JP2000254645A - Treatment and device of waste water containing abrasive particle - Google Patents

Treatment and device of waste water containing abrasive particle

Info

Publication number
JP2000254645A
JP2000254645A JP11067591A JP6759199A JP2000254645A JP 2000254645 A JP2000254645 A JP 2000254645A JP 11067591 A JP11067591 A JP 11067591A JP 6759199 A JP6759199 A JP 6759199A JP 2000254645 A JP2000254645 A JP 2000254645A
Authority
JP
Japan
Prior art keywords
waste liquid
membrane
separation
separation membrane
abrasive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11067591A
Other languages
Japanese (ja)
Inventor
Atsushi Kawamoto
淳 川元
Kazuhiro Miyazawa
和浩 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP11067591A priority Critical patent/JP2000254645A/en
Publication of JP2000254645A publication Critical patent/JP2000254645A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent decrease of a flow flux of a separation membrane and to prevent reduction of a treated waste quantity by adding an inorganic flocculent to waste liquid containing abrasive particles to allow the abrasive particles in the waste water to flocculate, and separating the obtained aggregates through the membrane with a cross flow system, in the case that the abrasive particle-containing waste liquid discharged from a semiconductor plant, etc. is treated. SOLUTION: In a treatment of the abrasive particle-containing waste liquid, at first, the abrasive particle-containing waste liquid is introduced into a flocculating tank 1, and then an inorganic flocculent is fed into the flocculating tank 1 with an inorganic flocculent feed means 2, and is stirred and mixed with the waste liquid. The abrasive particles in the waste liquid become aggregates with a flocculating effect of the inorganic flocculent, and then the waste liquid containing the aggregates is subsequently introduced into a circulation tank 3, and is introduced into a membrane separation means 4 through a pipe 11 The waste liquid introduced into the membrane separation means 4 flows through a separation membrane 4b, and is circulated so as to return into the circulation tank 3 through a pipe 12. In this circulation process, while the waste liquid flowing in the separation membrane 4b flows along the separation membrane 4b, a portion of it is transmitted through the separation membrane 4b and flows out outside the separation membrane 4b as transmitting liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体工場などか
ら排出される研磨粒子含有廃液を処理する方法および装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating an abrasive particle-containing waste liquid discharged from a semiconductor factory or the like.

【0002】[0002]

【従来の技術】半導体工場などから排出される研磨粒子
含有廃液中の研磨粒子を除去する方法としては、例えば
セラミックからなる分離膜を用いて廃液中から研磨粒子
を膜分離する方法がある。膜分離には全量ろ過方式が用
いられることが多い。
2. Description of the Related Art As a method of removing abrasive particles in a waste liquid containing abrasive particles discharged from a semiconductor factory or the like, there is a method of separating the abrasive particles from the waste liquid by using a separation membrane made of ceramic, for example. For the membrane separation, a total filtration method is often used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の処理方法は、分離膜の流束低下が生じやすく、処理
水量の低下が起きやすい問題があった。本発明は、上記
事情に鑑みてなされたもので、処理水量の低下を防ぐこ
とができる研磨粒子含有廃液の処理方法を提供すること
を目的とする。
However, the conventional treatment method described above has a problem that the flux of the separation membrane is easily reduced, and the amount of treated water is easily reduced. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for treating an abrasive particle-containing waste liquid that can prevent a reduction in the amount of treated water.

【0004】[0004]

【課題を解決するための手段】本発明の研磨粒子含有廃
液の処理方法は、研磨粒子含有廃液に無機凝集剤を添加
し廃液中の研磨粒子を凝集させる凝集工程と、この凝集
工程によって得られた凝集物をクロスフロー方式により
膜分離する膜分離工程を有することを特徴とするもので
ある。無機凝集剤としては、鉄塩、アルミニウム塩、マ
グネシウム塩などの無機塩類を用いるのが好ましい。本
発明の研磨粒子含有廃液の処理装置は、研磨粒子含有廃
液に無機凝集剤を供給する無機凝集剤供給手段と、得ら
れた凝集物をクロスフロー方式により膜分離する膜分離
手段を有することを特徴とするものである。
The method for treating a waste liquid containing abrasive particles according to the present invention is obtained by an aggregation step in which an inorganic coagulant is added to the waste liquid containing abrasive particles to aggregate the abrasive particles in the waste liquid, and this aggregation step. And a membrane separation step of separating the aggregates by a cross-flow method. As the inorganic coagulant, it is preferable to use inorganic salts such as iron salts, aluminum salts, and magnesium salts. The treatment apparatus for waste liquid containing abrasive particles of the present invention has an inorganic flocculant supply means for supplying an inorganic flocculant to the waste liquid containing abrasive particles, and a membrane separation means for membrane-separating the obtained aggregates by a cross-flow method. It is a feature.

【0005】[0005]

【発明の実施の形態】以下、本発明の研磨粒子含有廃液
の処理方法の一実施形態を説明する。図1は、本発明の
研磨粒子含有廃液の処理装置の一実施形態の概略構成を
示すものである。図1に示す処理装置は、研磨粒子含有
廃液が導入される凝集槽1と、凝集槽1内の廃液に無機
凝集剤を供給する無機凝集剤供給手段2と、凝集槽1か
ら導出された廃液が導入される循環槽3と、循環槽3内
の廃液中の凝集物を膜分離する膜分離手段4と、膜分離
手段4において得られた透過液を貯留する透過液貯留槽
5と、膜分離手段4において得られた濃縮液を貯留する
濃縮液貯留槽6と、濃縮液中の凝集物を脱水処理する脱
水機7から構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the method for treating a waste liquid containing abrasive particles according to the present invention will be described below. FIG. 1 shows a schematic configuration of an embodiment of an apparatus for treating abrasive particle-containing waste liquid of the present invention. The processing apparatus shown in FIG. 1 includes a flocculation tank 1 into which an abrasive particle-containing waste liquid is introduced, an inorganic flocculant supply unit 2 that supplies an inorganic flocculant to the waste liquid in the flocculation tank 1, and a waste liquid derived from the flocculation tank 1. , A membrane separation means 4 for membrane-separating aggregates in the waste liquid in the circulation tank 3, a permeate storage tank 5 for storing the permeate obtained in the membrane separation means 4, It comprises a concentrated liquid storage tank 6 for storing the concentrated liquid obtained in the separation means 4 and a dehydrator 7 for dehydrating aggregates in the concentrated liquid.

【0006】無機凝集剤供給手段2は、無機凝集剤貯留
槽2a内の無機凝集剤を供給管2bを通して凝集槽1内
の廃液中に供給することができるようになっている。
The inorganic coagulant supply means 2 can supply the inorganic coagulant in the inorganic coagulant storage tank 2a into the waste liquid in the coagulation tank 1 through the supply pipe 2b.

【0007】膜分離手段4は、外筒4a内に1または複
数の筒状分離膜4bが収容され、外筒4aに導出孔4c
が形成されたものであり、この膜分離手段4は、廃液が
分離膜4b内を一端側から他端側に向けて流れ、この
際、分離膜4bを内部側から外部側に透過した透過液が
導出孔4cを通して外部に導出されるように構成されて
いる。外筒4aとしては、例えば合成樹脂からなる外径
150〜300mmのものを使用できる。
The membrane separation means 4 includes one or more cylindrical separation membranes 4b housed in an outer cylinder 4a, and a lead-out hole 4c formed in the outer cylinder 4a.
The wastewater flows through the separation membrane 4b from one end to the other end. At this time, the permeated liquid passing through the separation membrane 4b from the inside to the outside is formed. Is led out through the lead-out hole 4c. As the outer cylinder 4a, for example, one having an outer diameter of 150 to 300 mm made of a synthetic resin can be used.

【0008】分離膜4bとしては、ポリエステル、ナイ
ロン、ポリプロピレン、綿、ガラスカーボン、グラスフ
ァイバ、ステンレススチールなどからなる繊維を製織、
編織、接着、ステッチボンド加工等により厚さ0.1〜
2mm程度の布状に加工し、これを例えば外径10〜3
0mmの筒状に成形したものを用いることができる。分
離膜4bは、後述する膜分離操作時における被処理廃液
の流量に応じて、分離膜4b内を流れる廃液の流速(流
れ方向の平均値)が分離膜4bに対し1〜3m/sとな
るように内径を設定するのが好ましい。また、脱水機7
としては、ベルトプレス、スクリューデカンタ、フィル
タープレスなどを用いることができる。
As the separation membrane 4b, a fiber made of polyester, nylon, polypropylene, cotton, glass carbon, glass fiber, stainless steel, or the like is woven.
Thickness 0.1 ~ by knitting, bonding, stitch bond processing, etc.
It is processed into a cloth shape of about 2 mm,
One molded into a 0 mm cylindrical shape can be used. In the separation membrane 4b, the flow rate (average value in the flow direction) of the waste liquid flowing in the separation membrane 4b is 1 to 3 m / s with respect to the separation membrane 4b in accordance with the flow rate of the waste liquid to be treated during the membrane separation operation described later. It is preferable to set the inner diameter as described above. The dehydrator 7
For example, a belt press, a screw decanter, a filter press, or the like can be used.

【0009】次に、上記装置を用いた場合を例として、
本発明の研磨粒子含有廃液の処理方法の一実施形態を説
明する。本発明の処理方法の対象となる研磨粒子含有廃
液としては、例えば半導体製造工程などにおいてスライ
シング工程やバックグラインド工程、CMP工程などか
ら排出されるものを挙げることができる。これらの工程
から排出される廃液は、例えばシリカ、アルミナ、酸化
セリウム、二酸化マンガンなどからなる研磨粒子を、通
常、100〜5000mg/l含有する。
Next, as an example, the case where the above-mentioned device is used will be described.
An embodiment of the method for treating abrasive particle-containing waste liquid of the present invention will be described. Examples of the waste liquid containing abrasive particles to be subjected to the treatment method of the present invention include those discharged from a slicing step, a back grinding step, a CMP step, and the like in a semiconductor manufacturing step and the like. The waste liquid discharged from these steps usually contains 100 to 5000 mg / l of abrasive particles composed of, for example, silica, alumina, cerium oxide, manganese dioxide and the like.

【0010】本実施形態の処理方法は、上記廃液に無機
凝集剤を添加し廃液中の研磨粒子を凝集させる凝集工程
と、この凝集工程によって得られた凝集物を膜分離する
膜分離工程からなるものである。まず、以下に示す凝集
工程を行う。研磨粒子含有廃液を凝集槽1に導入した
後、無機凝集剤供給手段2を用いて無機凝集剤を凝集槽
1内の廃液に供給し、凝集槽1内の廃液を十分に攪拌す
る。
The treatment method of the present embodiment comprises an aggregation step of adding an inorganic coagulant to the waste liquid to aggregate the abrasive particles in the waste liquid, and a membrane separation step of separating the aggregate obtained by the aggregation step into a membrane. Things. First, the following aggregation step is performed. After the abrasive particle-containing waste liquid is introduced into the flocculation tank 1, the inorganic flocculant is supplied to the waste liquid in the flocculation tank 1 using the inorganic flocculant supply means 2, and the waste liquid in the flocculation tank 1 is sufficiently stirred.

【0011】無機凝集剤としては、鉄塩、アルミニウム
塩、マグネシウム塩などを用いることができる。鉄塩と
しては、塩化第二鉄、硫酸第一鉄、硫酸第二鉄などが使
用可能である。アルミニウム塩としては、硫酸アルミニ
ウム、アルミン酸ナトリウム、ポリ塩化アルミニウム、
Al2(OH)5Cl・2H2Oなどが使用可能である。
マグネシウム塩としては、塩化マグネシウムなどが使用
可能である。なかでも特に、鉄塩を使用するのが好まし
い。これは、鉄塩の使用により、粗大でろ水性が高い凝
集物を得ることができるためである。またAl2(O
H)5Cl・2H2Oを使用すると、凝集剤分子中の塩素
含有量が低いため処理水中の塩素含有量を低く抑えるこ
とができるため好ましい。無機凝集剤は、水溶液または
粉末の状態で凝集槽1内に添加することができる。無機
凝集剤の添加量は、廃液中に含まれる研磨粒子量に応じ
て設定されるが、例えば50〜300mg/lとするこ
とができる。上記無機凝集剤によって、無機凝集剤の凝
集効果により廃液中の研磨粒子は凝集物となる。
As the inorganic coagulant, iron salts, aluminum salts, magnesium salts and the like can be used. As the iron salt, ferric chloride, ferrous sulfate, ferric sulfate and the like can be used. Aluminum salts include aluminum sulfate, sodium aluminate, polyaluminum chloride,
Al 2 (OH) 5 Cl.2H 2 O or the like can be used.
As the magnesium salt, magnesium chloride or the like can be used. Among them, it is particularly preferable to use an iron salt. This is because a coarse aggregate having high drainage can be obtained by using an iron salt. Al 2 (O
H) 5 Cl.2H 2 O is preferred because the chlorine content in the coagulant molecule is low and the chlorine content in the treated water can be kept low. The inorganic coagulant can be added to the coagulation tank 1 in the form of an aqueous solution or a powder. The addition amount of the inorganic coagulant is set according to the amount of abrasive particles contained in the waste liquid, and can be, for example, 50 to 300 mg / l. The abrasive particles in the waste liquid are aggregated by the inorganic flocculant due to the flocculating effect of the inorganic flocculant.

【0012】次いで、以下に示す膜分離工程を行う。上
記凝集物を含む廃液を循環槽3に導入し、循環槽3内の
廃液を管11を通して膜分離手段4に導入する。膜分離
手段4に導入された廃液は、分離膜4b内を一端側から
他端側に向けて流れ、管12を通って循環槽3内に戻
り、さらに管11、膜分離手段4、管12、循環槽3を
通って循環する。この循環過程において、分離膜4b内
に流入した廃液は、分離膜4bに沿って流れつつ、その
一部が分離膜4bを透過し、透過液として分離膜4bの
外部に流出する。本明細書においては、このように被処
理液を分離膜に沿って流しつつ膜分離を行う方式をクロ
スフロー方式という。
Next, the following membrane separation step is performed. The waste liquid containing the aggregates is introduced into the circulation tank 3, and the waste liquid in the circulation tank 3 is introduced into the membrane separation means 4 through the pipe 11. The waste liquid introduced into the membrane separation means 4 flows from the one end side to the other end side in the separation membrane 4b, returns to the circulation tank 3 through the pipe 12, and further, the pipe 11, the membrane separation means 4, and the pipe 12 Circulate through the circulation tank 3. In this circulation process, the waste liquid flowing into the separation membrane 4b flows along the separation membrane 4b, and a part of the waste liquid passes through the separation membrane 4b and flows out of the separation membrane 4b as a permeate. In the present specification, a method of performing membrane separation while flowing the liquid to be treated along the separation membrane in this manner is referred to as a cross-flow method.

【0013】廃液が分離膜4bを透過する際、廃液中に
含まれる上記凝集物は分離膜4b上に堆積し上記凝集物
からなる堆積層が形成される。堆積層が形成されると、
分離膜4bを透過する廃液中の凝集物はこの堆積層によ
って捕捉され、清澄な透過液が得られる。分離膜4bの
外部に出た透過液は、導出孔4cを通して外筒4aの外
部に導出され、管13を通して透過液貯留槽5内に導入
され、ここで必要に応じてpHを調整された後、処理水
として系外に排出される。
When the waste liquid passes through the separation membrane 4b, the above-mentioned aggregates contained in the waste liquid are deposited on the separation membrane 4b to form a deposited layer composed of the above-mentioned aggregates. When a sedimentary layer is formed,
Aggregates in the waste liquid permeating the separation membrane 4b are captured by the sedimentary layer, and a clear permeate is obtained. The permeate flowing out of the separation membrane 4b is led out of the outer cylinder 4a through the lead-out hole 4c, and introduced into the permeate storage tank 5 through the pipe 13, where the pH is adjusted if necessary. , And is discharged out of the system as treated water.

【0014】廃液が分離膜4b内を流れる際、上記凝集
物のうち大粒径のものは、表面積当たりの重量が大きい
ため分離膜4b上に堆積しやすい。これに対し、小粒径
のものは表面積当たりの重量が小さいため循環廃液に流
され循環廃液とともに膜分離手段4を通過しやすい。膜
分離手段4を通過した循環廃液中の小粒径凝集物のう
ち、循環する過程で互いに付着しあうことによって大粒
径化したものは、分離膜4b上に堆積する。このよう
に、被処理廃液を分離膜に沿って流しつつ膜分離を行う
クロスフロー方式の採用によって、分離膜4b上には、
ろ水性の高い粗大凝集物が選択的に堆積する。このた
め、分離膜4bの目詰まりが発生しにくく、高い流束が
維持される。
When the waste liquid flows through the separation membrane 4b, the above-mentioned aggregates having a large particle diameter tend to deposit on the separation membrane 4b because of their large weight per surface area. On the other hand, those having a small particle diameter have a small weight per surface area and are easily flowed into the circulating waste liquid and easily pass through the membrane separation means 4 together with the circulating waste liquid. Among the small particle size aggregates in the circulating waste liquid that has passed through the membrane separation means 4, those having a large particle size by adhering to each other in the circulation process are deposited on the separation membrane 4b. As described above, by adopting the cross flow method in which the waste liquid to be treated flows along the separation membrane to perform membrane separation, the separation membrane 4b has
Large aggregates with high drainage are selectively deposited. Therefore, clogging of the separation membrane 4b is unlikely to occur, and a high flux is maintained.

【0015】廃液の一部が膜分離手段4において透過液
として排出されるため、循環廃液中の上記凝集物の濃度
は徐々に高まる。このため、上記凝集物濃度が所定の値
以上に高まった段階で、循環廃液の一部を管14を通し
て濃縮液として循環槽3から導出するのが好ましい。濃
縮液は、濃縮液貯留槽6を経て脱水機7に導入し濃縮液
中の凝集物を脱水した後、系外に排出することができ
る。
Since a part of the waste liquid is discharged as a permeate in the membrane separation means 4, the concentration of the aggregate in the circulating waste liquid gradually increases. For this reason, it is preferable that a part of the circulating waste liquid is led out of the circulating tank 3 as a concentrated liquid through the pipe 14 when the concentration of the aggregates becomes higher than a predetermined value. The concentrated liquid can be introduced into the dehydrator 7 through the concentrated liquid storage tank 6 to dehydrate aggregates in the concentrated liquid, and then discharged out of the system.

【0016】また、上記膜分離工程によって分離膜4b
上に形成される堆積層によって流束が低下するのを防ぐ
ため、定期的に分離膜4bを逆洗し、堆積層の厚さを低
く抑えるのが好ましい。逆洗水は脱水機7に導入し固形
分を脱水処理するのが好ましい。
Further, the separation membrane 4b is formed by the membrane separation step.
In order to prevent the flux from being reduced by the deposited layer formed thereon, it is preferable to periodically backwash the separation membrane 4b to keep the thickness of the deposited layer low. It is preferable that the backwash water be introduced into the dehydrator 7 to dehydrate solids.

【0017】上記実施形態の処理方法にあっては、無機
凝集剤の添加によって、廃液中の研磨粒子を凝集処理
し、研磨粒子のろ水性を高めることができる。また、凝
集物をクロスフロー方式により分離除去するため、凝集
物のうちろ水性が高い大粒径のものが選択的に分離膜4
b上に堆積する。このため、流束の低下を防ぐことがで
きる。従って、処理水量を高く維持することができる。
処理水量は、研磨粒子含有廃液をそのまま全量ろ過方式
により膜分離する従来方法に比べ、例えば3〜10倍と
することが可能となる。また分離膜洗浄の頻度を低く
し、メンテナンス作業を容易にすることができる。ま
た、処理水量を高く維持できるため、必要となる分離膜
4bの面積が小さくて済むようになる。このため、膜分
離手段4に要する設備コストの削減を図ることができ
る。
In the treatment method of the above embodiment, the addition of the inorganic coagulant can coagulate the abrasive particles in the waste liquid to increase the drainage of the abrasive particles. In addition, since the aggregates are separated and removed by the cross-flow method, the aggregates having a large particle size having high drainage are selectively used as the separation membrane 4.
b. Therefore, it is possible to prevent the flux from decreasing. Therefore, the amount of treated water can be kept high.
The amount of treated water can be, for example, 3 to 10 times that of a conventional method in which a waste liquid containing abrasive particles is subjected to membrane separation by a full filtration method. Further, the frequency of cleaning the separation membrane can be reduced, and the maintenance work can be facilitated. Further, since the amount of treated water can be kept high, the required area of the separation membrane 4b can be small. For this reason, the equipment cost required for the membrane separation means 4 can be reduced.

【0018】また一般に、シリカからなる研磨粒子は、
粒径が非常に小さいため、ろ水性が低いが、上記処理方
法によれば、この研磨粒子を粗大な凝集物とし、膜分離
を行う際の流束を高く維持することができる。またシリ
カからなる研磨粒子の一部は溶存シリカとなるが、この
溶存シリカもシリサイドとして不溶化し、膜分離工程に
おいて除去することができる。透過液中の溶存シリカ濃
度を低減できるため、透過液を逆浸透膜やイオン交換膜
で処理し、透過水中に含まれるイオンを除去することが
可能となる。逆浸透膜やイオン交換膜で処理した透過液
は、純水として再利用することができる。
Generally, abrasive particles made of silica are:
Since the particle size is very small, the drainage is low. However, according to the above-mentioned treatment method, the abrasive particles can be formed into coarse aggregates and the flux at the time of membrane separation can be kept high. Further, a part of the abrasive particles made of silica becomes dissolved silica, and this dissolved silica is also insolubilized as silicide and can be removed in the membrane separation step. Since the concentration of dissolved silica in the permeate can be reduced, the permeate can be treated with a reverse osmosis membrane or an ion exchange membrane to remove ions contained in the permeate. The permeate treated with the reverse osmosis membrane or the ion exchange membrane can be reused as pure water.

【0019】[0019]

【実施例】(実施例1)半導体工場からの研磨粒子含有
廃液を、図1に示す処理装置を用いて以下に示すように
処理した。この研磨粒子含有廃液としては、シリカから
なる研磨粒子を600mg/l含むものとした。なおこ
の廃液中には分散剤として水酸化カリウム(KOH)が
含まれている。凝集槽1としては、245L容量のもの
を用い、循環槽3としては、65L容量のものを用い
た。また、膜分離手段4としては、膜モジュール(HT
W社製HS3−3)を用いた。この膜モジュールは、円
筒状の外筒4a(内径40cm、長さ120cm)内
に、3本の筒状の分離膜4bを外筒4aに沿って収容し
た構造のものである。この膜モジュールにおいて、分離
膜4bは、ポリエステル製の製織布(厚さ0.5mm)
からなり、内径12mmの筒状に成形されたものであ
る。
EXAMPLES (Example 1) A waste liquid containing abrasive particles from a semiconductor factory was treated using the treatment apparatus shown in FIG. 1 as follows. The waste liquid containing abrasive particles contained 600 mg / l of abrasive particles made of silica. The waste liquid contains potassium hydroxide (KOH) as a dispersant. The coagulation tank 1 used had a capacity of 245 L, and the circulation tank 3 used had a capacity of 65 L. The membrane separation means 4 includes a membrane module (HT)
HS3-3 manufactured by W Company was used. This membrane module has a structure in which three cylindrical separation membranes 4b are accommodated in a cylindrical outer cylinder 4a (inner diameter 40 cm, length 120 cm) along the outer cylinder 4a. In this membrane module, the separation membrane 4b is made of a woven polyester fabric (thickness 0.5 mm).
And is formed into a cylindrical shape having an inner diameter of 12 mm.

【0020】上記廃液を流量0.25m3/hで凝集槽
1内に導入しつつ、凝集槽1内の廃液に、無機凝集剤
(塩化第二鉄)を、廃液に対する添加量が450mg/
lとなるように添加し、十分に混合した。続いて、凝集
槽1内の廃液を循環槽3を経て膜分離手段4に導入し
た。この際、分離膜4b内を流れる廃液の分離膜4bに
対する流速(平均値)は1.2m/sとなった。また膜
分離手段4入口における廃液の圧力は0.2MPaに設
定した。上記膜分離操作を3時間にわたって行い、この
間の膜分離手段4における流束を測定したところ、試験
開始から終了まで透過流束は安定していた。
While introducing the waste liquid into the flocculation tank 1 at a flow rate of 0.25 m 3 / h, an inorganic coagulant (ferric chloride) was added to the waste liquid in the flocculation tank 1 at an amount of 450 mg / w.
1 and mixed well. Subsequently, the waste liquid in the flocculation tank 1 was introduced into the membrane separation means 4 through the circulation tank 3. At this time, the flow rate (average value) of the waste liquid flowing in the separation membrane 4b with respect to the separation membrane 4b was 1.2 m / s. The pressure of the waste liquid at the inlet of the membrane separation means 4 was set to 0.2 MPa. The above-mentioned membrane separation operation was performed for 3 hours, and the flux in the membrane separation means 4 during this time was measured. As a result, the permeation flux was stable from the start to the end of the test.

【0021】また比較例として、凝集剤を添加しないで
同様の処理試験を行ったところ、処理水量は実施例1の
0.7倍程度となった。
As a comparative example, when the same treatment test was performed without adding a flocculant, the amount of treated water was about 0.7 times that of Example 1.

【0022】(実施例2)シリカからなる研磨粒子の濃
度が600mg/lである半導体工場由来の研磨粒子含
有廃液(分散剤としてアンモニア(NH3)を含有)
を、図1に示す処理装置を用いて以下に示すように処理
した。上記廃液を流量0.25m3/hで凝集槽1内に
導入しつつ、凝集槽1内の廃液に、無機凝集剤(塩化第
二鉄)を、廃液に対する添加量が450mg/lとなる
ように添加し、十分に混合した。廃液中の凝集物を実施
例1と同様にして膜分離した。上記膜分離操作を3時間
にわたって行い、この間の膜分離手段4における流束を
測定したところ、試験開始から終了まで透過流束は安定
していた。
Example 2 A waste liquid containing abrasive particles derived from a semiconductor factory having a concentration of silica abrasive particles of 600 mg / l (containing ammonia (NH 3 ) as a dispersant)
Was processed using the processing apparatus shown in FIG. 1 as follows. While introducing the waste liquid into the flocculation tank 1 at a flow rate of 0.25 m 3 / h, the inorganic flocculant (ferric chloride) was added to the waste liquid in the flocculation tank 1 so that the amount of the waste liquid was 450 mg / l. And mixed well. Aggregates in the waste liquid were subjected to membrane separation in the same manner as in Example 1. The above-mentioned membrane separation operation was performed for 3 hours, and the flux in the membrane separation means 4 during this time was measured. As a result, the permeation flux was stable from the start to the end of the test.

【0023】また比較例として、凝集剤を添加しないで
同様の処理試験を行ったところ、処理水量は実施例2の
0.6倍程度となった。
As a comparative example, when the same treatment test was performed without adding a flocculant, the amount of treated water was about 0.6 times that of Example 2.

【0024】なお、無機凝集剤(塩化第二鉄)の添加量
は、固形分換算で算出した。また、上記実施例、比較例
においては、無機凝集剤を添加してから膜分離操作を開
始するまでに、短時間、被処理廃液を低圧で管11、膜
分離手段4、管12、循環槽3を通して循環させ、分離
膜4b上に凝集物からなる堆積層を形成させた。
The amount of the inorganic coagulant (ferric chloride) was calculated in terms of solid content. In addition, in the above Examples and Comparative Examples, the waste liquid to be treated was reduced at a low pressure for a short time from the addition of the inorganic coagulant to the start of the membrane separation operation at a low pressure in the pipe 11, the membrane separation means 4, the pipe 12, the circulation tank, and the like. 3 to form a deposited layer composed of aggregates on the separation membrane 4b.

【0025】上記実施例および比較例の試験結果より、
無機凝集剤の添加を行った実施例では、流束は低下する
ことなく安定し、処理水量が比較例に比べ増加したこと
がわかった。なお、いずれの実施例、比較例において
も、透過液中のSS濃度は1mg/l以下となり、良好
な処理水質が得られたことが確認された。
From the test results of the above Examples and Comparative Examples,
In the example in which the inorganic coagulant was added, it was found that the flux was stable without lowering, and the treated water amount was increased as compared with the comparative example. In each of the examples and comparative examples, the SS concentration in the permeated liquid was 1 mg / l or less, and it was confirmed that good treated water quality was obtained.

【0026】[0026]

【発明の効果】以上説明したように、本発明の処理方法
にあっては、流束の低下を防ぐことができる。従って、
処理水量を高く維持することができる。
As described above, in the processing method of the present invention, it is possible to prevent the flux from decreasing. Therefore,
The treated water volume can be kept high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の研磨粒子含有廃液の処理装置の一実
施形態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an embodiment of an apparatus for treating abrasive particle-containing waste liquid of the present invention.

【符号の説明】[Explanation of symbols]

1・・・凝集槽、2・・・無機凝集剤供給手段、4・・・膜分離
手段
DESCRIPTION OF SYMBOLS 1 ... Coagulation tank, 2 ... Inorganic coagulant supply means, 4 ... Membrane separation means

フロントページの続き Fターム(参考) 4D006 GA02 HA22 JA25B JA25C KA02 KA03 KA63 KA72 KB11 KB13 KB30 KC03 KD08 KE02P KE05P KE07Q KE11R KE12P KE15Q KE28P MA02 MA31 MA33 MA40 MC02 MC04 MC11 MC23 MC48X MC55 PA01 PB08 PB20 PB23 PC01 4D015 BA04 BA19 BB05 CA20 DA04 DA05 DA08 DA13 DA15 DA16 DA19 DC02 DC04 EA37 FA02 FA17 FA19 FA22 4D062 BA04 BA19 BB05 CA20 DA04 DA05 DA08 DA13 DA15 DA16 DA19 DC02 DC04 EA04 EA37 FA02 FA17 FA19 FA22 Continued on the front page F-term (reference) 4D006 GA02 HA22 JA25B JA25C KA02 KA03 KA63 KA72 KB11 KB13 KB30 KC03 KD08 KE02P KE05P KE07Q KE11R KE12P KE15Q KE28P MA02 MA31 MA33 MA40 MC02 MC04 MC11 MC01 MC48B01 P01 DA04 DA05 DA08 DA13 DA15 DA16 DA19 DC02 DC04 EA37 FA02 FA17 FA19 FA22 4D062 BA04 BA19 BB05 CA20 DA04 DA05 DA08 DA13 DA15 DA16 DA19 DC02 DC04 EA04 EA37 FA02 FA17 FA19 FA22

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 研磨粒子含有廃液に無機凝集剤を添加し
廃液中の研磨粒子を凝集させる凝集工程と、この凝集工
程によって得られた凝集物をクロスフロー方式により膜
分離する膜分離工程を有することを特徴とする研磨粒子
含有廃液の処理方法。
1. An agglomeration step of adding an inorganic coagulant to an abrasive particle-containing waste liquid to aggregate the abrasive particles in the waste liquid, and a membrane separation step of separating an aggregate obtained by the aggregation step by a cross-flow method. A method for treating an abrasive particle-containing waste liquid, comprising:
【請求項2】 無機凝集剤として、無機塩類を用いるこ
とを特徴とする請求項1記載の研磨粒子含有廃液の処理
方法。
2. The method for treating a waste liquid containing abrasive particles according to claim 1, wherein an inorganic salt is used as the inorganic coagulant.
【請求項3】 研磨粒子含有廃液に無機凝集剤を供給す
る無機凝集剤供給手段と、得られた凝集物をクロスフロ
ー方式により膜分離する膜分離手段を有することを特徴
とする研磨粒子含有廃液の処理装置。
3. An abrasive particle-containing waste liquid comprising: an inorganic flocculant supply means for supplying an inorganic flocculant to the abrasive particle-containing waste liquid; and a membrane separation means for separating the obtained aggregates by a cross-flow method. Processing equipment.
JP11067591A 1999-03-12 1999-03-12 Treatment and device of waste water containing abrasive particle Withdrawn JP2000254645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067591A JP2000254645A (en) 1999-03-12 1999-03-12 Treatment and device of waste water containing abrasive particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067591A JP2000254645A (en) 1999-03-12 1999-03-12 Treatment and device of waste water containing abrasive particle

Publications (1)

Publication Number Publication Date
JP2000254645A true JP2000254645A (en) 2000-09-19

Family

ID=13349322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067591A Withdrawn JP2000254645A (en) 1999-03-12 1999-03-12 Treatment and device of waste water containing abrasive particle

Country Status (1)

Country Link
JP (1) JP2000254645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152879A (en) * 2003-11-06 2005-06-16 Sanyo Electric Co Ltd Coagulation treatment device for fluid and coagulation treatment method employing it
KR101487586B1 (en) 2009-10-08 2015-01-29 하이큐-팩토리 게엠베하 Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152879A (en) * 2003-11-06 2005-06-16 Sanyo Electric Co Ltd Coagulation treatment device for fluid and coagulation treatment method employing it
KR101487586B1 (en) 2009-10-08 2015-01-29 하이큐-팩토리 게엠베하 Recycling method and device for recycling waste water containing slurry from a semi-conductor treatment process

Similar Documents

Publication Publication Date Title
US6582605B2 (en) Method of treating industrial waste waters
US6722958B2 (en) Apparatus and process for recovering abrasive
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
CA2905926C (en) Process for water treatment prior to reverse osmosis
KR101612219B1 (en) Device and Method for Treating Washing Water using combined coagulation-ceramic ultrafiltration membrane system
JP3903746B2 (en) Circulating cooling water treatment method
TW589284B (en) Liquid treatment method and apparatus
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JP3688505B2 (en) Method and apparatus for treating fluorine-containing waste liquid
WO2002004360A9 (en) Method of treating semiconductor waste waters
JP2003053390A (en) Clear water production system
TW201731775A (en) Treatment method of high-hardness water drainage which is to contain the process to add the coagulant, the coarse filtration process, the membrane filtration process, and the reverse cleaning process
US20160221846A1 (en) Process for water treatment prior to reverse osmosis
JP2000254645A (en) Treatment and device of waste water containing abrasive particle
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
JP2002346347A (en) Method and apparatus for filtration
JP2003334566A (en) Method and device for treating drain containing fluorine
KR101091092B1 (en) Two step advanced water purification apparatus
JP2003001255A (en) Method for treating circulating cooling water
JP2001286872A (en) Operation method of flocculating treatment device and flocculating treatment device
JPH11347569A (en) Polishing waste water treatment method
JP2002370089A (en) Washing wastewater cleaning system
JP2000126768A (en) Method nd apparatus for treating cmp waste solution
JPH0966296A (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606