JP2000256527A - Methyl methacrylate-based resin composition - Google Patents

Methyl methacrylate-based resin composition

Info

Publication number
JP2000256527A
JP2000256527A JP11337575A JP33757599A JP2000256527A JP 2000256527 A JP2000256527 A JP 2000256527A JP 11337575 A JP11337575 A JP 11337575A JP 33757599 A JP33757599 A JP 33757599A JP 2000256527 A JP2000256527 A JP 2000256527A
Authority
JP
Japan
Prior art keywords
methyl methacrylate
polymer
molecular weight
weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11337575A
Other languages
Japanese (ja)
Other versions
JP3817993B2 (en
Inventor
Taiji Yamada
泰司 山田
Takashi Sakamoto
坂本  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33757599A priority Critical patent/JP3817993B2/en
Publication of JP2000256527A publication Critical patent/JP2000256527A/en
Application granted granted Critical
Publication of JP3817993B2 publication Critical patent/JP3817993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a methyl methacrylate-based resin composition which is scarcely drawn down when heated and molded, and is especially suitable for the production of large moldings by an extrusion molding method, a blow- molding method or a foaming molding method. SOLUTION: This methyl methacrylate-based resin composition comprises (A) 90-99 wt.% of a methyl methacrylate-based polymer which has a weight- average mol.wt. of 80,000 400,000 and has a branched structure wherein mol.wts. between branched points are 30,000-500,000 defined using a Z-average mol.wt., and (B) 10-1 wt.% of high mol.wt. methyl methacrylate-based polymer having a weight-average mol.wt. of 1,000,000-5,000,000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、加熱成形時のドロ
ーダウンが少ないメタクリル酸メチル系樹脂組成物に関
する。この樹脂組成物は、押出し成形、ブロー成形、発
泡成形による特に大型成形品の製造に適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a methyl methacrylate-based resin composition having a low drawdown during hot molding. This resin composition is particularly suitable for the production of large molded products by extrusion molding, blow molding, and foam molding.

【0002】[0002]

【従来の技術】メタクリル酸メチル系重合体は剛性があ
り、透明性に優れ、かつ耐候性にも優れることから、射
出成形して、自動車のランプカバーやメーターカバー、
眼鏡レンズ、導光体等の成形品や、さらに押出し成形し
て看板や銘板等の押出し板として広く使用されている。
一方、一般のメタクリル酸メチル系重合体はブロー成形
をした時に、溶融延伸された樹脂組成物の張力が低いた
め、垂れ下り(ドローダウン)が大きくなり、小さな成
形品しか得られない。また、発泡成形は温度、成形圧力
等限定された狭い範囲でしか成形ができない。従って、
高い流動性を有すると共にドローダウンが小さい樹脂組
成物が望まれている。
2. Description of the Related Art Methyl methacrylate-based polymers are rigid, have excellent transparency, and are also excellent in weather resistance.
It is widely used as molded articles such as spectacle lenses and light guides, and further extruded and formed as extruded plates such as signboards and nameplates.
On the other hand, when a general methyl methacrylate-based polymer is blow-molded, the tension of the melt-stretched resin composition is low, so that the sagging (drawdown) becomes large and only a small molded product can be obtained. In addition, foam molding can be performed only in a limited narrow range such as temperature and molding pressure. Therefore,
A resin composition having high fluidity and low drawdown is desired.

【0003】従来、成形時の加工特性を改良する方法と
して、特開平5−140411号公報にポリテトラフル
オロエチレンを添加する方法が開示されている。また、
特開平8−208746号公報には分岐構造を有するメ
タクリル酸メチル系重合体により溶融流動性を保持した
まま、溶融延伸時の張力を増大させてドローダウンを低
下させる方法が開示されている。
Conventionally, as a method for improving the processing characteristics at the time of molding, Japanese Patent Application Laid-Open No. 5-140411 discloses a method of adding polytetrafluoroethylene. Also,
Japanese Patent Application Laid-Open No. 8-208746 discloses a method in which the drawdown is reduced by increasing the tension during melt stretching while maintaining the melt fluidity by a methyl methacrylate polymer having a branched structure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ポリテ
トラフルオロエチレンを添加する方法は、ドローダウン
を低下させる効果を有するものの、大型ブロー成形に必
要な溶融延伸時の張力は見込めず、その効果は不十分で
ある。また、ポリテトラフルオロエチレンの屈折率がメ
タクリル酸メチル重合体と異なるため、アクリル樹脂の
特徴の一つである透明性も失われてしまう。分岐構造を
有するメタクリル酸メチル系重合体を用いる場合、流動
性と溶融延伸時の張力は、通常の直鎖状メタクリル酸メ
チル系重合体に比べて高いアクリル樹脂が得られるが、
パリソンの長さが40cmを超えるような大型ブロー成
形にも使用可能なドローダウンが小さい樹脂ではなく、
さらに大きな溶融延伸時のドローダウンの小さい樹脂が
求められている。本発明は、溶融流動性を保ちながら、
しかも大型ブロー成形や押出し発泡成形にも適用し得る
溶融延伸時の張力が著しく改良された、すなわちドロー
ダウンの少ないメタクリル酸メチル系樹脂組成物を提供
することを目的とするものである。
However, although the method of adding polytetrafluoroethylene has the effect of lowering the drawdown, the tension required for melt-drawing required for large-size blow molding cannot be expected, and the effect is not satisfactory. It is enough. Further, since the refractive index of polytetrafluoroethylene is different from that of methyl methacrylate polymer, transparency, which is one of the characteristics of the acrylic resin, is lost. In the case of using a methyl methacrylate polymer having a branched structure, the fluidity and the tension during melt stretching can be higher than that of a normal linear methyl methacrylate polymer, but an acrylic resin can be obtained.
It is not a resin with a small drawdown that can be used for large blow molding with a parison length exceeding 40 cm,
There is a demand for a resin having a small drawdown at the time of larger melt drawing. The present invention, while maintaining the melt fluidity,
Moreover, it is an object of the present invention to provide a methyl methacrylate-based resin composition which is applicable to large-size blow molding and extrusion foam molding and has significantly improved tension at the time of melt stretching, that is, low drawdown.

【0005】[0005]

【課題を解決するための手段】本発明は、重量平均分子
量が8万〜40万で、Z平均分子量を用いて規定される
分岐点間分子量が3万〜50万である分岐構造を有する
メタクリル酸メチル系重合体(A)が90〜99重量%
および重量平均分子量が100万〜500万である高分
子量メタクリル酸メチル系重合体(B)が10〜1重量
%とからなるメタクリル酸メチル系樹脂組成物を提供す
るものである。
According to the present invention, there is provided a methacryl having a branched structure having a weight average molecular weight of 80,000 to 400,000 and a molecular weight between branch points defined by using the Z average molecular weight of 30,000 to 500,000. Methyl acid polymer (A) is 90 to 99% by weight
And a high-molecular-weight methyl methacrylate-based polymer (B) having a weight average molecular weight of 1,000,000 to 5,000,000 and 10 to 1% by weight.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において用いられる分岐を有するメタクリル酸メ
チル系重合体および高分子量メタクリル酸メチル系重合
体とは、その構成単位としてメタクリル酸メチルを50
重量%以上、好ましくは70重量%以上含有するもので
あり、メタクリル酸メチル単位を50重量%以上含有す
る限りその一部がメタクリル酸メチルと共重合可能な単
官能の不飽和単量体で置き換えられたものであっても良
い。該共重合可能な単官能不飽和単量体は該重合体中に
1重量%以上含まれていることが好ましく、さらに好ま
しくは3重量%以上であり、3〜20重量%の場合が特
に好ましい。メタクリル酸メチルが50重量%未満で
は、いわゆるポリメタクリル酸メチルの特性である透明
性、機械的強度が発現しにくい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The branched methyl methacrylate-based polymer and the high molecular weight methyl methacrylate-based polymer used in the present invention are methyl methacrylate as a constituent unit thereof.
% By weight, preferably 70% by weight or more, and as long as the methyl methacrylate unit contains 50% by weight or more, a part thereof is replaced with a monofunctional unsaturated monomer copolymerizable with methyl methacrylate. It may be what was done. The copolymerizable monofunctional unsaturated monomer is preferably contained in the polymer in an amount of 1% by weight or more, more preferably 3% by weight or more, and particularly preferably 3 to 20% by weight. . When the content of methyl methacrylate is less than 50% by weight, transparency and mechanical strength, which are characteristics of so-called polymethyl methacrylate, are hardly exhibited.

【0007】共重合可能な単官能不飽和単量体として
は、例えば、メタクリル酸エチル、メタクリル酸プロピ
ル、メタクリル酸ブチル、メタクリル酸ベンジル等のメ
タクリル酸エステル類:アクリル酸メチル、アクリル酸
エチル、アクリル酸プロピル、アクリル酸ブチル、アク
リル酸2−エチルヘキシル等のアクリル酸エステル類:
アクリル酸、メタクリル酸、マレイン酸、イタコン酸等
の不飽和カルボン酸、無水マレイン酸、無水イタコン酸
等の酸無水物:アクリル酸2−ヒドロキシエチル、アク
リル酸2−ヒドロキシプロピル、アクリル酸モノグリセ
ロール、メタクリル酸2−ヒドロキシエチル、メタクリ
ル酸ヒドロキシプロピル、メタクリル酸モノグリセロー
ル等のヒドロキシル基合有のエステル:アクリルアミ
ド、メタクリルアミド、ジアセトンアクリルアミドが挙
げられる。さらにアクリロニトリル、メタクリロニトリ
ル等のニトリル類:メタクリル酸ジメチルアミノエチル
等の窒素含有単量体:アリルグリシジルエーテル、アク
リル酸グリシジル、メタクリル酸グリシジル等のエポキ
シ基含有単量体:スチレン、α−メチルスチレン等のス
チレン系単量体が挙げられる。
Examples of the copolymerizable monofunctional unsaturated monomer include methacrylates such as ethyl methacrylate, propyl methacrylate, butyl methacrylate, and benzyl methacrylate: methyl acrylate, ethyl acrylate, acrylic Acrylic esters such as propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate:
Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and acid anhydrides such as maleic anhydride and itaconic anhydride: 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, monoglycerol acrylate, Esters having a hydroxyl group such as 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, and monoglycerol methacrylate: acrylamide, methacrylamide, and diacetone acrylamide. Further, nitriles such as acrylonitrile and methacrylonitrile; nitrogen-containing monomers such as dimethylaminoethyl methacrylate; epoxy-containing monomers such as allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate: styrene and α-methylstyrene And the like.

【0008】本発明の分岐構造を有するメタクリル酸メ
チル系重合体(A)はUSP5,726,268に開示
されており、その重量平均分子量(Mw)は8万〜40
万である。好ましくは、15万〜30万である。重量平
均分子量(Mw)が8万未満であると該重合体の機械的
強度や耐溶剤性が充分でなく、これと直鎖状メタクリル
酸メチル系重合体とからなるメタクリル酸メチル系樹脂
組成物から得られる成形品の強度や耐溶剤性も悪くな
る。また40万を超えて高いと溶融流動性が低くなり過
ぎて得られる樹脂組成物の成形性が低下する。
The methyl methacrylate polymer (A) having a branched structure of the present invention is disclosed in US Pat. No. 5,726,268, and has a weight average molecular weight (Mw) of 80,000 to 40.
It is ten thousand. Preferably, it is 150,000 to 300,000. If the weight average molecular weight (Mw) is less than 80,000, the mechanical strength and solvent resistance of the polymer are not sufficient, and a methyl methacrylate resin composition comprising the polymer and a linear methyl methacrylate polymer Also, the strength and solvent resistance of the molded article obtained from the above become poor. On the other hand, if it is higher than 400,000, the melt fluidity becomes too low, and the moldability of the obtained resin composition decreases.

【0009】本発明の分岐構造を有するメタクリル酸メ
チル系重合体Aは、そのZ平均分子量(Mz)を用いて
規定される分岐点間分子量(Mzb)が3万〜50万の
もの、好ましくは5万〜20万のものである。分岐点間
分子量(Mzb)が50万を超えると、得られる分岐構
造を有する重合体の流動性に対する耐溶剤性への効果が
なくなり、これと直鎖状メタクリル酸メチル系重合体A
からなるメタクリル酸メチル系樹脂組成物の耐溶剤性の
効果もなくなる。一方核分岐点間分子量が3万未満の場
合には、樹脂組成物から得られる成形品の機械的強度が
劣ると共に成形品の外観も劣る。
The methyl methacrylate polymer A having a branched structure of the present invention has a molecular weight between branch points (Mzb) defined by using its Z-average molecular weight (Mz) of 30,000 to 500,000, preferably 50,000 to 200,000. When the molecular weight between branch points (Mzb) exceeds 500,000, the obtained polymer having a branched structure has no effect on the solvent resistance to the fluidity, and this and the linear methyl methacrylate polymer A
Of the solvent resistance of the methyl methacrylate-based resin composition comprising On the other hand, when the molecular weight between the core branch points is less than 30,000, the mechanical strength of the molded article obtained from the resin composition is poor and the appearance of the molded article is also poor.

【0010】ここで重量平均分子量(Mw)、Z平均分
子量(Mz)とは、ゲル・パーミエーション・クロマト
グラフィー(GPC)と示差屈折率計により求められる
値である。この求め方は、例えば1984年度版、「高
分子特性解析」(共立出版)24頁〜55頁に記載され
ている。
Here, the weight average molecular weight (Mw) and the Z average molecular weight (Mz) are values determined by gel permeation chromatography (GPC) and a differential refractometer. This method is described in, for example, 1984 edition, “Polymer Characteristic Analysis” (Kyoritsu Shuppan), pp. 24 to 55.

【0011】分岐点間分子量とは、分岐構造を有するポ
リマーにおいて分岐点から次の分岐点までの分子量の平
均値を意味し、Z平均分子量(Mz)を用いて規定され
る。この分岐点間分子量(Mzb)は、日本ゴム協会
誌、第45巻、第2号、105〜118頁「キャラクタ
リゼーション」の記載に基づき、下記[数1]、[数
2]式より算出される。
The molecular weight between branch points means an average molecular weight from a branch point to the next branch point in a polymer having a branched structure, and is defined by using a Z average molecular weight (Mz). The molecular weight between branch points (Mzb) is calculated from the following [Equation 1] and [Equation 2] based on the description in "Characterization" of the Japan Rubber Association, Vol. 45, No. 2, pages 105-118. You.

