JP2000251905A - Electrolyte film for solid high polymer fuel cell and its manufacture - Google Patents

Electrolyte film for solid high polymer fuel cell and its manufacture

Info

Publication number
JP2000251905A
JP2000251905A JP11050579A JP5057999A JP2000251905A JP 2000251905 A JP2000251905 A JP 2000251905A JP 11050579 A JP11050579 A JP 11050579A JP 5057999 A JP5057999 A JP 5057999A JP 2000251905 A JP2000251905 A JP 2000251905A
Authority
JP
Japan
Prior art keywords
exchange membrane
cation exchange
membrane
heavy metal
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11050579A
Other languages
Japanese (ja)
Other versions
JP4337162B2 (en
Inventor
Hirofumi Iizaka
浩文 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05057999A priority Critical patent/JP4337162B2/en
Publication of JP2000251905A publication Critical patent/JP2000251905A/en
Application granted granted Critical
Publication of JP4337162B2 publication Critical patent/JP4337162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To enhance reacting capability by enlarging a contact area with a catalyst without lowering the performance as an electrolyte film. SOLUTION: A heavy metal substitutes for a proton by dipping a strong acid ion exchange membrane in an aqueous solution of weak acid salt of heavy metals such as lead, zinc and the like (process S10), a pattern by a hollow having a designated shape is formed by radiating radioactive rays such as an electron beam onto the surface of the ion exchange membrane the proton of which the heavy metal substitutes for (process S12), and the proton then substitutes for the heavy metal by dipping the ion exchange membrane the proton of which the heavy metal substitutes for in diluted sulfuric acid (process S14), to complete an electrolyte film. If radioactive ray is radiated onto a strong acid cation exchange membrane, decomposition of the ion exchange membrane is normally accelerated, however, the decomposition can be prevented by a heavy metal substituting for a proton. As a result, an electrolyte film provided with a hollow having a designated shape can be manufactured without causing deterioration and destruction of an ion exchange membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池用の電解質膜およびその製造方法に関する。
The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】従来、この種の固体高分子型燃料電池用
の電解質膜としては、電解質膜の表面に表面粗化処理を
施してなるものが提案されている(特開平5−2587
56号公報など)。この電解質膜では、表面に施した表
面粗化処理により形成される凹凸の凹部に触媒としての
金属を堆積させることにより、電解質膜と触媒とガスと
の三相界面で生じる電気化学反応の反応場を拡大させて
触媒の利用率を高め、電池特性の向上を図ることができ
るとされている。
2. Description of the Related Art Heretofore, as an electrolyte membrane for a polymer electrolyte fuel cell of this type, a membrane obtained by subjecting the surface of an electrolyte membrane to a surface roughening treatment has been proposed (JP-A-5-2587).
No. 56). In this electrolyte membrane, a metal as a catalyst is deposited in concaves and convexes formed by surface roughening treatment performed on the surface, thereby forming a reaction field of an electrochemical reaction generated at a three-phase interface between the electrolyte membrane, the catalyst, and the gas. It is said that the efficiency of the catalyst can be increased by enlarging the catalyst and the battery characteristics can be improved.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、こうし
た電解質膜では、その凹部に堆積した触媒のうち膜表面
付近の触媒粒子が電気化学反応に寄与するだけで、その
凹部に堆積した多くの触媒粒子は反応に寄与しないとい
った問題があった。こうした問題は、触媒として貴金属
を用いる場合には、電解質膜を用いる燃料電池のコスト
を増大させるという問題を併発する。
However, in such an electrolyte membrane, of the catalyst deposited in the recess, only the catalyst particles near the membrane surface contribute to the electrochemical reaction, and many catalyst particles deposited in the recess are There was a problem that it did not contribute to the reaction. Such a problem is accompanied by a problem that when a noble metal is used as a catalyst, the cost of a fuel cell using an electrolyte membrane increases.

【0004】また、表面に粗化処理を施した電解質膜で
は、処理方法にもよるが膜の表面の構造が化学的に変質
されたり、物理的に破壊されるおそれがあり、電解質膜
として有効に機能しない部分を生じるという問題もあっ
た。通常、電解質膜としてイオン交換膜を用いるが、化
学的な表面処理や物理的な表面処理によりイオン交換に
寄与する官能基が破壊される場合があり、この場合、イ
オン交換の機能を失い、電解質膜としての性能を低下さ
せてしまう。
Further, in the case of an electrolyte membrane whose surface has been subjected to a roughening treatment, the structure of the surface of the membrane may be chemically altered or physically destroyed depending on the treatment method. There was also a problem that some parts did not work. Normally, an ion exchange membrane is used as an electrolyte membrane, but a functional group contributing to ion exchange may be destroyed by chemical surface treatment or physical surface treatment.In this case, the ion exchange function is lost, The performance as a film is reduced.

【0005】なお、こうした問題の一部を解決するもの
として、出願人は、電解質膜表面にプラズマスパッタエ
ッチング処理を施して膜表面に凹凸を形成し、その凹凸
に沿ってほぼ一様な厚さの触媒層を形成してなる電解質
膜を提案している(特願平6−315502号)。
In order to solve some of these problems, the applicant has applied a plasma sputter etching process to the surface of the electrolyte film to form irregularities on the film surface, and has a substantially uniform thickness along the irregularities. (Japanese Patent Application No. 6-315502).

【0006】本発明の固体高分子型燃料電池用の電解質
膜は、電解質膜としての性能を低下させることなく触媒
との接触面積を多くして反応性を高めることを目的とす
る。本発明の固体高分子型燃料電池用の電解質膜の製造
方法は、電解質膜としての性能を低下させることなく触
媒との接触面積が多くとれる電解質膜の製造方法を提供
することを目的とする。
An object of the present invention is to increase reactivity by increasing a contact area with a catalyst without deteriorating performance as an electrolyte membrane. An object of the present invention is to provide a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, which can provide a large contact area with a catalyst without deteriorating the performance as an electrolyte membrane.

【0007】[0007]

【課題を解決するための手段およびその作用・効果】本
発明の固体高分子型燃料電池用の電解質膜およびその製
造方法は、上述の目的の少なくとも一部を達成するため
に以下の手段を採った。
Means for Solving the Problems and Actions and Effects Thereof The electrolyte membrane for a polymer electrolyte fuel cell and the method for producing the same according to the present invention employs the following means to at least partially achieve the above-mentioned object. Was.

【0008】本発明の固体高分子型燃料電池用の電解質
膜の製造方法は、固体高分子型燃料電池に用いられる電
解質膜の製造方法であって、陽イオン交換膜のプロトン
を重金属で置換する重金属置換工程と、該置換された陽
イオン交換膜の少なくとも一方の面に放射線を照射して
該面に所定形状の窪みを複数形成する表面処理を行なう
表面処理工程と、該表面処理された陽イオン交換膜の前
記重金属をプロトンに置換するプロトン置換工程とを備
えることを要旨とする。
The method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to the present invention is a method for producing an electrolyte membrane used for a polymer electrolyte fuel cell, wherein protons of a cation exchange membrane are replaced with heavy metals. A heavy metal substitution step, a surface treatment step of irradiating at least one surface of the substituted cation exchange membrane with radiation to form a plurality of depressions of a predetermined shape on the surface, and a surface treatment step of performing the surface treatment. And a proton substitution step of replacing the heavy metal of the ion exchange membrane with protons.

【0009】この本発明の固体高分子型燃料電池用の電
解質膜の製造方法では、陽イオン交換膜のプロトンを重
金属で置換することにより表面処理の際にイオン交換に
寄与する官能基を変質や破壊から防止することができ
る。この結果、表面処理により電解質膜の性能を低下さ
せることがない。また、表面処理により膜の表面に所定
形状の窪みを複数形成するから、触媒との接触面積を多
くすることができる。ここで、「放射線」には、プラズ
マや電子線,X線,γ線などが含まれる。また、「重金
属」には、鉛,亜鉛,アルミニウム,鉄,白金などが含
まれる。
In the method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to the present invention, the protons of the cation exchange membrane are replaced with heavy metals to alter the functional groups contributing to ion exchange during surface treatment. It can be prevented from destruction. As a result, the performance of the electrolyte membrane is not reduced by the surface treatment. Further, since a plurality of depressions of a predetermined shape are formed on the surface of the film by the surface treatment, the contact area with the catalyst can be increased. Here, “radiation” includes plasma, electron beam, X-ray, γ-ray, and the like. The “heavy metals” include lead, zinc, aluminum, iron, platinum and the like.

【0010】こうした本発明の固体高分子型燃料電池用
の電解質膜の製造方法において、前記陽イオン交換膜と
して強酸性陽イオン交換膜を用いるものとすることもで
きる。また、本発明の固体高分子型燃料電池用の電解質
膜の製造方法において、前記重金属置換工程は、前記重
金属の弱酸塩水溶液を用いて置換する工程であるものと
することもできる。ここで、「重金属の弱酸塩水溶液」
には、酢酸による重金属塩の水溶液(例えば、酢酸鉛や
酢酸亜鉛などの水溶液)などが含まれる。
In the method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to the present invention, a strongly acidic cation exchange membrane may be used as the cation exchange membrane. Further, in the method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to the present invention, the heavy metal replacement step may be a step of replacement using a weak salt aqueous solution of the heavy metal. Here, "aqueous salt solution of heavy metal"
Include aqueous solutions of heavy metal salts with acetic acid (eg, aqueous solutions of lead acetate, zinc acetate, etc.).

【0011】本発明の固体高分子型燃料電池用の電解質
膜の製造方法において、前記表面処理工程は、前記放射
線として電子線を用いて行なう工程であるものとするこ
ともできる。電子線は制御しやすいから、膜の表面に所
定形状の窪みを容易に形成することができる。また、電
子線はプラズマやX線,γ線に比して安価に得られるか
ら、電解質膜の製造コストを低減することができる。
In the method for producing an electrolyte membrane for a polymer electrolyte fuel cell according to the present invention, the surface treatment step may be a step using an electron beam as the radiation. Since the electron beam is easily controlled, a depression having a predetermined shape can be easily formed on the surface of the film. In addition, since the electron beam can be obtained at a lower cost than plasma, X-ray, and γ-ray, the manufacturing cost of the electrolyte membrane can be reduced.

【0012】本発明の第1の固体高分子型燃料電池用の
電解質膜は、固体高分子型燃料電池に用いられる電解質
膜であって、陽イオン交換膜のプロトンを重金属で置換
し、該置換された陽イオン交換膜の少なくとも一方の面
に放射線を照射して該面に所定の形状の窪みを複数形成
し、該所定形状の窪みが複数形成された陽イオン交換膜
の前記重金属をプロトンに置換してなることを要旨とす
る。
The first electrolyte membrane for a polymer electrolyte fuel cell according to the present invention is an electrolyte membrane used for a polymer electrolyte fuel cell, wherein protons of a cation exchange membrane are substituted with heavy metals, and the substitution is performed. Irradiation is performed on at least one surface of the cation exchange membrane thus formed to form a plurality of depressions of a predetermined shape on the surface, and the heavy metal of the cation exchange membrane having the plurality of depressions of the predetermined shape formed as protons. The gist is that it is replaced.

【0013】本発明の第1の固体高分子型燃料電池用の
電解質膜では、陽イオン交換膜のプロトンを重金属で置
換して表面処理し、表面処理された膜の表面にイオン交
換に寄与する官能基を備えているから、電解質膜として
の性能を十分に発揮することができる。また、表面処理
により膜の表面に所定形状の窪みが複数形成されている
から、触媒との接触面積を多くすることができる。
In the first electrolyte membrane for a polymer electrolyte fuel cell of the present invention, the protons of the cation exchange membrane are replaced with heavy metals for surface treatment, and the surface of the surface-treated membrane contributes to ion exchange. Since it has a functional group, the performance as an electrolyte membrane can be sufficiently exhibited. Further, since a plurality of depressions having a predetermined shape are formed on the surface of the film by the surface treatment, the contact area with the catalyst can be increased.

【0014】本発明の第2の固体高分子型燃料電池用の
電解質膜は、固体高分子型燃料電池に用いられる電解質
膜であって、強酸性陽イオン交換膜により形成され、該
強酸性陽イオン交換膜の少なくとも一方の面に10-6
のオーダーの所定形状の窪みを複数備えることを要旨と
する。
The second electrolyte membrane for a polymer electrolyte fuel cell according to the present invention is an electrolyte membrane used for a polymer electrolyte fuel cell, which is formed by a strongly acidic cation exchange membrane. 10 -6 m on at least one side of the ion exchange membrane
And a plurality of depressions of a predetermined shape of the order

【0015】この本発明の第2の固体高分子型燃料電池
用の電解質膜では、膜の表面に所定形状の窪みが複数形
成されているから、触媒との接触面積を多くすることが
できる。
In the electrolyte membrane for a polymer electrolyte fuel cell according to the second aspect of the present invention, since a plurality of recesses having a predetermined shape are formed on the surface of the membrane, the contact area with the catalyst can be increased.

【0016】こうした本発明の第2の固体高分子型燃料
電池用の電解質膜において、前記強酸性陽イオン交換膜
の前記所定形状の窪みが形成された近傍表面にイオン交
換に寄与する官能基が配置されてなるものとすることも
できる。こうすれば、電解質膜の性能を十分に発揮させ
ることができる。
In the electrolyte membrane for a polymer electrolyte fuel cell according to the second aspect of the present invention, a functional group contributing to ion exchange is formed on the surface of the strongly acidic cation exchange membrane in which the depression having the predetermined shape is formed. They may be arranged. In this case, the performance of the electrolyte membrane can be sufficiently exhibited.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施の形態を実施
例を用いて説明する。図1は本発明の一実施例である固
体高分子型燃料電池用の電解質膜30の製造の様子を例
示する製造工程図であり、図2は実施例の電解質膜30
の製造の様子を模式的に示す製造模式図である。
Next, embodiments of the present invention will be described with reference to examples. FIG. 1 is a manufacturing process diagram illustrating the manufacturing process of an electrolyte membrane 30 for a polymer electrolyte fuel cell according to one embodiment of the present invention, and FIG.
FIG. 4 is a manufacturing schematic diagram schematically showing the state of manufacturing.

【0018】図示するように電解質膜30の製造は、ま
ず、強酸性陽イオン交換膜22のプロトンを重金属に置
換する工程から始まる(工程S10)。実施例では、イ
オン交換膜としてスルホン基を交換基とする強酸性陽イ
オン交換膜(DuPont社製のNafion122)
を用い、電子染色技術により次式(1)に示すイオン交
換反応によりスルホン基のプロトンを重金属(例えば、
鉛や亜鉛,アルミニウム,鉄,白金など)で置換して、
重金属で置換されたイオン交換膜24とした。なお、こ
の置換は弱酸塩水溶液(例えば、酢酸鉛や酢酸亜鉛など
の水溶液)に強酸性陽イオン交換膜22を浸漬すること
により行なった。
As shown in the figure, the production of the electrolyte membrane 30 starts with the step of replacing protons of the strongly acidic cation exchange membrane 22 with heavy metals (step S10). In the examples, a strongly acidic cation exchange membrane having a sulfone group as an exchange group (Nafion 122 manufactured by DuPont) is used as an ion exchange membrane.
And the proton of the sulfone group is converted to a heavy metal (for example,
Lead, zinc, aluminum, iron, platinum, etc.)
The ion exchange membrane 24 was replaced with a heavy metal. This substitution was performed by immersing the strongly acidic cation exchange membrane 22 in a weak acid salt aqueous solution (for example, an aqueous solution of lead acetate or zinc acetate).

【0019】 イオン交換反応: nRH++Mn+ ⇔ Rnn++nH+ (1)Ion exchange reaction: nRH + + M n + ⇔R n M n + + nH + (1)

【0020】図3は強酸性陽イオン交換膜22を飽和酢
酸亜鉛水溶液に浸漬してプロトンを亜鉛で置換したとき
の亜鉛とスルホン基とのクラスタ推定構造を示す説明図
であり、図4は強酸性陽イオン交換膜22を飽和酢酸鉛
水溶液に浸漬してプロトンを鉛で置換したときの鉛とス
ルホン基とのクラスタ推定構造を示す説明図である。図
示するように、スルホン基にはプロトンに代わって重金
属としての亜鉛や鉛が置換されている。
FIG. 3 is an explanatory view showing the estimated structure of clusters of zinc and sulfone groups when the proton is replaced by zinc by immersing the strongly acidic cation exchange membrane 22 in a saturated zinc acetate aqueous solution. FIG. 3 is an explanatory diagram showing a cluster estimation structure of lead and a sulfone group when a proton is replaced with lead by immersing a cation exchange membrane 22 in a saturated lead acetate aqueous solution. As shown in the figure, zinc and lead as heavy metals are substituted for the sulfone groups instead of protons.

【0021】次に、重金属で置換されたイオン交換膜2
4に対して放射線を照射して膜の表面に所定形状の窪み
26をパターン形成する(工程S12)。イオン交換膜
に放射線を照射すると、イオン交換膜は架橋して硬化す
るか、分解することが多い。強酸性陽イオン交換膜では
放射線の照射は分解を促進するが、プロトンを重金属で
置換すると、その強度が高くなり放射線によるイオン交
換膜の劣化(分解)が抑制されるから、放射線を照射し
てもイオン交換膜の構造に変化は生じない。放射線とし
てはプラズマや電子線,X線,γ線などが含まれ、その
いずれでもパターン形成することができる。実施例で
は、強度などの制御が容易な電子線を用い、電子線リソ
グラフィーによりパターン形成を行なった。なお、パタ
ーン形成に電子線リソグラフィーを用いれば、膜の表面
に10-6mオーダーの所望の形状の窪みを形成すること
ができる。
Next, an ion-exchange membrane 2 substituted with a heavy metal
4 is irradiated with radiation to form a pattern of recesses 26 of a predetermined shape on the surface of the film (step S12). When the ion exchange membrane is irradiated with radiation, the ion exchange membrane is often crosslinked and hardened or decomposed. Irradiation promotes decomposition in strongly acidic cation exchange membranes, but replacing protons with heavy metals increases the strength and suppresses the degradation (decomposition) of ion exchange membranes due to radiation. Also, no change occurs in the structure of the ion exchange membrane. The radiation includes plasma, electron beam, X-ray, γ-ray and the like, and any of them can be used for pattern formation. In the example, the pattern was formed by electron beam lithography using an electron beam whose intensity and the like were easily controlled. If electron beam lithography is used for pattern formation, a depression having a desired shape on the order of 10 −6 m can be formed on the surface of the film.

【0022】そして、重金属で置換されたイオン交換膜
24に対して上述の式(1)のイオン交換反応の逆反応
を用いて重金属をプロトンで置換して(工程S14)、
電解質膜30を完成する。実施例では、重金属で置換さ
れたイオン交換膜24を希硫酸に浸漬して重金属をプロ
トンに置換した。
Then, the heavy metal is replaced with protons in the ion exchange membrane 24 replaced with the heavy metal by using the reverse reaction of the ion exchange reaction of the above formula (1) (step S14).
The electrolyte membrane 30 is completed. In the example, the heavy metal was replaced with protons by immersing the ion-exchange membrane 24 replaced with heavy metals in dilute sulfuric acid.

【0023】完成した電解質膜30は、その表面に10
-6mオーダーの所定形状の窪み32を備えており、この
所定形状の窪み32の形成された面の表面にはイオン交
換基としてのスルホン基が変質や破壊されることなく存
在する。なお、所定形状の窪み32は、断面が矩形や三
角その他の多角形,円形,楕円形など如何なる形状であ
ってもよい。
The completed electrolyte membrane 30 has 10
A depression 32 having a predetermined shape on the order of -6 m is provided, and a sulfone group serving as an ion exchange group is present on the surface of the surface where the depression 32 having the predetermined shape is formed without being altered or destroyed. The recess 32 of a predetermined shape may have a cross section of any shape such as a rectangle, a triangle, other polygons, a circle, and an ellipse.

【0024】以上説明した実施例の電解質膜30によれ
ば、その表面に10-6mオーダーの所定形状の窪み32
を備えるから、触媒との接触面積を大きく持つことがで
き、反応性の高い電解質膜とすることができる。また、
実施例の電解質膜30によれば、所定形状の窪み32の
形成された面の表面にはイオン交換基としてのスルホン
基が変質や破壊されることなく存在するから、所定形状
の窪み32の形成による膜表面の変質がなく、電解質膜
の性能を十分に発揮することができる。
According to the electrolyte membrane 30 of the embodiment described above, the depression 32 having a predetermined shape on the order of 10 -6 m is formed on the surface thereof.
Therefore, a contact area with the catalyst can be increased, and an electrolyte membrane having high reactivity can be obtained. Also,
According to the electrolyte membrane 30 of the embodiment, since the sulfone group as the ion exchange group is present on the surface of the surface where the recesses 32 of the predetermined shape are formed without being altered or destroyed, the formation of the recesses 32 of the predetermined shape is formed. And the performance of the electrolyte membrane can be sufficiently exhibited.

【0025】以上説明した実施例の電解質膜30の製造
方法によれば、触媒との接触面積が大きく、イオン交換
性能を十分に発揮できる電解質膜を製造することができ
る。また、実施例の電解質膜30の製造方法によれば、
強酸性陽イオン交換膜22のプロトンを重金属で置換し
た後に膜に放射線を照射してその表面に所定形状の窪み
26を形成するから、放射線の照射によりイオン交換膜
の分解やイオン交換基の変質,破壊を防止することがで
きる。さらに、実施例の電解質膜30の製造方法によれ
ば、放射線としてその強度などの制御が容易な電子線を
用いたので、膜の表面に所望の形状の窪み26をパター
ン形成することができる。
According to the method of manufacturing the electrolyte membrane 30 of the embodiment described above, it is possible to manufacture an electrolyte membrane having a large contact area with the catalyst and sufficiently exhibiting ion exchange performance. Further, according to the manufacturing method of the electrolyte membrane 30 of the embodiment,
After the protons of the strongly acidic cation exchange membrane 22 are replaced with heavy metals, the membrane is irradiated with radiation to form dents 26 of a predetermined shape on the surface thereof. , Destruction can be prevented. Furthermore, according to the method of manufacturing the electrolyte membrane 30 of the embodiment, since the electron beam whose intensity and the like can be easily controlled is used as the radiation, the depression 26 having a desired shape can be pattern-formed on the surface of the membrane.

【0026】実施例の電解質膜30では、イオン交換膜
として強酸性陽イオン交換膜22を用いたが、電解質膜
として機能すれば弱酸性陽イオン交換膜などを用いても
よい。
In the electrolyte membrane 30 of the embodiment, the strongly acidic cation exchange membrane 22 is used as an ion exchange membrane, but a weakly acidic cation exchange membrane or the like may be used as long as it functions as an electrolyte membrane.

【0027】以上、本発明の実施の形態について実施例
を用いて説明したが、本発明はこうした実施例に何等限
定されるものではなく、本発明の要旨を逸脱しない範囲
内において、種々なる形態で実施し得ることは勿論であ
る。
The embodiments of the present invention have been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various embodiments may be made without departing from the scope of the present invention. Of course, it can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例である固体高分子型燃料電
池用の電解質膜30の製造の様子を例示する製造工程図
である。
FIG. 1 is a manufacturing process diagram illustrating a state of manufacturing an electrolyte membrane 30 for a polymer electrolyte fuel cell according to one embodiment of the present invention.

【図2】 実施例の電解質膜30の製造の様子を模式的
に示す製造模式図である。
FIG. 2 is a schematic production view schematically showing a state of production of an electrolyte membrane 30 of an example.

【図3】 強酸性陽イオン交換膜22を飽和酢酸亜鉛水
溶液に浸漬してプロトンを亜鉛で置換したときの亜鉛と
スルホン基とのクラスタ推定構造を示す説明図である。
FIG. 3 is an explanatory diagram showing a presumed structure of a cluster of zinc and a sulfone group when a strongly acidic cation exchange membrane 22 is immersed in a saturated zinc acetate aqueous solution to replace protons with zinc.

【図4】 強酸性陽イオン交換膜22を飽和酢酸鉛水溶
液に浸漬してプロトンを鉛で置換したときの鉛とスルホ
ン基とのクラスタ推定構造を示す説明図である。
FIG. 4 is an explanatory diagram showing a cluster estimated structure of lead and a sulfone group when a strongly acidic cation exchange membrane 22 is immersed in a saturated aqueous lead acetate solution to replace protons with lead.

【符号の説明】[Explanation of symbols]

22 強酸性陽イオン交換膜、24 重金属で置換され
たイオン交換膜、26所定形状の窪み、30 電解質
膜、32 所定形状の窪み。
22 Strongly acidic cation exchange membrane, 24 Ion exchange membrane substituted with heavy metal, 26 Predetermined shape depression, 30 Electrolyte membrane, 32 Predetermined shape depression.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子型燃料電池に用いられる電解
質膜の製造方法であって、 陽イオン交換膜のプロトンを重金属で置換する重金属置
換工程と、 該置換された陽イオン交換膜の少なくとも一方の面に放
射線を照射して該面に所定形状の窪みを複数形成する表
面処理を行なう表面処理工程と、 該表面処理された陽イオン交換膜の前記重金属をプロト
ンに置換するプロトン置換工程とを備える電解質膜の製
造方法。
1. A method for producing an electrolyte membrane used in a polymer electrolyte fuel cell, comprising: a heavy metal substitution step of replacing protons of a cation exchange membrane with heavy metals; and at least one of the substituted cation exchange membranes. A surface treatment step of irradiating the surface with radiation to form a plurality of depressions of a predetermined shape on the surface, and a proton substitution step of replacing the heavy metal of the surface-treated cation exchange membrane with protons. The manufacturing method of the provided electrolyte membrane.
【請求項2】 前記陽イオン交換膜として強酸性陽イオ
ン交換膜を用いる請求項1記載の電解質膜の製造方法。
2. The method according to claim 1, wherein a strongly acidic cation exchange membrane is used as the cation exchange membrane.
【請求項3】 前記重金属は、鉛,亜鉛,アルミニウ
ム,鉄,白金のいずれかである請求項1または2記載の
電解質膜の製造方法。
3. The method according to claim 1, wherein the heavy metal is one of lead, zinc, aluminum, iron, and platinum.
【請求項4】 前記重金属置換工程は、前記重金属の弱
酸塩水溶液を用いて置換する工程である請求項1ないし
3いずれか記載の電解質膜の製造方法。
4. The method for producing an electrolyte membrane according to claim 1, wherein said heavy metal replacement step is a step of replacement using an aqueous solution of a weak salt of said heavy metal.
【請求項5】 前記表面処理工程は、前記放射線として
電子線を用いて行なう工程である請求項1ないし4いず
れか記載の電解質膜の製造方法。
5. The method for producing an electrolyte membrane according to claim 1, wherein said surface treatment step is a step performed using an electron beam as said radiation.
【請求項6】 固体高分子型燃料電池に用いられる電解
質膜であって、 陽イオン交換膜のプロトンを重金属で置換し、該置換さ
れた陽イオン交換膜の少なくとも一方の面に放射線を照
射して該面に所定形状の窪みを複数形成し、該所定形状
の窪みが複数形成された陽イオン交換膜の前記重金属を
プロトンに置換してなる電解質膜。
6. An electrolyte membrane used in a polymer electrolyte fuel cell, wherein protons of a cation exchange membrane are replaced with heavy metals, and at least one surface of the substituted cation exchange membrane is irradiated with radiation. An electrolyte membrane formed by forming a plurality of recesses of a predetermined shape on the surface, and replacing the heavy metal of the cation exchange membrane having the plurality of recesses of the predetermined shape with protons.
【請求項7】 固体高分子型燃料電池に用いられる電解
質膜であって、 強酸性陽イオン交換膜により形成され、 該強酸性陽イオン交換膜の少なくとも一方の面に10-6
mのオーダーの所定形状の窪みを複数備える電解質膜。
7. An electrolyte membrane used for a polymer electrolyte fuel cell, which is formed by a strongly acidic cation exchange membrane, wherein at least one surface of the strongly acidic cation exchange membrane is 10 -6.
An electrolyte membrane having a plurality of depressions of a predetermined shape on the order of m.
【請求項8】 前記強酸性陽イオン交換膜の前記所定形
状の窪みが形成された近傍表面にイオン交換に寄与する
官能基が配置されてなる請求項7記載の電解質膜。
8. The electrolyte membrane according to claim 7, wherein a functional group contributing to ion exchange is arranged on a surface of the strongly acidic cation exchange membrane where the depression of the predetermined shape is formed.
JP05057999A 1999-02-26 1999-02-26 Method for producing electrolyte membrane for polymer electrolyte fuel cell Expired - Fee Related JP4337162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05057999A JP4337162B2 (en) 1999-02-26 1999-02-26 Method for producing electrolyte membrane for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05057999A JP4337162B2 (en) 1999-02-26 1999-02-26 Method for producing electrolyte membrane for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000251905A true JP2000251905A (en) 2000-09-14
JP4337162B2 JP4337162B2 (en) 2009-09-30

Family

ID=12862909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05057999A Expired - Fee Related JP4337162B2 (en) 1999-02-26 1999-02-26 Method for producing electrolyte membrane for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4337162B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068327A (en) * 2001-08-28 2003-03-07 Kanegafuchi Chem Ind Co Ltd Film for fuel cell
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polyelectrolyte membrane and membrane electrode assembly
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
WO2007083229A2 (en) * 2006-01-20 2007-07-26 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell containing the same
WO2009145568A2 (en) 2008-05-28 2009-12-03 주식회사 엘지화학 Method for manufacturing a polymer electrolyte membrane for fuel cell, membrane electrode assembly, and polymer electrolyte membrane type fuel cell
JP2018098190A (en) * 2016-12-13 2018-06-21 現代自動車株式会社Hyundai Motor Company Membrane-electrode assembly for fuel battery and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068327A (en) * 2001-08-28 2003-03-07 Kanegafuchi Chem Ind Co Ltd Film for fuel cell
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polyelectrolyte membrane and membrane electrode assembly
JP4576813B2 (en) * 2003-09-05 2010-11-10 株式会社豊田中央研究所 Polymer electrolyte membrane and membrane electrode assembly
JP2005174565A (en) * 2003-12-08 2005-06-30 Hitachi Ltd Polymer electrolyte membrane for fuel cell, membrane/electrode joint body, its manufacturing method, and fuel cell using it
WO2007083229A2 (en) * 2006-01-20 2007-07-26 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell containing the same
WO2007083229A3 (en) * 2006-01-20 2008-01-17 Toyota Motor Co Ltd Membrane electrode assembly and polymer electrolyte membrane fuel cell containing the same
US8187765B2 (en) 2006-01-20 2012-05-29 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell
WO2009145568A2 (en) 2008-05-28 2009-12-03 주식회사 엘지화학 Method for manufacturing a polymer electrolyte membrane for fuel cell, membrane electrode assembly, and polymer electrolyte membrane type fuel cell
JP2018098190A (en) * 2016-12-13 2018-06-21 現代自動車株式会社Hyundai Motor Company Membrane-electrode assembly for fuel battery and method for manufacturing the same
JP7122816B2 (en) 2016-12-13 2022-08-22 現代自動車株式会社 MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP4337162B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US4080267A (en) Method for forming thick self-supporting masks
US9246176B2 (en) Method to prepare full monolayer of platinum on palladium based core nanoparticles
JPH05504658A (en) Method for manufacturing printed circuit board patterns using selectively etchable metal layers
JP2014516465A (en) Shape control core shell catalyst
JP2000251905A (en) Electrolyte film for solid high polymer fuel cell and its manufacture
JP6936864B2 (en) Aluminum foil and aluminum parts for electrodes
US6193870B1 (en) Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices
JP2006134879A (en) Improving method for managing fuel cell water pipe
JP5738057B2 (en) Method for producing porous film
JP6049717B2 (en) Nanostructured PtxMy catalyst for PEMFC battery with high activity and mild H2O2 production
JP3010496B2 (en) Electrode for water electrolysis and method for producing the same
JPH0817716A (en) Manufacture of reflection-type mask
EP0178297B1 (en) Method and plants for the continuous unilateral anodic oxidation of aluminium bands and utilization thereof to make offset printing plates
US2990282A (en) Method of etching and composition therefor
JP3226250B2 (en) Transfer mask
JPS59117546A (en) Manufacture of porous polymeric film
JP4822239B2 (en) Mask blank, method for manufacturing the same, and method for manufacturing the mask
JPH0626246U (en) Mask for forming a pattern on the lacquer layer by X-ray lithography
US6998222B2 (en) Producing an electrically-conductive structure on a non-planar surface
JP2532173B2 (en) Developer for positive type photoresist
JP2007280674A (en) Separator for fuel cell and its manufacturing method as well as fuel cell using it
JP3627583B2 (en) Shadow mask manufacturing method
JPS61260641A (en) Formation of diffraction lattice
CN116867164A (en) PCB semi-finished product and processing method thereof
JPH0128374B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees