * 2020-08-31 2022-03-03
JP7523551B2 (en) 2020-08-31 2024-07-26 株式会社クレハ Binder, electrode mixture, and method for producing electrode mixture
CN114447438A (en) * 2020-10-30 2022-05-06 泰星能源解决方案有限公司 Method for producing nonaqueous electrolyte solution for lithium ion secondary battery and method for producing lithium ion secondary battery using the same
JP2022072676A (en) * 2020-10-30 2022-05-17 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of non-aqueous electrolytic solution for lithium ion secondary battery and manufacturing method of lithium ion secondary battery using non-aqueous electrolytic solution
JP7258002B2 (en) 2020-10-30 2023-04-14 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing nonaqueous electrolyte for lithium ion secondary battery and method for producing lithium ion secondary battery using the nonaqueous electrolyte
CN114447438B (en) * 2020-10-30 2023-11-10 泰星能源解决方案有限公司 Method for producing nonaqueous electrolyte for lithium ion secondary battery and method for producing lithium ion secondary battery using same

Also Published As

Publication number Publication date
JP4507290B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP2001068115A (en) Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery
US20070134484A1 (en) Porous film, process for producing the same, and lithium-ion secondary cell made with the same
EP2490285B1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and process for production thereof
JP6380579B2 (en) Lithium secondary battery electrode, lithium secondary battery, and automobile
US20110031935A1 (en) Negative electrode for lithium-ion secondary battery and manufacturing process for the same
JP2011048969A (en) Negative electrode for lithium ion secondary battery and secondary battery using the same
JP5431829B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2011074439A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6520496B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4507290B2 (en) Non-aqueous solvent secondary battery electrode and non-aqueous solvent secondary battery using the same
JP2015065163A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4240240B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3422389B2 (en) Non-aqueous electrolyte secondary battery
JP6520497B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6314751B2 (en) Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3589321B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP6988539B2 (en) Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2001043896A (en) Manufacture of polymeric solid electrolyte, polymeric solid electrolyte, and electrochemical device
JP2001043732A (en) Polymeric solid electrolyte, manufacture thereof, and electrochemical device
JP2001043731A (en) High molecular solid electrolyte, manufacture thereof and electrochemical device
JPH10302771A (en) Negative electrode for secondary battery and secondary battery using the same
JPH10261404A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3422390B2 (en) Non-aqueous electrolyte secondary battery
JP3422388B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3422391B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees