JP2000256221A - Purification of easily polymerizable compound - Google Patents
Purification of easily polymerizable compoundInfo
- Publication number
- JP2000256221A JP2000256221A JP11056642A JP5664299A JP2000256221A JP 2000256221 A JP2000256221 A JP 2000256221A JP 11056642 A JP11056642 A JP 11056642A JP 5664299 A JP5664299 A JP 5664299A JP 2000256221 A JP2000256221 A JP 2000256221A
- Authority
- JP
- Japan
- Prior art keywords
- water
- polymerizable compound
- easily polymerizable
- vacuum pump
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アクリル酸、メタ
クリル酸(この両者をまとめて「(メタ)アクリル酸」
と記載する)、(メタ)アクリル酸エステルやスチレン
等の、分子内に重合性二重結合を有する易重合性化合物
を精製する方法に関するものである。詳しくは、本発明
は易重合性化合物の減圧蒸留による精製を効率的かつ安
全に行うための精製方法に関するものである。TECHNICAL FIELD The present invention relates to acrylic acid and methacrylic acid (both of which are collectively referred to as "(meth) acrylic acid").
And a method for purifying an easily polymerizable compound having a polymerizable double bond in the molecule, such as (meth) acrylic acid ester and styrene. More specifically, the present invention relates to a purification method for efficiently and safely purifying an easily polymerizable compound by distillation under reduced pressure.
【0002】[0002]
【従来の技術】分子内に二重結合、特に炭素−炭素二重
結合を有する化合物は、一般に反応性に富み、重合しや
すい。このような化合物を取り扱うプロセス、特にその
精製工程において、重合が起こった場合、製品収率の低
下及び重合体の付着やそれに起因する配管等の閉塞など
による設備の操業トラブルの原因となる可能性がある。
そのため、このような易重合性化合物を蒸留により精製
する場合は、重合を防止するために、フェノチアジン、
メトキシハイドロキノン、ハイドロキノン、種々の金属
またはその化合物、或いは酸素または酸素含有ガス等の
重合禁止剤を添加して蒸留する方法や、これに加えて処
理温度を低くして重合を抑えるため高真空下で蒸留を行
う方法などが広く用いられている。2. Description of the Related Art Compounds having a double bond, particularly a carbon-carbon double bond, in the molecule are generally rich in reactivity and easily polymerized. If polymerization occurs in the process of handling such compounds, especially in the purification process, it may cause a product yield decrease and equipment operation troubles due to adhesion of the polymer and clogging of piping etc. due to it. There is.
Therefore, when such an easily polymerizable compound is purified by distillation, phenothiazine,
A method in which methoxyhydroquinone, hydroquinone, various metals or their compounds, or a polymerization inhibitor such as oxygen or an oxygen-containing gas is added and distilled, and in addition, under a high vacuum to suppress the polymerization by lowering the processing temperature and suppressing the polymerization. A method of performing distillation and the like are widely used.
【0003】しかしながら、高真空下で蒸留を行う場合
は、以下のような問題点がある。 (1)蒸留装置の構造が複雑になって、蒸留塔や配管等
の結合部分やポンプ等の機器のシール部分の気密が不十
分となり、大気が僅かながら系内に吸い込まれるのが通
常である。大型の装置では吸入空気量も多くなり、設備
が必要以上に過大なものとなりやすい。 (2)(1)で吸入された窒素等の非凝縮性ガスは、系
外へ排出される際に塔頂に留出する有機成分を同伴する
ことがあるため、環境上好ましくない。これを防ぐため
には、排気処理装置を付加しなければならない。また、
重合禁止剤を添加して蒸留を行う場合でも、低い温度で
蒸留を行う方がより好ましいので、減圧下に蒸留を行う
のが一般的である。真空蒸留や減圧蒸留を行うための減
圧装置としては、往復型(ピストン型)、ルーツ型等の
乾式機械式ポンプ、油封液式ナッシュ型ポンプ、油封回
転型真空ポンプ等の湿式機械式ポンプや、スチームエゼ
クターが広く用られている。However, when distillation is performed under high vacuum, there are the following problems. (1) The structure of the distillation apparatus is complicated, and the airtightness of the joints such as the distillation tower and the pipes and the sealing parts of the equipment such as the pump is insufficient, and the air is usually slightly sucked into the system. . In a large-sized device, the amount of intake air is large, and the equipment is likely to be excessively large. (2) The non-condensable gas such as nitrogen inhaled in (1) is not preferable from the viewpoint of environment because it may accompany an organic component distilled off at the top of the tower when it is discharged out of the system. To prevent this, an exhaust treatment device must be added. Also,
Even in the case where distillation is performed by adding a polymerization inhibitor, it is more preferable to perform distillation at a low temperature. Therefore, distillation is generally performed under reduced pressure. Vacuum distillation and vacuum decompression devices for performing vacuum distillation include dry mechanical pumps such as reciprocating type (piston type) and roots type, wet mechanical pumps such as oil-sealed liquid Nash pump, oil-sealed rotary vacuum pump, and the like. Steam ejectors are widely used.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、通常の
乾式機械式真空ポンプや湿式機械式真空ポンプでは、た
とえポンプ前段に冷却装置を設けて易重合性化合物の凝
縮除去を行ったとしても、その吸入ガス中には微量の易
重合性化合物が混入するため、ポンプ内で易重合性化合
物が蓄積し、重合することにより、重合体の付着や閉
塞、ひいては設備停止等のトラブルに至る可能性があ
る。また、スチームエゼクターを使用した場合には、駆
動スチーム量に対応した排水が発生し、その排水中に
は、有機物である易重合性化合物が溶存しているため、
これを安全に排出するための活性汚泥設備等の処理設備
が必要となる。有機物の凝縮による爆発性混合ガスの形
成防止と重合物の生成を防ぐために、水エゼクターによ
り減圧する方法も提案されている(特開平10−204
030号公報)。しかしながら、この場合も上述のスチ
ームエゼクターの場合と同様に、排水の問題が残ってし
まう。本発明は、上記の観点から、易重合性化合物を効
率的かつ安全、安価に精製するための方法を提供する事
を目的としている。However, in the case of ordinary dry mechanical vacuum pumps and wet mechanical vacuum pumps, even if a cooling device is provided in the front stage of the pump to condense and remove easily polymerizable compounds, the suction of the same is not possible. Since a small amount of easily polymerizable compound is mixed in the gas, the easily polymerizable compound accumulates in the pump and polymerizes, which may lead to troubles such as adhesion and blockage of the polymer, and eventually, equipment shutdown. . In addition, when a steam ejector is used, wastewater corresponding to the amount of drive steam is generated, and in the wastewater, an easily polymerizable compound that is an organic substance is dissolved.
A treatment facility such as an activated sludge facility for safely discharging this is required. In order to prevent the formation of an explosive mixed gas due to the condensation of organic substances and the formation of a polymer, a method of reducing the pressure with a water ejector has also been proposed (JP-A-10-204)
No. 030). However, in this case, as in the case of the steam ejector described above, the problem of drainage remains. An object of the present invention is to provide a method for efficiently, safely and inexpensively purifying an easily polymerizable compound from the above viewpoint.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記の諸
点に関して、種々の検討・評価を行った結果、特定の減
圧装置を用いることにより、これらの問題点が解決でき
ることを見出し、本発明に到達した。即ち、本発明の要
旨は、易重合性化合物、特に(メタ)アクリル酸及び/
または(メタ)アクリル酸エステルを含む液を減圧下で
蒸留するに際して、減圧装置として水封式真空ポンプを
用いる易重合性化合物の精製方法、に存している。本発
明の他の要旨は、水封式真空ポンプの水封液の温度を3
0℃以下に維持する上記の方法、水封液としてプロセス
排水を使用する上記の方法、及び水封液を冷却装置を有
する循環ラインで冷却する上記の方法にも存しており、
更に本発明の別の要旨は、水封液を連続的又は定期的に
抜き出し、抜き出した水封液から有機物成分を回収する
上述の方法、及び水封式真空ポンプの排気に不活性ガス
を供給する上述の易重合性化合物の精製方法、にも存し
ている。Means for Solving the Problems The present inventors have conducted various studies and evaluations on the above points and found that these problems can be solved by using a specific pressure reducing device. The invention has been reached. That is, the gist of the present invention is to provide an easily polymerizable compound, particularly (meth) acrylic acid and / or
Or a method for purifying an easily polymerizable compound using a water ring vacuum pump as a depressurizing device when distilling a liquid containing a (meth) acrylic acid ester under reduced pressure. Another gist of the present invention resides in that the temperature of the water seal liquid of the water ring vacuum pump is set to 3 degrees.
The above method of maintaining the temperature at 0 ° C. or lower, the above method of using process wastewater as a water sealing liquid, and the above method of cooling the water sealing liquid by a circulation line having a cooling device also exist.
Still another aspect of the present invention is the above-described method of continuously or periodically extracting a water sealing liquid and recovering organic components from the extracted water sealing liquid, and supplying an inert gas to the exhaust of a water sealing vacuum pump. The method for purifying an easily polymerizable compound described above also exists.
【0006】[0006]
【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明において用いる水封式真空ポンプはそのシー
ル液(封液)として水を使用する。ここで言う「水」と
は、水を主成分として含むものであれば本発明の目的を
阻害しない限り、使用することができる。このようにし
て用いることのできる真空ポンプとしてナッシュ型真空
ポンプが例示でき、具体的には粟村製作所製ANVH
型、SONIT型、新日本造機製SLPH型などが挙げ
られる。易重合性化合物の減圧蒸留において、塔頂留出
ガスからコンデンサーで凝縮しきれない蒸気圧相当分の
易重合性化合物は、減圧ラインを経て真空ポンプに入
り、ここでその一部あるいはほとんど全部が凝縮する。
本発明においては、真空ポンプに水をシール液として使
用しているので、凝縮した易重合性化合物は水に溶解又
は分散して稀薄な水溶液又は水分散液となる。従って、
重合が起こりにくくなり、重合体の生成によるトラブル
発生の恐れも小さくなる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The water ring vacuum pump used in the present invention uses water as a sealing liquid (sealing liquid). As used herein, “water” can be used as long as it contains water as a main component, as long as the object of the present invention is not hindered. As a vacuum pump that can be used in this manner, a Nash type vacuum pump can be exemplified, and specifically, ANVH manufactured by Awamura Seisakusho
Mold, SONIT type, SLPH type manufactured by Shin Nippon Machinery Co., Ltd. and the like. In the vacuum distillation of the easily polymerizable compound, the easily polymerizable compound corresponding to the vapor pressure that cannot be completely condensed by the condenser from the overhead distillate gas enters a vacuum pump through a pressure reducing line, and a part or almost all of the compound is here. Condense.
In the present invention, since water is used as the sealing liquid in the vacuum pump, the condensed easily polymerizable compound is dissolved or dispersed in water to form a dilute aqueous solution or aqueous dispersion. Therefore,
Polymerization is less likely to occur, and the risk of trouble due to the formation of the polymer is reduced.
【0007】しかしながら、運転を長期間続けた場合、
水封液中に易重合性化合物が蓄積して、その結果重合体
が生成する可能性が高くなるので、連続的に又は定期的
に水封液を抜き出すことが好ましい。抜き出した易重合
性化合物を含有する水封液は、蒸留塔へ供給する等によ
って易重合性化合物を回収することができる。水封液の
抜き出しを行う場合、塔頂の留出ガス中に水分が含まれ
ている場合等は、水封液の追加を行う必要がないことも
あるが、通常は新たな水封液を追加供給する必要があ
る。プロセスで副生する水がある場合は、供給する水封
液としてこの副生水を用いると、排水量を少なくするこ
とができるので好ましい。このようなプロセスからの副
生水としては、例えば(メタ)アクリル酸の製造の酸化
工程において生成する水や、(メタ)アクリル酸エステ
ルの製造におけるエステル化反応で生成する水などが挙
げられる。However, if driving is continued for a long time,
Since the easily polymerizable compound accumulates in the water-sealing liquid, and as a result, a polymer is likely to be formed, it is preferable to continuously or periodically extract the water-sealing liquid. The water-sealed liquid containing the extracted easily polymerizable compound can be recovered by supplying it to a distillation column or the like. When extracting the water seal liquid, if the distillate gas at the top contains moisture, etc., it may not be necessary to add the water seal liquid. Need additional supply. When there is water by-produced in the process, it is preferable to use this by-produced water as a water sealing liquid to be supplied, because the amount of drainage can be reduced. Examples of the by-product water from such a process include water generated in an oxidation step in the production of (meth) acrylic acid and water generated in an esterification reaction in the production of (meth) acrylic acid ester.
【0008】水封液の温度は、低い方が水及び水中に溶
解・分散した易重合性化合物等の蒸気圧が低くなるの
で、真空ポンプの到達真空度が高くできる、即ちより低
い圧力での操作が可能になるので好ましい。また、真空
ポンプにおいては圧縮されたガスの断熱圧縮により温度
が上昇する傾向があるので、真空ポンプ内での易重合性
化合物の重合を防止するためにも、水封液の温度を低く
維持することが好ましい。The lower the temperature of the water sealing liquid, the lower the vapor pressure of water and easily polymerizable compounds dissolved and dispersed in water, so that the ultimate vacuum of the vacuum pump can be increased. It is preferable because operation becomes possible. In the vacuum pump, the temperature tends to increase due to adiabatic compression of the compressed gas. Therefore, in order to prevent polymerization of the easily polymerizable compound in the vacuum pump, the temperature of the water seal liquid is kept low. Is preferred.
【0009】本発明においては、水封液を30℃以下、
好ましくは25℃以下、更に好ましくは20℃以下に保
つことが重合体の生成防止等のために効果的である。ま
た水封液の温度管理は、真空ポンプ内部に設置した温度
計による方法や、真空ポンプからの水封液の出口温度を
測定して行う方法が、水封液の温度を直接管理できるの
で好ましいが、真空ポンプの上記部位の温度と、供給す
る水封液の温度・量との相関に基づいて管理を行っても
よい。In the present invention, the water-sealed liquid is kept at 30 ° C. or less,
It is effective to keep the temperature preferably at 25 ° C. or lower, more preferably at 20 ° C. or lower, for preventing the formation of a polymer or the like. Further, the temperature control of the water sealing liquid is preferably performed by a method using a thermometer installed inside the vacuum pump or a method of measuring the outlet temperature of the water sealing liquid from the vacuum pump because the temperature of the water sealing liquid can be directly controlled. However, the management may be performed based on the correlation between the temperature of the above-described portion of the vacuum pump and the temperature and amount of the water seal liquid to be supplied.
【0010】上記のような水封液の抜き出しと温度の制
御とを効率よく行うためには、例えば図1に示すよう
な、「真空ポンプ(1)からの水封液の抜き出し−気液
分離(2)−冷却(3)−真空ポンプへの供給」を行う
ための循環ラインを設けるのが好ましい。この循環ライ
ンには、必要に応じて系外への水封液の排出(7)と系
外からの水封液の追加・供給配管(5)を設けてもよ
い。水封液の温度制御は、上記のような循環ライン中に
設けた熱交換器等による他、予め冷却した水封液を供給
・混合する方法によってもよい。水封式真空ポンプは水
封液の蒸気圧の関係から到達可能な真空度には限界があ
るが、水封液の温度を30℃以下に維持すれば、少なく
とも70torr(「mmHg・abs 」のこと、以下同じ)
以下の圧力、通常であれば50torr以下の圧力で運
転することが出来る。これよりも低い圧力で操作するこ
とが必要な場合には、例えば水封式真空ポンプとスチー
ムエジェクターなどの減圧装置とを組み合わせて使用す
ればよい。水封液の凍結を防止するため、例えば塩化ナ
トリウム、塩化マグネシウム、塩化カルシウム、硫酸ナ
トリウム、硫酸マグネシウム等の廃水負荷の少ない無機
化合物や、エチレングリコール、メタノール等を水封液
中に加えてもよい。但し、沸点の低いアルコールを多量
に入れた場合、水封液の蒸気圧が高くなって、真空ポン
プの到達可能な減圧度が低下する。水封液として水溶液
を用いる場合は、30℃での蒸気圧が70torr以下
のものを用いるのが好ましい。In order to efficiently perform the above-described extraction of the water sealing liquid and control of the temperature, for example, as shown in FIG. 1, “drawing of water sealing liquid from vacuum pump (1) —gas-liquid separation” It is preferable to provide a circulation line for performing “(2) -cooling (3) -supply to vacuum pump”. This circulation line may be provided with a pipe (5) for discharging the water seal liquid outside the system and adding / supplying the water seal liquid from outside the system as necessary. The temperature control of the water-sealing liquid may be performed by a method of supplying and mixing a water-sealing liquid that has been cooled in advance, in addition to the above-described heat exchanger provided in the circulation line. The water-ring vacuum pump has a limit to the degree of vacuum that can be reached due to the vapor pressure of the water-sealing liquid. The same applies hereinafter)
It can be operated at the following pressure, usually 50 torr or less. If it is necessary to operate at a lower pressure than this, for example, a water ring vacuum pump and a pressure reducing device such as a steam ejector may be used in combination. In order to prevent the water seal liquid from freezing, for example, an inorganic compound having a small wastewater load such as sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, and magnesium sulfate, or ethylene glycol, methanol, or the like may be added to the water seal liquid. . However, when a large amount of alcohol having a low boiling point is added, the vapor pressure of the water sealing liquid increases, and the degree of reduced pressure that the vacuum pump can reach decreases. When an aqueous solution is used as the water sealing liquid, it is preferable to use one having a vapor pressure at 30 ° C. of 70 torr or less.
【0011】なお封液として有機溶媒を使用すると、そ
の蒸気による爆発性混合ガス形成の可能性があることに
加えて、有機溶媒自体のコストや封液として使用した有
機溶媒の回収のための装置や費用がかかり、経済的でな
い。易重合性化合物の重合反応をより効果的に抑制する
ために、水封液中にはあらかじめ重合禁止剤を溶解させ
ておくことが好ましい。ここで用いることのできる重合
禁止剤としては、前述のハイドロキノン、メトキシハイ
ドロキノン等を適宜選択して使用すればよい。水封液の
抜き出しは、前記の循環配管の一部から行えばよいが、
気液分離器が循環ライン中にある場合は、その液面を監
視しながら液相部を抜き出すのが一般的である。易重合
性化合物が例えばスチレン、(メタ)アクリル酸ブチ
ル、アクリル酸2−エチルヘキシルのような水への溶解
度が低い化合物である場合は、この気液分離器中で相分
離が起こって油層が形成されることがある。この場合
は、気液分離器からオーバーフロー配管を設けることに
より、効率的に油層を回収することができる。When an organic solvent is used as the sealing liquid, there is a possibility that an explosive mixed gas may be formed by the vapor. In addition, the cost of the organic solvent itself and an apparatus for recovering the organic solvent used as the sealing liquid may be used. Expensive and not economical. In order to more effectively suppress the polymerization reaction of the easily polymerizable compound, it is preferable to previously dissolve the polymerization inhibitor in the water sealing liquid. As the polymerization inhibitor that can be used here, the above-mentioned hydroquinone, methoxyhydroquinone and the like may be appropriately selected and used. Withdrawal of the water seal liquid may be performed from a part of the circulation pipe,
When the gas-liquid separator is in the circulation line, it is common to withdraw the liquid phase while monitoring the liquid level. When the easily polymerizable compound is a compound having low solubility in water such as styrene, butyl (meth) acrylate, and 2-ethylhexyl acrylate, phase separation occurs in the gas-liquid separator to form an oil layer. May be done. In this case, an oil layer can be efficiently collected by providing an overflow pipe from the gas-liquid separator.
【0012】通常は、抜き出された水封液は蒸留塔など
を用いて有機物成分を分離回収され、有機物成分はプロ
セスの適切な工程へ返送し、排水は必要に応じて更に高
次の処理を加えた上、系外へ排出する。このような水封
液からの有機物成分の回収は、例えば(メタ)アクリル
酸エステルの製造プロセスのように、反応生成水からの
有機物成分を回収するための蒸留塔などの設備を有する
場合は、その蒸留設備で行うことが合理的である。Normally, the extracted water-sealed liquid is used to separate and recover organic components using a distillation column or the like, and the organic components are returned to an appropriate step in the process. And discharge it out of the system. The recovery of the organic substance component from such a water sealing liquid is performed, for example, when a device such as a distillation column for collecting the organic substance component from the reaction product water is used, as in a process for producing a (meth) acrylate ester. It is reasonable to carry out in the distillation facility.
【0013】本発明方法を適用することができる易重合
性化合物としては、アクリル酸、メタクリル酸等の不飽
和カルボン酸、メタクリル酸メチル、アクリル酸ブチ
ル、アクリル酸オクチル、アクリル酸2−ヒドロキシエ
チル、アクリル酸2−ヒドロキシプロピル、メタクリル
酸ブチル等の(メタ)アクリル酸エステルを含む不飽和
カルボン酸エステル類、アクリロニトリル、アクリルア
ミドのようなアクリル化合物、スチレン等の芳香族ビニ
ル化合物等が例示できる。この易重合性化合物の沸点が
80℃以上の場合に、本発明方法は特に有効である。易
重合性化合物の沸点が80℃以下の場合には、蒸留を減
圧で行う必要が無い場合が多い。As the easily polymerizable compound to which the method of the present invention can be applied, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl methacrylate, butyl acrylate, octyl acrylate, 2-hydroxyethyl acrylate, Examples thereof include unsaturated carboxylic esters including (meth) acrylic esters such as 2-hydroxypropyl acrylate and butyl methacrylate, acrylic compounds such as acrylonitrile and acrylamide, and aromatic vinyl compounds such as styrene. The method of the present invention is particularly effective when the boiling point of the easily polymerizable compound is 80 ° C. or higher. When the boiling point of the easily polymerizable compound is 80 ° C. or lower, it is often unnecessary to perform the distillation under reduced pressure.
【0014】また蒸留に際しては、トルエン、メチルイ
ソブチルケトン等の有機溶剤を共沸溶剤として用いる方
法も採用される。このような化合物やメタクリル酸メチ
ルのような引火点が30℃以下の化合物を含む混合物を
精製する場合は、真空ポンプの排気側で爆発範囲のガス
混合物が形成される可能性がある。これを予防するため
には、真空ポンプの排気ガスに窒素や二酸化炭素などの
不活性ガスを供給し、排気中の酸素濃度を低くして、爆
発範囲のガス組成を回避する等の手段を講じることが安
全上好ましい。循環ラインの気液分離器から排出される
ガス中には、蒸留塔の塔頂留出成分が多く含まれてい
る。また(メタ)アクリル酸や(メタ)アクリル酸エス
テルの蒸留塔のように、重合防止のために塔底に酸素含
有ガスを供給している場合は、この排ガスに酸素も含ま
れてくる。従って、この排ガスを蒸留塔に供給すること
により、有機物成分の回収と同時に排気ガスの量も削減
することが可能となる。本発明の易重合性化合物の精製
方法は、目的物質が易重合性化合物である場合だけでな
く、反応生成液中の軽質の不純物を除去・精製する場合
や、易重合性化合物と水の分離、易重合性化合物中の重
質不純物の分離等にも適用することができる。In the distillation, a method using an organic solvent such as toluene or methyl isobutyl ketone as an azeotropic solvent is also employed. When purifying a mixture containing such a compound or a compound having a flash point of 30 ° C. or lower such as methyl methacrylate, a gas mixture in an explosive range may be formed on the exhaust side of the vacuum pump. To prevent this, take measures such as supplying an inert gas such as nitrogen or carbon dioxide to the exhaust gas of the vacuum pump to lower the oxygen concentration in the exhaust gas and avoid the gas composition in the explosion range. Is preferable for safety. The gas discharged from the gas-liquid separator in the circulation line contains a large amount of components distilled at the top of the distillation column. Further, when an oxygen-containing gas is supplied to the bottom of the column for preventing polymerization, such as a distillation column for (meth) acrylic acid or (meth) acrylate, oxygen is also contained in the exhaust gas. Therefore, by supplying this exhaust gas to the distillation column, it becomes possible to reduce the amount of exhaust gas at the same time as the recovery of organic components. The method for purifying an easily polymerizable compound of the present invention is applicable not only when the target substance is an easily polymerizable compound, but also when removing and purifying light impurities in a reaction product liquid, or when separating an easily polymerizable compound from water. It can also be applied to the separation of heavy impurities in easily polymerizable compounds.
【0015】[0015]
【実施例】以下、実施例を用いて本発明を更に詳細かつ
具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例によって限定されるものではない。 <実施例1>ガラス製蒸留装置を使用し、共沸剤として
トルエンを用いるアクリル酸水溶液の脱水蒸留を行っ
た。蒸留塔は直径50mmのガラス製円筒で、3mmの
ラシヒリングを高さ90cmまで充填した(理論段数1
5段)。底部に容量1リットルのフラスコが、塔頂には
水冷式コンデンサーがそれぞれ接続されている。コンデ
ンサーの出口を水封式真空ポンプに接続して減圧蒸留を
実施した。EXAMPLES Hereinafter, the present invention will be described in more detail and specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. <Example 1> Dehydration distillation of an aqueous solution of acrylic acid using toluene as an azeotropic agent was performed using a glass distillation apparatus. The distillation column was a glass cylinder having a diameter of 50 mm and packed with a Raschig ring of 3 mm to a height of 90 cm (the number of theoretical plates was 1).
5 steps). A 1-liter flask is connected to the bottom, and a water-cooled condenser is connected to the top. The outlet of the condenser was connected to a water ring vacuum pump to perform vacuum distillation.
【0016】水封液は、毎時1リットル抜き出すと同時
に、新しい水封液を真空ポンプの水封液液面が一定にな
るように供給した。この水封液は冷凍機により冷却され
た8℃の冷却水(エチレングリコール/水=10%/9
0%)により18℃に維持された塔頂コンデンサーで凝
縮した留出液はデカンター(気液分離器)で静置分離し
た後、共沸剤層は全量蒸留塔へ還流し、水層は抜き出し
た。蒸留塔の加熱は油温制御装置付きのオイルバスを使
用してフラスコを加熱することによって行った。蒸留原
料液としては、アクリル酸55重量%、酢酸1.5重量
%、ホルムアルデヒド0.3重量%及び若干量の蟻酸、
アセトアルデヒド、ホルムアルデヒド、アクロレインを
含むアクリル酸水溶液を使用し、毎時280gの割合
で、毎時14ミリリットルのトルエン(共沸剤)ととも
に蒸留塔中段に供給した。The water-sealing liquid was withdrawn at a rate of 1 liter per hour, and at the same time, fresh water-sealing liquid was supplied so that the water-sealing liquid level of the vacuum pump was constant. This water sealing liquid was cooled at 8 ° C. by a refrigerator (ethylene glycol / water = 10% / 9).
(0%), the distillate condensed in the overhead condenser maintained at 18 ° C. is separated by standing in a decanter (gas-liquid separator), the entire azeotropic agent layer is refluxed to the distillation column, and the aqueous layer is withdrawn. Was. The distillation column was heated by heating the flask using an oil bath equipped with an oil temperature controller. As a raw material liquid for distillation, 55% by weight of acrylic acid, 1.5% by weight of acetic acid, 0.3% by weight of formaldehyde and a small amount of formic acid,
An aqueous solution of acrylic acid containing acetaldehyde, formaldehyde, and acrolein was used and supplied to the middle stage of the distillation column at a rate of 280 g / h together with 14 ml / h of toluene (azeotropic agent).
【0017】蒸留塔の運転圧力は180torrに制御
し、重合禁止剤として塔頂からハイドロキノン及びフェ
ノチアジンを、塔底(フラスコ)に空気を毎時15ミリ
リットル供給した。フラスコ内の液面を一定に保つよう
にポンプにより缶出液を抜き出した。この缶出液中の重
合禁止剤濃度がハイドロキノン800ppm、フェノチ
アジン500ppmとなるようにこれらの供給量を調整
した。このとき塔頂温度は49℃、塔底(缶出液)温度
は86℃であった。塔頂部における共沸剤還流量は毎時
750ミリリットルであった。真空ポンプの排気ガス組
成をガスクロマトグラフィーにより確認したところ、共
沸剤であるトルエンの濃度が2%と爆発範囲にあったた
め、真空ポンプの排気ラインに窒素ガスを供給して爆発
範囲外の組成になるように調整しながら運転した。蒸留
塔が安定した後、7時間連続して蒸留を行った。蒸留終
了後、真空ポンプを点検したが、重合体の生成・付着は
見られなかった。The operating pressure of the distillation column was controlled at 180 torr, and hydroquinone and phenothiazine were supplied as polymerization inhibitors from the top of the column, and air was supplied to the bottom (flask) of 15 ml / h. The bottom liquid was withdrawn by a pump so as to keep the liquid level in the flask constant. The supply amounts of these were adjusted so that the concentration of the polymerization inhibitor in the bottoms became 800 ppm for hydroquinone and 500 ppm for phenothiazine. At this time, the top temperature was 49 ° C., and the bottom temperature (bottoms) was 86 ° C. The reflux rate of the azeotropic agent at the top of the column was 750 ml / h. When the composition of the exhaust gas from the vacuum pump was confirmed by gas chromatography, the concentration of toluene as an azeotropic agent was 2%, which was in the explosion range. Driving while adjusting to become. After the distillation column was stabilized, distillation was performed continuously for 7 hours. After the distillation was completed, the vacuum pump was checked, but no formation or adhesion of the polymer was observed.
【0018】<比較例1>真空ポンプとしてオイルシー
ル式回転真空ポンプを使用したこと以外は実施例1と同
様にしてアクリル酸水溶液の共沸脱水蒸留を行った。蒸
留運転中(安定運転開始後4時間経過時)に真空度を維
持ができなくなり運転を停止した。<Comparative Example 1> Acrylic acid aqueous solution was subjected to azeotropic dehydration distillation in the same manner as in Example 1 except that an oil seal type rotary vacuum pump was used as a vacuum pump. During the distillation operation (four hours after the start of the stable operation), the degree of vacuum could not be maintained, and the operation was stopped.
【0019】<実施例2>水封式真空ポンプの水封液と
して、20%エチレングリコール水溶液を使用し、水封
液の温度を−3℃に維持したこと以外は実施例1と同様
にして蒸留操作を実施した。真空ポンプの排気ガス中の
トルエンの濃度は0.8%で、爆発範囲外となってい
た。Example 2 A 20% ethylene glycol aqueous solution was used as a water seal liquid of a water seal vacuum pump, and the temperature of the water seal liquid was maintained at -3 ° C. in the same manner as in Example 1. A distillation operation was performed. The concentration of toluene in the exhaust gas of the vacuum pump was 0.8%, which was out of the explosion range.
【0020】<実施例3>共沸剤としてトルエンに代え
てメチルイソブチルケトンを用いたこと以外は、実施例
1と同様にしてアクリル酸水溶液の共沸蒸留を行った。
但し、共沸剤の全量還流は行わず、塔頂液を連続的に抜
き出すとともに、毎時180gのメチルイソブチルケト
ンを塔頂より還流液として供給した。蒸留塔が安定した
後、7時間連続して蒸留を行った。蒸留終了後、真空ポ
ンプを点検したが、重合体の生成・付着は見られなかっ
た。Example 3 Acrylic acid aqueous solution was subjected to azeotropic distillation in the same manner as in Example 1 except that methyl isobutyl ketone was used instead of toluene as an azeotropic agent.
However, the entire amount of the azeotropic agent was not refluxed, the top liquid was continuously withdrawn, and 180 g of methyl isobutyl ketone was supplied per hour as a reflux liquid from the top of the column. After the distillation column was stabilized, distillation was performed continuously for 7 hours. After the distillation was completed, the vacuum pump was checked, but no formation or adhesion of the polymer was observed.
【0021】<実施例4>蒸留原料液として、酢酸エチ
ルを0.05%、アクリル酸を0.2%、重合禁止剤と
してハイドロキノンを含むアクリル酸エチルを毎時30
0g供給し、また塔頂からはメトキシキノンを含むアク
リル酸エチルを還流液と一緒に供給したこと以外は実施
例1と同様にしてアクリル酸エチルの精製を行った。塔
頂圧力を150torrに制御し、還留比を2.0で運
転したところ、塔頂から酢酸エチルを0.05%含むア
クリル酸エチルを得た。塔頂温度は60℃であった。実
施例1と同様に7時間連続運転した後、真空ポンプを点
検したが、重合体の生成・付着は見られなかった。Example 4 Ethyl acrylate containing 0.05% of ethyl acetate, 0.2% of acrylic acid, and hydroquinone as a polymerization inhibitor was used as a raw material liquid at a rate of 30% per hour.
Ethyl acrylate was purified in the same manner as in Example 1 except that 0 g was supplied and ethyl acrylate containing methoxyquinone was supplied from the top of the column together with the reflux liquid. When the pressure at the top was controlled at 150 torr and the distillation ratio was operated at 2.0, ethyl acrylate containing 0.05% ethyl acetate was obtained from the top of the column. The overhead temperature was 60 ° C. After continuous operation for 7 hours in the same manner as in Example 1, the vacuum pump was checked, but no formation or adhesion of the polymer was observed.
【0022】<実施例5>水封式真空ポンプの水封液の
温度を40℃に制御し、水封液の抜き出しを行わなかっ
たこと以外は実施例4と同様にしてアクリル酸エチルの
精製を行った。7時間運転後、真空ポンプを点検したと
ころ、重合体の生成・付着は見られなかったが、水封液
の粘度が上昇していた。Example 5 Purification of ethyl acrylate was carried out in the same manner as in Example 4 except that the temperature of the water-sealing liquid of the water-sealing vacuum pump was controlled at 40 ° C., and the water-sealing liquid was not withdrawn. Was done. After the operation for 7 hours, the vacuum pump was inspected. As a result, no formation or adhesion of the polymer was observed, but the viscosity of the water sealing liquid was increased.
【0023】<実施例6>ガラス製の反応蒸留装置(塔
底部の反応器容量1リットル)を使用し、アクリル酸と
ブタノールとのエステル化反応蒸留を実施した。触媒と
して強酸性イオン交換樹脂(PK−216:三菱化学
製)を150ml用い、温度80℃、圧力150tor
rの減圧下で反応液を攪拌しながら、原料としてアクリ
ル酸毎時144g、ブタノール毎時148gをそれぞれ
反応器に供給した。スラリー状の反応液を毎時288m
lの割合で連続的に反応器から抜き出した。このスラリ
ー状の反応液中には20容量%のイオン交換樹脂が含ま
れていたので、このイオン交換樹脂は分離して供給原料
とともに反応器へ連続的に返送した。Example 6 A reactive distillation apparatus made of glass (reactor capacity at the bottom of the tower was 1 liter) was used to carry out esterification reactive distillation of acrylic acid and butanol. 150 ml of strongly acidic ion exchange resin (PK-216: manufactured by Mitsubishi Chemical) as a catalyst, at a temperature of 80 ° C. and a pressure of 150 torr.
While stirring the reaction solution under a reduced pressure of r, 144 g / h of acrylic acid and 148 g / h of butanol were supplied as raw materials to the reactor, respectively. 288 m / h of slurry-like reaction liquid
The reactor was continuously withdrawn at a rate of 1 l. Since the reaction solution in the form of slurry contained 20% by volume of the ion exchange resin, the ion exchange resin was separated and continuously returned to the reactor together with the feedstock.
【0024】反応蒸留塔の塔頂液は油層と水層とに相分
離した後、水層を抜き出すとともに油層は塔頂へ返送し
た。水層は蒸留してブタノールを回収し、このブタノー
ルはは反応蒸留塔へリサイクルした。塔頂のコンデンサ
ー出口は水封式真空ポンプに接続され、このポンプの水
封液は18℃に維持するとともに、水封ポンプの液面が
一定になるように、毎時1リットルの割合で新しい水封
液と抜き替えた。蒸留塔が安定した後、7時間連続して
蒸留を行った。蒸留終了後、真空ポンプを点検したが、
重合体の生成・付着は見られなかった。After the top liquid of the reactive distillation column was phase-separated into an oil layer and an aqueous layer, the aqueous layer was extracted and the oil layer was returned to the top of the column. The aqueous layer was distilled to recover butanol, which was recycled to the reactive distillation column. The condenser outlet at the top is connected to a water-sealed vacuum pump. The water-sealed liquid of the pump is maintained at 18 ° C. and fresh water is supplied at a rate of 1 liter / hour so that the level of the water-sealed pump is constant. Replaced with sealed liquid. After the distillation column was stabilized, distillation was performed continuously for 7 hours. After the distillation was completed, the vacuum pump was checked.
No polymer formation or adhesion was observed.
【0025】<実施例7>水封式真空ポンプに供給する
水封液として、塔頂でトルエンから液液分離された水を
回収して使用したこと以外は実施例1と同様にして蒸留
を実施した。7時間の連続運転後、真空ポンプを点検し
たが、重合体の生成・付着は見られなかった<Example 7> Distillation was carried out in the same manner as in Example 1 except that water separated into liquid and liquid from toluene was recovered and used at the top of the tower as a water seal liquid to be supplied to a water ring vacuum pump. Carried out. After continuous operation for 7 hours, the vacuum pump was checked, but no formation or adhesion of polymer was observed.
【0026】<実施例8>水封式真空ポンプに供給する
水封液として塔頂留出液からブタノールを蒸留回収した
後の水層を再度蒸留してブタノールを除去した水を用い
たこと以外は実施例6と同様にして反応蒸留を行った。
蒸留塔が安定した後7時間連続して蒸留を行ない、蒸留
終了後真空ポンプを点検したが、重合体の生成・付着は
見られなかった。Example 8 As a water seal liquid to be supplied to a water ring vacuum pump, except that water obtained by distilling and recovering butanol from a distillate at the top of the column and again removing butanol by distilling the aqueous layer was used. Was subjected to reactive distillation in the same manner as in Example 6.
After the distillation column was stabilized, distillation was continuously performed for 7 hours. After the distillation was completed, the vacuum pump was checked, but no formation or adhesion of a polymer was observed.
【0027】[0027]
【発明の効果】本発明の精製方法を用いることにより、
易重合性の化合物の減圧蒸留における、重合体の生成や
その付着による真空設備の閉塞等のトラブルの恐れを解
決できる。また、水封液として反応等で発生するプロセ
ス排水を使用することにより、排水量の削減も可能であ
り、工業上の価値は高い。By using the purification method of the present invention,
In vacuum distillation of an easily polymerizable compound, it is possible to solve the problem of troubles such as blockage of vacuum equipment due to formation and adhesion of a polymer. Further, by using process wastewater generated by a reaction or the like as a water seal liquid, the amount of wastewater can be reduced, and the industrial value is high.
【図1】本発明の水封式真空ポンプの封液循環ラインの
一例を示す概要図FIG. 1 is a schematic diagram showing an example of a liquid circulation line of a water ring vacuum pump according to the present invention.
1:水封式真空ポンプ 2:気液分離器 3:熱交換器 4:真空ライン(吸気) 5:水封液補給ライン 6:排気 7:排水 8:イナートガス 9:冷却水 1: Water-sealed vacuum pump 2: Gas-liquid separator 3: Heat exchanger 4: Vacuum line (suction) 5: Water-sealed liquid supply line 6: Exhaust 7: Drain 8: Inert gas 9: Cooling water
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 幸弘 三重県四日市市東邦町1番地 三菱化学株 式会社四日市事業所内 Fターム(参考) 4D076 AA07 AA16 AA22 BB04 BB08 CC12 CD22 DA10 DA21 DA22 EA02Y EA02Z EA03Z EA04Z EA06Z EA12Y EA14Y EA16Y EA17Y EA20Z GA01 GA03 GA05 HA03 4H006 AA02 AD11 BC52 BS10 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yukihiro Hasegawa 1 Tohocho, Yokkaichi-shi, Mie F-term in Yokkaichi Office of Mitsubishi Chemical Corporation (Reference) 4D076 AA07 AA16 AA16 AA22 BB04 BB08 CC12 CD22 DA10 DA21 DA22 EA02Y EA02Z EA03Z EA04Z EA06Z EA12Y EA14Y EA16Y EA17Y EA20Z GA01 GA03 GA05 HA03 4H006 AA02 AD11 BC52 BS10
Claims (7)
するに際して、減圧装置として水封式真空ポンプを用い
ることを特徴とする易重合性化合物の精製方法。1. A method for purifying an easily polymerizable compound, wherein a water ring vacuum pump is used as a depressurizing device when distilling a liquid containing the easily polymerizable compound under reduced pressure.
及び/または(メタ)アクリル酸エステルである特許請
求の範囲第1項に記載の易重合性化合物の精製方法。2. The method for purifying an easily polymerizable compound according to claim 1, wherein the easily polymerizable compound is (meth) acrylic acid and / or (meth) acrylate.
℃以下に維持することを特徴とする請求項1又は2に記
載の易重合性化合物の精製方法。3. The temperature of the water seal liquid of the water ring vacuum pump is set to 30.
The method for purifying an easily polymerizable compound according to claim 1, wherein the temperature is maintained at a temperature of not more than ℃.
求項1〜3のいずれか1項に記載の易重合性化合物の精
製方法。4. The method for purifying an easily polymerizable compound according to claim 1, wherein process wastewater is used as a water sealing liquid.
冷却する請求項1〜4のいずれか1項に記載の易重合性
化合物の精製方法。5. The method for purifying an easily polymerizable compound according to claim 1, wherein the water sealing liquid is cooled by a circulation line having a cooling device.
抜き出した水封液から有機物成分を回収することを特徴
とする請求項1〜5のいずれか1項に記載の易重合性化
合物の精製方法。6. A water sealing liquid is continuously or periodically withdrawn.
The method for purifying an easily polymerizable compound according to any one of claims 1 to 5, wherein the organic component is recovered from the extracted water sealing liquid.
供給することを特徴とする請求項1〜6のいずれか1項
に記載の易重合性化合物の精製方法。7. The method for purifying an easily polymerizable compound according to claim 1, wherein an inert gas is supplied to the exhaust of the water ring vacuum pump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11056642A JP2000256221A (en) | 1999-03-04 | 1999-03-04 | Purification of easily polymerizable compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11056642A JP2000256221A (en) | 1999-03-04 | 1999-03-04 | Purification of easily polymerizable compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000256221A true JP2000256221A (en) | 2000-09-19 |
Family
ID=13033006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11056642A Pending JP2000256221A (en) | 1999-03-04 | 1999-03-04 | Purification of easily polymerizable compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000256221A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003018162A1 (en) * | 2001-08-22 | 2003-03-06 | Mitsubishi Chemical Corporation | Distilling equipment for lase-of-polymerization compound |
WO2003043969A1 (en) * | 2001-11-21 | 2003-05-30 | Mitsubishi Chemical Corporation | Method for supplying atmosphere gas |
JP2003192637A (en) * | 2001-09-05 | 2003-07-09 | Basf Ag | Method for producing polymerizable compound |
JP2005289927A (en) * | 2004-04-01 | 2005-10-20 | Mitsubishi Chemicals Corp | Method for producing (meth)acrylic acid derivative |
WO2015064563A1 (en) * | 2013-10-29 | 2015-05-07 | 三菱化学株式会社 | Vacuum distillation method for easily polymerizable compound and method for producing acrylic acid |
EP3205384A1 (en) * | 2016-02-15 | 2017-08-16 | Evonik Degussa GmbH | Method for the vacuum distillation of an organic compound |
-
1999
- 1999-03-04 JP JP11056642A patent/JP2000256221A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7288169B2 (en) | 2001-08-22 | 2007-10-30 | Mitsubishi Chemical Corporation | Distillation apparatus for readily polymerizable compound |
WO2003018162A1 (en) * | 2001-08-22 | 2003-03-06 | Mitsubishi Chemical Corporation | Distilling equipment for lase-of-polymerization compound |
CN1305544C (en) * | 2001-08-22 | 2007-03-21 | 三菱化学株式会社 | Distillation apparatus for readily polymerizable compound |
CN1307145C (en) * | 2001-08-22 | 2007-03-28 | 三菱化学株式会社 | Distillation apparatus for readily polymerizable compound |
CN1330625C (en) * | 2001-08-22 | 2007-08-08 | 三菱化学株式会社 | Distillation apparatus for readily polymerizable compound |
US7473338B2 (en) | 2001-08-22 | 2009-01-06 | Mitsubishi Chemical Corporation | Distillation apparatus for readily polymerizable compound |
JP2003192637A (en) * | 2001-09-05 | 2003-07-09 | Basf Ag | Method for producing polymerizable compound |
JP4588967B2 (en) * | 2001-09-05 | 2010-12-01 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing polymerizable compound |
WO2003043969A1 (en) * | 2001-11-21 | 2003-05-30 | Mitsubishi Chemical Corporation | Method for supplying atmosphere gas |
US6910511B2 (en) | 2001-11-21 | 2005-06-28 | Mitsubishi Chemical Corporation | Method of supplying ambient gas |
WO2005100295A1 (en) * | 2004-04-01 | 2005-10-27 | Mitsubishi Chemical Corporation | Process for producing (meth)acrylic acid derivative |
CN1332920C (en) * | 2004-04-01 | 2007-08-22 | 三菱化学株式会社 | Method for producing (meth) acrylic acid derivative |
JP2005289927A (en) * | 2004-04-01 | 2005-10-20 | Mitsubishi Chemicals Corp | Method for producing (meth)acrylic acid derivative |
JP4715106B2 (en) * | 2004-04-01 | 2011-07-06 | 三菱化学株式会社 | Method for producing (meth) acrylic acid derivative |
US8367860B2 (en) | 2004-04-01 | 2013-02-05 | Mitsubishi Chemical Corporation | Method for producing (meth) acrylic acid derivitive |
WO2015064563A1 (en) * | 2013-10-29 | 2015-05-07 | 三菱化学株式会社 | Vacuum distillation method for easily polymerizable compound and method for producing acrylic acid |
US9738586B2 (en) | 2013-10-29 | 2017-08-22 | Mitsubishi Chemical Corporation | Vacuum distillation method for easily polymerizable compound and method for producing acrylic acid |
EP3064485B1 (en) | 2013-10-29 | 2017-11-29 | Mitsubishi Chemical Corporation | Vacuum distillation method for easily polymerizable compound and method for producing acrylic acid |
EP3205384A1 (en) * | 2016-02-15 | 2017-08-16 | Evonik Degussa GmbH | Method for the vacuum distillation of an organic compound |
WO2017140670A1 (en) * | 2016-02-15 | 2017-08-24 | Evonik Degussa Gmbh | Process for vacuum distillation of an organic compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1484309B1 (en) | Method for production of acrylic acid | |
JP3937462B2 (en) | Acrylic acid purification method | |
EP1484308B1 (en) | Method for production of acrylic acid | |
JP6716597B2 (en) | Improved method for producing (meth)acrylic acid | |
JP5368673B2 (en) | Method for producing (meth) acrylic acid | |
KR100820927B1 (en) | Method for production of methacrylic acid | |
KR20070077053A (en) | Process for producing (meth)acrylic acid | |
EP1026145B1 (en) | Method for purifying acrylic acid | |
US7491841B2 (en) | Process for producing acrylic ester | |
CN1127481C (en) | Method for recovering N-vinyl-2-pyrrolidone | |
JP3905810B2 (en) | Method for preventing polymerization in acrylic acid production process | |
JP2000256221A (en) | Purification of easily polymerizable compound | |
JP2000281617A (en) | Purification of acrylic acid | |
WO2013047479A1 (en) | Method for producing acrolein, acrylic acid, and derivative thereof | |
JP3832868B2 (en) | Acrylic acid purification method | |
JP2005060241A (en) | Method for purifying solvent and apparatus used therefor | |
JP4658104B2 (en) | Acrylic acid production method | |
CN113614060A (en) | Production of polymer grade acrylic acid | |
JP4074455B2 (en) | Method for producing (meth) acrylic acid | |
JP4050187B2 (en) | (Meth) acrylic acid collection method | |
JP2003171347A (en) | Method for producing acrylic ester | |
RU2412151C1 (en) | Method of extracting acrylic acid | |
CN118201902A (en) | Process for producing high purity (meth) acrylic acid | |
JP2003292470A (en) | Method of production for (meth)acrylic acid | |
JP2005036015A (en) | Method for purifying acrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061122 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070116 |