【0012】[0012]

【数1】{[η1]/[η2]}10/6={(1+Bz/
6)0.5 +4Bz/3π}-0.5
[Equation 1] {[η 1 ] / [η 2 ]} 10/6 = {(1 + Bz /
6) 0.5 + 4Bz / 3π} -0.5

【0013】[0013]

【数2】Mzb=Mz/Bz## EQU2 ## Mzb = Mz / Bz

【0014】上記[数l]において、[η1]は、直鎖
状メタクリル酸メチル重合体標準試料のGPC溶出時間
に対する極限粘度と絶対分子量との積の関係を示す普遍
較正曲線を用いて得られる測定対象の重合体の絶対分子
量に対する極限粘度の関係を示す較正曲線において、分
子量がMz値に対応する極限粘度である。[η2]は、
直鎖状メタクリル酸メチル重合体標準試料の絶対分子量
に対する極限粘度の関係を示す較正曲線において、測定
対象の重合体と同じ分子量Mz値に対応する極限粘度で
ある。Bzは、Z平均分子量Mzにおける分岐点の数で
ある。
In the above [Equation 1 ], [η 1 ] is obtained by using a universal calibration curve showing the relationship between the intrinsic viscosity and the absolute molecular weight with respect to the GPC elution time of a standard sample of a linear methyl methacrylate polymer. In the calibration curve showing the relationship between the intrinsic viscosity and the absolute molecular weight of the polymer to be measured, the molecular weight is the intrinsic viscosity corresponding to the Mz value. [Η 2 ] is
In the calibration curve showing the relationship between the intrinsic viscosity and the absolute molecular weight of the linear methyl methacrylate polymer standard sample, the intrinsic viscosity is the intrinsic viscosity corresponding to the same molecular weight Mz value as the polymer to be measured. Bz is the number of branch points in the Z average molecular weight Mz.

【0015】本発明における分岐構造を有するメタクリ
ル酸メチル系重合体(A)は、その重合体のうち分子量
30万以上のものの割合が、その重合体の還元粘度が
0.7dl/g以下の時は、{〔14×該還元粘度値−
6.8〕〜〔14×該還元粘度値+11・2〕}(重量
%)であり、還元粘度が0.7dl/g以上の時は、
{〔40×該還元粘度値−25〕〜〔40×該還元粘度
値−7〕}(重量%)であることが好ましい。なお、本
発明で表す重合体(A)の還元粘度とは、その測定する重
合体(A)の溶液濃度が1g/dlでの値である。分岐構
造を有するメタクリル酸メチル系重合体(A)の分子量
30万以上の割合が上記の範囲内の場合には、分岐構造
を有するメタクリル酸メチル系重合体(A)の流動性と
耐溶剤性及び機械的強度のバランスに優れ、それに伴っ
て、これを用いて得られる樹脂組成物の流動性と耐溶剤
性及び機械的強度のバランスに優れている。
The methyl methacrylate polymer (A) having a branched structure according to the present invention has a ratio of a polymer having a molecular weight of 300,000 or more when the reduced viscosity of the polymer is 0.7 dl / g or less. Is [{14 × the reduced viscosity value−
6.8] to [14 × the reduced viscosity value + 11 · 2]} (% by weight), and when the reduced viscosity is 0.7 dl / g or more,
It is preferable that {40 × the reduced viscosity value-25} to [40 × the reduced viscosity value-7}} (% by weight). In addition, the reduced viscosity of the polymer (A) represented by the present invention is a value at a solution concentration of the polymer (A) to be measured at 1 g / dl. When the ratio of the molecular weight of the methyl methacrylate polymer having a branched structure (A) of 300,000 or more is within the above range, the fluidity and solvent resistance of the methyl methacrylate polymer having a branched structure (A) In addition, the resin composition is excellent in the balance between fluidity, solvent resistance, and mechanical strength.

【0016】また本発明における分岐構造を有するメタ
クリル酸メチル系重合体(A)の架橋度は、ゲル分率
(全重合体重量に対するアセトン不溶部分の重量%)で
表して、通常3%以下、好ましくは1%以下、更に好ま
しくはほぼ0%である。
The degree of crosslinking of the methyl methacrylate polymer (A) having a branched structure in the present invention is usually expressed as a gel fraction (% by weight of an acetone-insoluble portion based on the total weight of the polymer), and is usually 3% or less. It is preferably at most 1%, more preferably almost 0%.

【0017】なお、熱可塑性樹脂の溶融延伸する際の張
力は、その指標として、ダイスウェル比で表すこともで
きる。該ダイスウェル比は、メルトインデクサを用いて
230℃、3.8kg荷重の条件で、オリフィスの長さ
が8.0mm、オリフィスの径が2.09mmのオリフ
ィスを使用してメルトフローレートを測定した時のスト
ランド径をオリフィスの径で割った値で表すことができ
る。本発明の分岐構造を有するメタクリル酸メチル系重
合体(A)のダイスウェル比は、1.2〜2.5の値と
なる。なお、分岐構造を有さないメタクリル酸メチル系
樹脂は、ジャーナル オブアプライド ポリマー サイ
エンス(J.Appl.Polym.Sci.)29
(1984),3479−3490のFig.9に記載
されており、約1程度である。つまり、分岐構造を有す
るメタクリル酸メチル系重合体(A)のダイスウェル比
が大きく、溶融延伸する際の張力が大きいく、ドローダ
ウンが小さいことが示される。しかしながら、ブロー成
形等によって大型の成形品を得るためには、未だ不十分
である。
The tension at which the thermoplastic resin is melted and drawn can be represented by a die swell ratio as an index. The die swell ratio was determined by measuring the melt flow rate using an orifice having an orifice length of 8.0 mm and an orifice diameter of 2.09 mm at a temperature of 230 ° C. and a load of 3.8 kg using a melt indexer. It can be expressed as a value obtained by dividing the strand diameter at the time by the diameter of the orifice. The die swell ratio of the methyl methacrylate polymer (A) having a branched structure of the present invention is a value of 1.2 to 2.5. Note that methyl methacrylate-based resin having no branched structure is available from Journal of Applied Polymer Science (J. Appl. Polym. Sci.) 29
(1984), 3479-3490, FIG. 9, which is about 1. That is, it is shown that the methyl methacrylate polymer (A) having a branched structure has a large die swell ratio, a large tension at the time of melt stretching, and a small drawdown. However, it is still insufficient to obtain a large molded product by blow molding or the like.

【0018】本発明の分岐構造を有するメタクリル酸メ
チル系重合体(A)は、前述の構成単位の単量体に、所
定量の多官能単量体、更に連鎖移動剤及び重合開始剤を
加えて重合することによって得られる。連鎖移動剤とし
て多官能連鎖移動剤を、また重合開始剤として多官能開
始剤を用いることができる。これら多官能性の構成単位
となる成分の量は、メタクリル酸メチル等の単官能性単
量体に対し、通常は0.02〜1重量%である。
The methyl methacrylate polymer (A) having a branched structure of the present invention is obtained by adding a predetermined amount of a polyfunctional monomer, a chain transfer agent and a polymerization initiator to the above-mentioned monomer of the structural unit. Obtained by polymerization. A polyfunctional chain transfer agent can be used as the chain transfer agent, and a polyfunctional initiator can be used as the polymerization initiator. The amount of the component serving as the polyfunctional structural unit is usually 0.02 to 1% by weight based on a monofunctional monomer such as methyl methacrylate.

【0019】共重合可能な多官能単量体としては、エチ
レングリコールジ(メタ)アクリレート、ジエチレング
リコールジ(メタ)アクリレート、トリエチレング・リ
コーリレジ(メタ)アクリレート、テトラエチレングリ
コールジ(メタ)アクリレート等のエチレングリコール
またはそのオリゴマーの両末端水酸基をアクリル酸また
はメタクリル酸でエステル化したもの;ネオペンチルグ
リコールジ(メタ)アクリレート、ヘキサンジオールジ
(メタ)アクリレート、ブタンジオールジ(メタ)アク
リレート等の2価のアルコールの水酸基をアクリル酸ま
たはメタクリル酸でエステル化したもの;トリメチロー
ルプロパン、ペンタエリスリトール等の多価アルコール
またはこれら多価アルコール誘導体をアクリル酸または
メタクリル酸でエステル化したもの;ジビニルベンゼン
等のアルケニル基を2個以上有するアリール化合物等が
挙げられる。
Examples of the polyfunctional monomer capable of being copolymerized include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, ethylene glycol such as triethylene glycol di (meth) acrylate and tetraethylene glycol di (meth) acrylate. Or those obtained by esterifying the hydroxyl groups at both ends of the oligomer with acrylic acid or methacrylic acid; dihydric alcohols such as neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate, and butanediol di (meth) acrylate Hydroxyl groups esterified with acrylic acid or methacrylic acid; polyhydric alcohols such as trimethylolpropane and pentaerythritol or derivatives of these polyhydric alcohols with acrylic acid or methacrylic acid Those that have been etherified; aryl compound having an alkenyl group such as divinylbenzene two or more thereof.

【0020】連鎖移動剤としては、メタクリル酸メチル
の重合に用いられる周知のものを用いることができる。
連鎖移動剤には、連鎖移動官能基を1つ有する単官能の
連鎖移動剤および連鎖移動官能基を2つ以上有する多官
能連鎖移動剤とがある。単官能連鎖移動剤としては、ア
ルキルメルカプタン類、チオグリコール酸エステル類等
が挙げられ、多官能連鎖移動剤としては、エチレングリ
コール、ネオペンチルグリコール、トリメチロールプロ
パン、ジトリメチロールプロパン、ペンタエリスリトー
ル、ジペンタエリスリトール、トリペンタエリスリトー
ル、ソルビトール等の多価アルコール水酸基をチオグリ
コール酸または3−メルカプトプロピオン酸でエステル
化したものが挙げられる。
As the chain transfer agent, those well-known for the polymerization of methyl methacrylate can be used.
The chain transfer agent includes a monofunctional chain transfer agent having one chain transfer functional group and a polyfunctional chain transfer agent having two or more chain transfer functional groups. Examples of the monofunctional chain transfer agent include alkyl mercaptans and thioglycolates, and examples of the polyfunctional chain transfer agent include ethylene glycol, neopentyl glycol, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentane Examples thereof include those obtained by esterifying a hydroxyl group of a polyhydric alcohol such as erythritol, tripentaerythritol, or sorbitol with thioglycolic acid or 3-mercaptopropionic acid.

【0021】分岐構造を有するメタクリル酸メチル系重
合体Aの重合に使用する連鎖移動剤の量は、該単官能単
量体1モル当たり、通常は5×10-5モル〜5×10-3
モルであり、共重合可能な多官能単量体の量は該単官能
単量体1モル当たり、通常はその官能基数が1×10-5
〜{該連鎖移動剤(モル)−2.5×10-4}当量とな
る範囲である。
The amount of the chain transfer agent used for the polymerization of the methyl methacrylate polymer A having a branched structure is usually from 5 × 10 −5 mol to 5 × 10 −3 per mol of the monofunctional monomer.
And the amount of the copolymerizable polyfunctional monomer is usually 1 × 10 −5 per mole of the monofunctional monomer.
To {the chain transfer agent (mol) −2.5 × 10 −4 } equivalent.

【0022】分岐構造を有するメタクリル酸メチル系重
合体Aの重量平均分子量は、一般に主として用いられる
該多官能単量体の濃度、連鎖移動剤の濃度及びラジカル
開始剤の濃度に支配される。重量平均分子量の調整は、
該多官能単量体濃度が高い程重量平均分子量は大きくな
り、逆に連鎖移動剤濃度が高い程小さくなることを考慮
して、該多官能単量体の上記濃度範囲内及び連鎖移動剤
の濃度の範囲内で適宜変更することで行う。
The weight-average molecular weight of the methyl methacrylate polymer A having a branched structure is generally governed by the concentration of the polyfunctional monomer, the concentration of the chain transfer agent and the concentration of the radical initiator which are mainly used. Adjustment of weight average molecular weight
Considering that the higher the concentration of the polyfunctional monomer, the higher the weight average molecular weight, and conversely, the lower the concentration of the chain transfer agent, the smaller the concentration, and within the above concentration range of the polyfunctional monomer and the chain transfer agent. It is performed by appropriately changing the concentration within the range.

【0023】分岐点間分子量は、主として、該多官能単
量体濃度によって調整できる。該多官能単量体濃度が高
い程、分岐点間分子量は小さくなる。また、連鎖移動剤
については、多官能連鎖移動剤を用いた場合の方が同量
の単官能連鎖移動剤を使用した場合に比べ分岐点聞分子
量は小さくなる傾向にある。分子量30万以上の割合
は、多官能単量体の濃度が高い種多くなる。
The molecular weight between branch points can be adjusted mainly by the concentration of the polyfunctional monomer. The higher the concentration of the polyfunctional monomer, the lower the molecular weight between branch points. As for the chain transfer agent, the molecular weight at the branch point tends to be smaller when the polyfunctional chain transfer agent is used than when the same amount of the monofunctional chain transfer agent is used. When the molecular weight is 300,000 or more, the number of species having a high concentration of the polyfunctional monomer increases.

【0024】重合開始剤には1分子中に1対のラジカル
を発生させる単官能重合開始剤および2対以上のラジカ
ルを発生させる多官能重合開始剤とがある。塊状重合法
のように重合率45〜60重量%で重合を終了する場合
には、3官能以上の多官能重合開始剤を使用すると多官
能単量体のみによる分岐に比べ、多官能単量体による未
反応ビニル基の量を低減することができる。例えば3官
能開始剤としてはトリス−(t−ブチルパーキシ)トリ
アジン、4官能重合開始剤としては、2,2−ビス
(4,4−ジ−t−ブチルパーオキシシクロヘキシル)
プロパンを挙げることができる。多官能重合開始剤を用
いる場合は、前記した多官能構成単位としての一部また
は全部と入れ替えることができる。
The polymerization initiator includes a monofunctional polymerization initiator for generating one pair of radicals in one molecule and a polyfunctional polymerization initiator for generating two or more pairs of radicals. When the polymerization is terminated at a polymerization rate of 45 to 60% by weight as in the bulk polymerization method, the use of a polyfunctional polymerization initiator having three or more functional groups makes it possible to use a polyfunctional monomer as compared with the branching using only the polyfunctional monomer. Can reduce the amount of unreacted vinyl groups. For example, tris- (t-butylperoxy) triazine as a trifunctional initiator and 2,2-bis (4,4-di-t-butylperoxycyclohexyl) as a tetrafunctional polymerization initiator
Propane can be mentioned. When a polyfunctional polymerization initiator is used, it can be replaced with part or all of the above-mentioned polyfunctional structural unit.

【0025】重合開始剤の使用量は、重合方法に応じた
周知の適量でよく、単量体または単量体混合物100重
量部に対して通常、0.001〜1重量部程度、好まし
くは0.01〜0.7重量部である。なお、重合開始剤
の量が多い程、重量平均分子量が小さくなるのは、周知
の一般的なメタクリル酸メチル系重合休と同様である。
The amount of the polymerization initiator used may be a known and appropriate amount according to the polymerization method, and is usually about 0.001 to 1 part by weight, preferably 0 to 1 part by weight, per 100 parts by weight of the monomer or the monomer mixture. 0.01 to 0.7 parts by weight. The fact that the larger the amount of the polymerization initiator is, the smaller the weight average molecular weight is, as in the well-known general methyl methacrylate polymerization polymerization.

【0026】本発明における分岐構造を有するメタクリ
ル酸メチル系重合体(A)を得る方法としては、工業的
にアクリル樹脂を製造する周知の重合方法、例えば懸濁
重合法、塊状重合法、乳化重合法が適応できる。懸濁重
合法における分岐構造を有するメタクリル酸メチル系重
合体(A)の反応条件としては、例えば、反応温度は通
常、60〜90℃程度、反応時間は反応温度にもよる
が、例えば、反応温度70〜85℃程度であれば1〜
l.5時間でピークとなる。ピーク後さらに100〜1
10℃程度に昇温し10〜30分程度この範囲の温度を
維持して反応を完結させる。また反応は、窒素、ヘリウ
ム、アルゴン等の不活性気体雰囲気下に行うことがゲル
分率を低くする上で好ましい。
As a method for obtaining the methyl methacrylate polymer (A) having a branched structure in the present invention, well-known polymerization methods for producing an acrylic resin industrially, for example, a suspension polymerization method, a bulk polymerization method, and an emulsification polymerization method are used. Legal can be adapted. As the reaction conditions for the methyl methacrylate polymer (A) having a branched structure in the suspension polymerization method, for example, the reaction temperature is usually about 60 to 90 ° C., and the reaction time depends on the reaction temperature. If the temperature is about 70-85 ° C,
l. It peaks at 5 hours. 100-1 after peak
The temperature is raised to about 10 ° C., and the temperature is maintained in this range for about 10 to 30 minutes to complete the reaction. The reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen, helium, argon or the like from the viewpoint of reducing the gel fraction.

【0027】本発明の樹脂組成物における高分子量メタ
クリル酸メチル系重合体(B)は、重量平均分子量Mw
が100万〜500万、好ましくは150万〜450万
である。重量平均分子量Mwが100万未満であると得
られる本発明の樹脂組成物をブロー成形する際十分な張
力が得られず、ドローダウンの低下が認められない。ま
た、押出し発泡成形をする場合にも、発泡の条件は、温
度、成形圧力など限定された条件でしか発泡体を得る事
ができない。また500万を超えると溶融流動性が低く
なり溶融成形性が低下する。
The high molecular weight methyl methacrylate polymer (B) in the resin composition of the present invention has a weight average molecular weight Mw
From 1,000,000 to 5,000,000, preferably from 1.5,000,000 to 4.5,000,000. When the resin composition of the present invention obtained when the weight average molecular weight Mw is less than 1,000,000 is blow-molded, sufficient tension cannot be obtained, and no decrease in drawdown is observed. Also, in the case of extrusion foam molding, foams can be obtained only under limited conditions such as temperature and molding pressure. On the other hand, if it exceeds 5,000,000, the melt fluidity is lowered and the melt moldability is lowered.

【0028】この高分子量メタクリル酸メチル系重合体
(B)は、メタクリル酸メチル、またはメタクリル酸メ
チルと前述した共重合可能な単官能不飽和単量体を周知
の重合方法、例えば懸濁重合法、塊状重合法、乳化重合
法で重合することによって製造される。この際に連鎖移
動剤を殆ど使用することなく重合することによって高分
子量の重合体を得ることができる。
This high molecular weight methyl methacrylate polymer (B) can be prepared by polymerizing methyl methacrylate or the above-mentioned copolymerizable monofunctional unsaturated monomer with methyl methacrylate by a known polymerization method, for example, a suspension polymerization method. It is produced by polymerization by a bulk polymerization method or an emulsion polymerization method. At this time, a polymer having a high molecular weight can be obtained by performing polymerization without using a chain transfer agent.

【0029】本発明のメタクリル酸メチル系重合体組成
物を得る方法は、周知の熱可塑性樹脂の混合方法を用い
ることができる。例えば、各成分を一旦溶融混練する方
法があり、該溶融混練は一般的に使用される一軸または
二軸の押出し機、各種のニーダー等の混練装置を用い、
ペレット状にする方法がある。また最終製品を溶融加工
する際に、各成分を混合する方法がある。また、まず高
分子量重合体を製造するための単量体混合物を重合し、
残りの単量体中に多官能構成単位となる成分および連鎖
移動剤を添加して分岐状の重合体を得る方法がある。ま
た、予め製造した高分子量重合体を分岐状の重合体を製
造するための単量体混合物に溶解したのち重合する方法
がある。
As a method for obtaining the methyl methacrylate polymer composition of the present invention, a known thermoplastic resin mixing method can be used. For example, there is a method of once melt-kneading each component, the melt-kneading is generally used single-screw or twin-screw extruder, using a kneading device such as various kneaders,
There is a method of pelletizing. In addition, there is a method of mixing respective components when melt-processing the final product. Also, first polymerize a monomer mixture to produce a high molecular weight polymer,
There is a method of obtaining a branched polymer by adding a component serving as a polyfunctional structural unit and a chain transfer agent to the remaining monomers. In addition, there is a method in which a previously produced high molecular weight polymer is dissolved in a monomer mixture for producing a branched polymer and then polymerized.

【0030】本発明においてメタクリル酸メチル系樹脂
組成物中の分岐構造を有するメタクリル酸メチル系重合
体(A)と高分子量メタクリル酸メチル系重合体(B)
との割合は、分岐構造を有するメタクリル酸メチル系重
合体(A)が約90〜約99重量%、好ましくは約91
〜約98重量%、および高分子量メタクリル酸メチル系
重合体が約10〜約1重量%、好ましくは約9〜約2重
量%である。高分子量メタクリル酸系重合体(B)が約
10重量%を超えると組成物の溶融流動性が低下し、1
重量%未満では溶融延伸時のドローダウンの低下が不十
分である。
In the present invention, the methyl methacrylate polymer (A) having a branched structure and the high molecular weight methyl methacrylate polymer (B) in the methyl methacrylate resin composition are used.
Is about 90 to about 99% by weight, preferably about 91% by weight, of the methyl methacrylate polymer (A) having a branched structure.
About 98% by weight, and about 10% to about 1%, preferably about 9% to about 2% by weight of the high molecular weight methyl methacrylate-based polymer. When the amount of the high molecular weight methacrylic acid-based polymer (B) exceeds about 10% by weight, the melt fluidity of the composition decreases, and
If the amount is less than the percentage by weight, the drawdown during melt stretching is insufficiently reduced.

【0031】本発明の樹脂組成物は、必要に応じて離型
剤、紫外線吸収剤、着色剤、酸化防止剤、熱安定剤、可
塑剤、充填剤、染料、顔料、光拡散材等の一般的なアク
リル樹脂に添加できる各種添加剤を混在させても何ら問
題はなく、その混練の際、あるいは各重合体の重合中に
添加することができる。更に本発明の効果を損ねない範
囲内において、本発明のメタクリル酸メチル系樹脂組成
物以外の耐衝撃性アクリル系樹脂、例えば微少なゴム系
重合体を含有したアクリル樹脂や、ゴム系重合体単体を
混合してもよい。
The resin composition of the present invention may contain, if necessary, a releasing agent, an ultraviolet absorber, a coloring agent, an antioxidant, a heat stabilizer, a plasticizer, a filler, a dye, a pigment, a light diffusing material and the like. There is no problem even if various additives that can be added to a typical acrylic resin are mixed, and they can be added during the kneading or during the polymerization of each polymer. Further, within a range that does not impair the effects of the present invention, an impact-resistant acrylic resin other than the methyl methacrylate-based resin composition of the present invention, for example, an acrylic resin containing a small rubber-based polymer, or a rubber-based polymer alone May be mixed.

【0032】本発明において、ドローダウンの評価は次
のようにして行われる。樹脂ペレットを85℃で4時間
乾燥し、キャピログラフ((株)東洋精機製)を用い、
樹脂温度230℃、押出速度0.3g/sで径2mmφ
のオリフィスより大気中、下方に溶融押出し、樹脂を長
さ50cmのストランド状に押出し後、押出しをストッ
プした後のストランドの長さの経過時間変化を測定す
る。ストランドが10%伸びる時間が0〜5秒の樹脂
は、大型の成形品の製造は困難であり、5秒を超える、
好ましくは10秒を超える樹脂が大型の成形品の製造を
可能にする。
In the present invention, the drawdown is evaluated as follows. The resin pellet was dried at 85 ° C. for 4 hours, and was subjected to Capillograph (manufactured by Toyo Seiki Co., Ltd.)
Resin temperature 230 ° C, extrusion speed 0.3g / s, diameter 2mmφ
The resin is extruded downward from the orifice in the atmosphere in the air, and after extruding the resin into a strand having a length of 50 cm, the change in the length of the strand after the extrusion is stopped is measured. For a resin in which the strand elongates 10% for 0 to 5 seconds, it is difficult to produce a large molded product, and the resin exceeds 5 seconds.
The resin, preferably longer than 10 seconds, allows for the production of large molded articles.

【0033】[0033]

【発明の効果】本発明の樹脂組成物は、耐溶剤性に優
れ、高い流動性を有し、ブロー成形時のドローダウンが
小さく、大型の成形品の成形に用いることができる。ま
た、この樹脂組成物を押出し機で成形する際、シーティ
ングする時のメルトダウンが軽減され、押出し加工特性
が良好である。できたシート等を加熱成形する場合には
偏肉の少ない良好な製品を得ることができる。また、イ
ンジェクションブロー成形やダイレクトブロー成形の成
形条件範囲が広くなり、できた成形品の偏肉が軽減され
る。さらに、大型のブロー成形が可能になった事によ
り、これまでアクリル樹脂で成形できなかった、大型ボ
トル、大型看板、照明カバー、自動車部品のパーツ、バ
スタブ周辺材料、家電製品材料等のアクリル樹脂の意匠
性や耐溶剤性や耐候性、あるいは表面硬度を生かした材
料への展開が可能になる。さらに従来のメタクリル樹脂
では満足できる発泡体が得られていないのに対し、発泡
成形時のガス抜けが少ない高発泡倍率の発泡体を得るこ
とができる。
The resin composition of the present invention has excellent solvent resistance, high fluidity, low drawdown during blow molding, and can be used for molding large molded products. Further, when the resin composition is molded by an extruder, the meltdown during sheeting is reduced, and the extrusion processing characteristics are good. When the formed sheet or the like is formed by heating, a good product with less uneven thickness can be obtained. Further, the range of molding conditions for injection blow molding and direct blow molding is widened, and uneven wall thickness of the formed molded product is reduced. In addition, large-size blow molding has become possible, and acrylic bottles, large signboards, lighting covers, parts for automobile parts, bathtub peripheral materials, home appliance materials, and other acrylic resin materials that could not be molded with acrylic resin until now. It can be applied to materials utilizing design properties, solvent resistance, weather resistance, or surface hardness. Furthermore, while satisfactory foams cannot be obtained with conventional methacrylic resins, foams having a high expansion ratio with little outgassing during foam molding can be obtained.

【0034】[0034]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明はこれによって限定されるものでは
ない。なお、実施例中の評価は次のような方法を用いて
行った。 (1)MFR:JIS K7210に準拠し、230
℃、3.8kg荷重、10分で測定した(g/10
分)。 (2)ダイスウェル比:上記MFRを測定した際のスト
ランド径をオリフィスの径2.09mmで割った値。 (3)還元粘度:JIS Z8803に準拠し、重合体
(A)の還元粘度は1g/dlの濃度で、また重合体(B)
の還元粘度は0.1g/dlの濃度での値であり、クロ
ロホルム溶液、25℃で測定し求めた(d1/g)。 (4)重量平均分子量(Mw)及びZ平均分子量(M
z):示差屈折率計及び粘度計付きゲル・パーミエーシ
ョン・クロマトグラフィー(Waters社製GPC1
50‐CV)を用い、標準メタクリル酸メチル重合体の
(分子量−溶出時間)較正曲線から求めた。 (5)分岐点間分子量(Mzb):上記較正曲線および
標準メタクリル酸メチル重合体のGPC溶出時間に対す
る極限粘度の関係を示す較正曲線とから絶対分子量に対
する極限粘度の関係を示す較正曲線を求め、この較正曲
線を用いて分子量Mz値に対応する極限粘度[η2]を
求めた。次に標準メタクリル酸メチル重合体の溶出時間
に対する絶対分子量と極限粘度との積の関係を示す普遍
較正曲線を用いて、測定対象の重合体の絶対分子量に対
する極限粘度の関係を示す較正曲線を求め、この較正曲
線を用いて分子量Mz値に対応する極限粘度[η1]を
求めた。[η1]および[η2]を用いて前述の[数1]
からBzを求め、次いで前述の[数2]からMzbを算
出した。 (6)ドローダウンの評価:樹脂ペレットを85℃で4
時間乾燥し、キャピログラフ((株)東洋精機製)を用
い、樹脂温度230℃、押出速度0.3g/sで径2m
mφのオリフィスより大気中、下方に溶融押出し、樹脂
を長さ50cmのストランド状に押出し後、押出しをス
トップした後のストランドの長さの経過時間変化を測定
しドローダウンの評価をした。評価はストランドが10
%伸びる時間が、0から5秒までを×、5秒を超えて1
0秒までを△、10秒を超えるものを○で表した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. In addition, the evaluation in an Example was performed using the following methods. (1) MFR: 230 according to JIS K7210
° C, 3.8 kg load, measured for 10 minutes (g / 10
Minutes). (2) Die swell ratio: a value obtained by dividing the strand diameter when measuring the above MFR by the orifice diameter of 2.09 mm. (3) Reduced viscosity: polymer according to JIS Z8803
The reduced viscosity of (A) is 1 g / dl and the polymer (B)
Is a value at a concentration of 0.1 g / dl, and was measured and measured at 25 ° C. in a chloroform solution (d1 / g). (4) Weight average molecular weight (Mw) and Z average molecular weight (M
z): Gel permeation chromatography with a differential refractometer and a viscometer (GPC1 manufactured by Waters)
(Molecular weight-elution time) calibration curve of standard methyl methacrylate polymer. (5) Molecular weight between branch points (Mzb): From the above calibration curve and a calibration curve showing the relationship of the intrinsic viscosity to the GPC elution time of the standard methyl methacrylate polymer, a calibration curve showing the relationship of the intrinsic viscosity to the absolute molecular weight was determined. Using this calibration curve, the intrinsic viscosity [η 2 ] corresponding to the molecular weight Mz value was determined. Next, using a universal calibration curve showing the relationship between the absolute molecular weight and the intrinsic viscosity with respect to the elution time of the standard methyl methacrylate polymer, a calibration curve showing the relationship between the absolute molecular weight and the intrinsic viscosity of the polymer to be measured was determined. The intrinsic viscosity [η 1 ] corresponding to the molecular weight Mz value was determined using this calibration curve. Using [η 1 ] and [η 2 ], the above [Equation 1]
Was calculated from the above, and then Mzb was calculated from the above [Equation 2]. (6) Draw-down evaluation: Resin pellets at 85 ° C.
After drying for an hour, using a Capillograph (manufactured by Toyo Seiki Co., Ltd.), the resin temperature was 230 ° C., the extrusion speed was 0.3 g / s, and the diameter was 2 m.
The resin was melt-extruded downward from the mφ orifice in the air, the resin was extruded into a strand having a length of 50 cm, and the change in the length of the strand after the extrusion was stopped was measured to evaluate the drawdown. Evaluation is 10 strands
% Time is 0 to 5 seconds x 1 over 5 seconds
The symbols up to 0 seconds were represented by Δ, and those exceeding 10 seconds were represented by ○.

【0035】実施例で用いた各種単量体、連鎖移動剤の
略称は、以下の通り。 MMA:メタクリル酸メチル MA:アクリル酸メチル BA:アクリル酸ブチル HDA:1,6−ヘキサンジオールジアクリレート LRSH:ラウリルメルカプタン DDSH:n−ドデシルメルカプタン LRPO:ラウロイルパーオキサイド DBSN:ドデシルベンゼンスルホン酸ナトリウム
Abbreviations of various monomers and chain transfer agents used in the examples are as follows. MMA: methyl methacrylate MA: methyl acrylate BA: butyl acrylate HDA: 1,6-hexanediol diacrylate LRSH: lauryl mercaptan DDSH: n-dodecyl mercaptan LRPO: lauroyl peroxide DBSN: sodium dodecylbenzene sulfonate

【0036】参考例l「分岐構造を有するメタクリル酸
メチル系重合体(A)の製造」 SUS製オートクレーブにメタクリル酸メチル、アクリ
ル酸メチル、ラウロイルパーオキサイド、1,6ヘキサ
ンジオールジアクリレートおよびラウリルメルカプタン
を表1に示す量、イオン交換水200重量部、ポリメタ
クリル酸ナトリウム1重量部を入れて混合し、加熱昇温
して、80℃で重合を開始し、90分経過後さらに10
0℃で60分重合させた。重合後、洗浄、脱水、乾燥を
行い、ビーズ状重合体(A1)を得た。得られた重合体
を評価した。評価結果を表1に示す。
Reference Example 1 "Production of methyl methacrylate polymer having branched structure (A)" Methyl methacrylate, methyl acrylate, lauroyl peroxide, 1,6 hexanediol diacrylate and lauryl mercaptan were placed in an SUS autoclave. The amounts shown in Table 1, 200 parts by weight of ion-exchanged water, and 1 part by weight of polysodium methacrylate were added and mixed, heated and heated to start polymerization at 80 ° C.
Polymerization was carried out at 0 ° C. for 60 minutes. After the polymerization, washing, dehydration and drying were performed to obtain a beaded polymer (A1). The obtained polymer was evaluated. Table 1 shows the evaluation results.

【0037】[0037]

【表1】 [Table 1]

【0038】参考例2〜4「高分子量メタクリル酸メチ
ル系重合体(B)の製造」 メタクリル酸メチル、アクリル酸ブチルあるいはアクリ
ル酸メチル、およびラウリルメルカプタン溶液と、炭酸
ナトリウム、ドデシルベンゼンスルホン酸ナトリウムお
よびイオン交換水100重量部の水溶液とを表2に示す
割合で混合し、加熱して、40℃で過硫酸カリウム水溶
液を添加し、83℃で3時間重合させた。重合後、フリ
ーズドライ法により乾燥を行い、ビーズ状重合体を得
た。得られた重合体を評価した。評価結果を表2に示す
(B1,B2)。また、メタクリル酸メチル、アクリル
酸メチル、ラウロイルパーオキサイドおよびラウリルメ
ルカプタンを表2に示す量、イオン交換水200重量
部、ポリメタクリル酸ナトリウム1重量部を入れて混合
し、加熱昇温して、80℃で重合を開始し、90分経過
後さらに100℃で60分重合させた。重合後、洗浄、
脱水、乾燥を行い、ビーズ状重合体を得た。得られた重
合体を評価した。評価結果を表2に示す(B3,B
4)。
Reference Examples 2 to 4 "Production of high molecular weight methyl methacrylate polymer (B)" A solution of methyl methacrylate, butyl acrylate or methyl acrylate, and lauryl mercaptan, sodium carbonate, sodium dodecylbenzenesulfonate and An aqueous solution of 100 parts by weight of ion-exchanged water was mixed at a ratio shown in Table 2, heated, a potassium persulfate aqueous solution was added at 40 ° C, and polymerized at 83 ° C for 3 hours. After the polymerization, drying was performed by a freeze drying method to obtain a beaded polymer. The obtained polymer was evaluated. The evaluation results are shown in Table 2 (B1, B2). Further, methyl methacrylate, methyl acrylate, lauroyl peroxide and lauryl mercaptan were mixed in the amounts shown in Table 2, 200 parts by weight of ion-exchanged water, and 1 part by weight of polysodium methacrylate. The polymerization was started at 90 ° C., and after 90 minutes, the polymerization was further performed at 100 ° C. for 60 minutes. After polymerization, washing,
Dehydration and drying were performed to obtain a beaded polymer. The obtained polymer was evaluated. The evaluation results are shown in Table 2 (B3, B
4).

【0039】[0039]

【表2】 [Table 2]

【0040】実施例1〜4、比較例1〜3 参考例1で作製した分岐構造を有するメタクリル酸メチ
ル重合体(A)と参考例2〜4で作成した高分子量メタ
クリル酸メチル系重合体(B)を表3に示す配合割合
で、ミキサーを用いて均一にドライブレンドした後、3
0mmの2軸混練押出機を用いて、シリンダー温度25
0℃で溶融混練しペレット化した、得られたペレットを
用いてドローダウン等のを評価した。評価結果を表3に
示す。
Examples 1-4, Comparative Examples 1-3 Methyl methacrylate polymers having a branched structure (A) prepared in Reference Example 1 and high molecular weight methyl methacrylate polymers prepared in Reference Examples 2-4 ( After B) was uniformly dry-blended using a mixer at the mixing ratio shown in Table 3, 3
Using a twin screw kneading extruder of 0 mm, cylinder temperature 25
The obtained pellets were melt-kneaded at 0 ° C. and pelletized, and the obtained pellets were evaluated for drawdown and the like. Table 3 shows the evaluation results.

【0041】[0041]

【表3】 *1:メルトフラクチャーの発生による不良を意味す
る。
[Table 3] * 1: Means failure due to the occurrence of melt fracture.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が8万〜40万で、Z平
均分子量を用いて規定される分岐点間分子量が3万〜5
0万である分岐構造を有するメタクリル酸メチル系重合
体(A)が90〜99重量%および重量平均分子量が1
00万〜500万である高分子量メタクリル酸メチル系
重合体(B)が10〜1重量%とからなるメタクリル酸
メチル系樹脂組成物。
(1) a weight average molecular weight of 80,000 to 400,000, and a molecular weight between branch points defined by using a Z average molecular weight of 30,000 to 5
90-99% by weight of a methyl methacrylate-based polymer (A) having a branched structure of 100,000 and a weight average molecular weight of 1
A methyl methacrylate-based resin composition comprising 10 to 1% by weight of a high-molecular-weight methyl methacrylate-based polymer (B) having a molecular weight of from 500,000 to 5,000,000.
【請求項2】 分岐構造を有するメタクリル酸メチル系
重合体(A)が、その重合体のうち分子量30万以上の
ものの割合が、その重合体の還元粘度が0.7dl/g
以下の時は、{〔14×該還元粘度値−6.8〕〜〔1
4×該還元粘度値+11.2〕}(重量%)であり、還
元粘度が0.7以上の時は、{〔40×該還元粘度値−
25〕〜〔40×還元粘度値−7〕}(重量%)である
請求項1記載のメタクリル酸メチル系樹脂組成物。
2. The methyl methacrylate-based polymer (A) having a branched structure may have a molecular weight of 300,000 or more, and the reduced viscosity of the polymer may be 0.7 dl / g.
In the following cases, Δ [14 × the reduced viscosity value−6.8] to [1
4 × the reduced viscosity value + 11.2]} (wt%), and when the reduced viscosity is 0.7 or more, {40 × the reduced viscosity value−
The methyl methacrylate-based resin composition according to claim 1, wherein the ratio is 25] to [40 x reduced viscosity value-7] (% by weight).
【請求項3】 分岐構造を有するメタクリル酸メチル系
重合体(A)が、メタクリル酸メチル、これと共重合可
能な単官能単量体、多官能単量体、連鎖移動剤および重
合開始剤を重合してなる請求項1または2記載のメタク
リル酸メチル系樹脂組成物。
3. A methyl methacrylate polymer having a branched structure (A) comprises methyl methacrylate, a monofunctional monomer copolymerizable therewith, a polyfunctional monomer, a chain transfer agent and a polymerization initiator. 3. The methyl methacrylate resin composition according to claim 1, which is obtained by polymerization.
【請求項4】 高分子量メタクリル酸メチル系重合体
(B)が、メタクリル酸メチル、これと共重合可能な単
官能単量体および重合開始剤を重合してなる請求項1記
載のメタクリル酸メチル系樹脂組成物。
4. The methyl methacrylate according to claim 1, wherein the high molecular weight methyl methacrylate polymer (B) is obtained by polymerizing methyl methacrylate, a monofunctional monomer copolymerizable therewith, and a polymerization initiator. -Based resin composition.
JP33757599A 1998-11-30 1999-11-29 Methyl methacrylate resin composition Expired - Fee Related JP3817993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33757599A JP3817993B2 (en) 1998-11-30 1999-11-29 Methyl methacrylate resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-339434 1998-11-30
JP33943498 1998-11-30
JP33757599A JP3817993B2 (en) 1998-11-30 1999-11-29 Methyl methacrylate resin composition

Publications (2)

Publication Number Publication Date
JP2000256527A true JP2000256527A (en) 2000-09-19
JP3817993B2 JP3817993B2 (en) 2006-09-06

Family

ID=26575846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33757599A Expired - Fee Related JP3817993B2 (en) 1998-11-30 1999-11-29 Methyl methacrylate resin composition

Country Status (1)

Country Link
JP (1) JP3817993B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060891A3 (en) * 2005-11-24 2007-09-13 Asahi Kasei Chemicals Corp Methacrylic resin and method for producing same
JP2009102663A (en) * 1998-03-12 2009-05-14 Lucite Internatl Uk Ltd Polymer composition
US7795612B2 (en) 2003-10-09 2010-09-14 Canon Kabushiki Kaisha Organic semiconductor device, process for producing the same, and organic semiconductor apparatus
WO2011049203A1 (en) * 2009-10-22 2011-04-28 旭化成ケミカルズ株式会社 Methacrylic resin, molded body thereof, and method for producing methacrylic resin
JP2011105810A (en) * 2009-11-13 2011-06-02 Asahi Kasei Chemicals Corp Method for producing acrylic resin, acrylic resin and molded body
JP2012031361A (en) * 2010-07-06 2012-02-16 Toray Fine Chemicals Co Ltd Acrylic resin composition
WO2023120305A1 (en) * 2021-12-20 2023-06-29 三菱ケミカル株式会社 Methacrylic resin composition for injection molding or extrusion molding, resin molded body and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102663A (en) * 1998-03-12 2009-05-14 Lucite Internatl Uk Ltd Polymer composition
US7795612B2 (en) 2003-10-09 2010-09-14 Canon Kabushiki Kaisha Organic semiconductor device, process for producing the same, and organic semiconductor apparatus
WO2007060891A3 (en) * 2005-11-24 2007-09-13 Asahi Kasei Chemicals Corp Methacrylic resin and method for producing same
US7964690B2 (en) 2005-11-24 2011-06-21 Asahi Kasei Chemicals Corporation Methacrylic resin and process for producing thererof
WO2011049203A1 (en) * 2009-10-22 2011-04-28 旭化成ケミカルズ株式会社 Methacrylic resin, molded body thereof, and method for producing methacrylic resin
RU2486211C1 (en) * 2009-10-22 2013-06-27 Асахи Касеи Кемикалз Корпорейшн Methacrylic resin, article moulded therefrom and method of producing methacrylic resin
US8617708B2 (en) 2009-10-22 2013-12-31 Asahi Kasei Chemicals Corporation Methacrylic resin, molded article thereof, and method for producing methacrylic resin
JP2011105810A (en) * 2009-11-13 2011-06-02 Asahi Kasei Chemicals Corp Method for producing acrylic resin, acrylic resin and molded body
JP2012031361A (en) * 2010-07-06 2012-02-16 Toray Fine Chemicals Co Ltd Acrylic resin composition
WO2023120305A1 (en) * 2021-12-20 2023-06-29 三菱ケミカル株式会社 Methacrylic resin composition for injection molding or extrusion molding, resin molded body and method for producing same

Also Published As

Publication number Publication date
JP3817993B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
KR100559103B1 (en) Methyl methacrylate resin composition
CA2640406C (en) Blends of biopolymers with acrylic copolymers
JP4718474B2 (en) Polymer blends for matte injection molded parts
US5726268A (en) Methyl methacrylate polymer
TW200911909A (en) Composition having increased stress cracking resistance
JPH09216985A (en) Methacrylate resin blend
US20020123541A1 (en) Acrylonitrile/styrene/acrylic/filler compositions and methods for making same
JP2000256527A (en) Methyl methacrylate-based resin composition
JP3508454B2 (en) Methyl methacrylate resin and molded product thereof
EP3432893B1 (en) Enhanced melt strength acrylic formulation
JP3232983B2 (en) Methyl methacrylate polymer
JPH11158344A (en) Injection molded product of methyl methacrylate-based resin
JP4519421B2 (en) Resin composition and vehicle lamp lens using the same
JP3601143B2 (en) Methyl methacrylate resin composition and method for producing the same
JPH09208789A (en) Methyl methacrylate resin composition, pushing board using the same and production thereof
JP2000290461A (en) Methyl methacrylate resin composition
JP3603402B2 (en) Methyl methacrylate resin composition
JP3454072B2 (en) Resin and its molded body
JPH09207196A (en) Poly(methyl methacrylate) extruded plate and manufacture thereof
JPS5839454B2 (en) Vinyl chloride resin composition
JP3653897B2 (en) Methyl methacrylate resin foam and method for producing the same
JP2000226467A (en) Production of methyl methacrylate based resin foam
BR112019026361A2 (en) composition of polyvinyl chloride, and, article of manufacture.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees