JP2000251305A - Optical pickup and optical disk device - Google Patents

Optical pickup and optical disk device

Info

Publication number
JP2000251305A
JP2000251305A JP11054612A JP5461299A JP2000251305A JP 2000251305 A JP2000251305 A JP 2000251305A JP 11054612 A JP11054612 A JP 11054612A JP 5461299 A JP5461299 A JP 5461299A JP 2000251305 A JP2000251305 A JP 2000251305A
Authority
JP
Japan
Prior art keywords
light receiving
hologram
region
light
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11054612A
Other languages
Japanese (ja)
Inventor
Minoru Oyama
実 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP11054612A priority Critical patent/JP2000251305A/en
Publication of JP2000251305A publication Critical patent/JP2000251305A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the improvement in the frequency characteristics of an electric system and the dealing with a two-layered disk by setting the sizes of respective photodetecting regions to small sizes. SOLUTION: This optical pickup is constituted to have a hologram element 8 which is constituted with the regions divided into four regions by two straight lines of a tangential direction T and radial direction R of an optical disk 6 as a first hologram pair region 9a and a second hologram pair region 9b of the same constitution and a photodetecting substrate 2 which has the first and second photodetecting regions 10 and 11 for receiving ±1st order diffracted light from the first hologram pair region 9a and third and fourth photodetecting regions 12 and 13 for receiving the ±1st order diffracted light from the second hologram pair region 9b, arranged with the respective centers of the first to fourth photodetecting regions 10 to 13 and the converging point O of the reflected light 20 in positions optically equidistant from the center of the hologram element 8 and is trisected in the respective photodetecting regions 10 to 13 to the central division region Ea and the end division regions Eb and Ec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスク等の情
報記録媒体の再生に用いられる光ピックアップ及び光デ
ィスク装置に関し、特に、DVD(Digital V
ersatileDisc)とCD(Compact
Disc)の互換再生システムに好適なものに係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pickup and an optical disk apparatus used for reproducing an information recording medium such as an optical disk, and more particularly to a DVD (Digital V).
ersatileDisc) and CD (Compact)
Disc) compatible playback system.

【0002】[0002]

【先行の技術】既に、一般に普及している民生用光ディ
スクシステムであるCDに対し、近年、より高密度なD
VDシステムが提案、商品化され、普及が始まってい
る。この再生装置(光ディスク装置)であるDVDプレ
ーヤにおいては、装置の重複や使用上の煩雑さを避ける
ため、CDの互換再生が必須となっており、この2種の
規格のディスクを再生するための技術が開発され、さら
にそれを実現する構成の簡略化やコストダウンが課題に
なっている。
2. Description of the Related Art In recent years, CDs, which are already widely used consumer optical disk systems, have recently been replaced by higher density D optical disks.
A VD system has been proposed, commercialized, and spread. In a DVD player, which is this playback device (optical disc device), compatible playback of CDs is indispensable in order to avoid duplication of devices and complexity in use, and to play discs of these two standards. The technology has been developed, and furthermore, the simplification of the configuration for realizing the technology and the cost reduction have been issues.

【0003】CD/DVDの互換再生技術において、ト
ラッキング方式及びフォーカス方式をどの方式とするの
が適切であるかを説明する。トラッキング方式について
は、CDシステムでは、いわゆる「3ビーム法」が主流
となっていたが、DVDシステムにこの3ビーム法を採
用すると、トラックピッチの異なる2種のディスクに適
合するビーム位置の設定が難しく、又、DVDの2層デ
ィスクにおいて非読み出し層からの反射光でオフセット
を生じやすい等の不都合がある。そのため、CD/DV
Dの互換再生では「DPD法」(Differenti
l PhaseDetection;位相差法)が主流
となっている。
[0003] In the compatible reproduction technology of CD / DVD, which of the tracking system and the focus system is appropriate will be described. With respect to the tracking method, the so-called "three-beam method" has become the mainstream in the CD system, but if this three-beam method is adopted in the DVD system, the beam position suitable for two types of disks having different track pitches can be set. This is disadvantageous in that it is difficult to generate an offset due to reflected light from a non-readout layer in a two-layer DVD disc. Therefore, CD / DV
D compatible playback uses the “DPD method” (Differenti
1 Phase Detection (phase difference method) has become mainstream.

【0004】また、フォーカス方式については次の点が
配慮される。つまり、コストダウンや小型化といった要
求に合わせて、光ピックアップ光学系の集積化の試みも
進展しており、半導体レーザ、フォトディテクタ及びホ
ログラム素子(HOE:Holographic Op
tical Element)を一体化したデバイスが
開発され、CDを初め、DVD用途にも応用されてい
る。この種の光デバイスは、半導体レーザとフォトディ
テクタとを近接した位置に配置し、且つ、ホログラム素
子による回折光と半導体レーザの発光点とを略共役な位
置に配置することが容易であるため、ホログラム素子に
よる±1次回折光を共に利用した、コンプリメンタリ
(相補的)な「SSD法」(Spot Size De
tection;スポットサイズ法)によるフォーカス
方式が実現できる。このフォーカス方式は、他に実用化
されている「ナイフエッジ法」と比較して、ホログラム
素子の厳密な位置調整が必ずしも必要でない、±1次回
折光の一方を捨てる必要がなく高効率である、といった
利点を持っている。従って、光学系の集積化においては
「SSD法」(スポットサイズ法)が好ましい。
The following points are taken into consideration for the focus method. In other words, in response to demands for cost reduction and miniaturization, attempts have been made to integrate optical pickup optical systems, and semiconductor lasers, photodetectors, and holographic devices (HOEs: Holographic Ops) have been developed.
devices have been developed and are applied to DVDs as well as CDs. In this type of optical device, it is easy to dispose a semiconductor laser and a photodetector in a close position, and to dispose the diffracted light by the hologram element and the emission point of the semiconductor laser in a substantially conjugate position. Complementary “SSD Method” (Spot Size De) Using Both ± 1st Order Diffraction Lights
(focus; spot size method) can be realized. Compared with the “knife edge method” which has been put to practical use, this focus method does not necessarily require strict position adjustment of the hologram element, does not need to discard one of the ± 1st-order diffracted lights, and has high efficiency. It has such advantages. Therefore, in the integration of the optical system, the “SSD method” (spot size method) is preferable.

【0005】そして、本出願人は、先に、位相差法によ
るトラッキングエラー検出とスポットサイズ法によるフ
ォーカスエラー検出とを採用し、光ピックアップ光学系
の集積化が可能である光ピックアップを提案した(特願
平10−96365号出願書類参照)。
The present applicant has previously proposed an optical pickup which employs tracking error detection by a phase difference method and focus error detection by a spot size method, and enables integration of an optical pickup optical system ( (See Japanese Patent Application No. 10-96365).

【0006】図12は上記光ピックアップの概略斜視
図、図13はホログラム素子の平面図、図14は受光素
子基板の平面図、図15はスポット光の分割領域を示す
図、図16は各受光領域の照射状態を示す図である。図
12〜図16において、レーザ光源(図示せず)からの
レーザ光は、光ディスク50の情報記録層(図示せず)
に収束され、ここで反射される。この反射光の光路上に
はホログラム素子51と受光素子基板52とが配置され
ている。
FIG. 12 is a schematic perspective view of the optical pickup, FIG. 13 is a plan view of a hologram element, FIG. 14 is a plan view of a light receiving element substrate, FIG. 15 is a view showing a divided area of a spot light, and FIG. It is a figure showing the irradiation state of a field. 12 to 16, a laser beam from a laser light source (not shown) is applied to an information recording layer (not shown) of the optical disc 50.
And is reflected here. A hologram element 51 and a light receiving element substrate 52 are arranged on the optical path of the reflected light.

【0007】ホログラム素子51は反射光のほぼ光軸C
を通り、且つ、光ディスク50のラジアル方向Rの直交
方向(タンジェンシャル方向T)を通る線を境界線とし
て2領域に分割されたホログラム領域51a,51bを
有する。この双方のホログラム領域51a,51bは、
それぞれ同一の連続した波面の回折光を生成する同一曲
線群にて構成され、反射光の回折角を共に同一角で回折
するが、反射光の回折方向を互いに異なる方向に回折さ
せると共に、それぞれ対となる回折光の一方に対して収
束、他方に対して発散のレンズ作用を付加するように構
成されている。
The hologram element 51 has a substantially optical axis C of the reflected light.
And hologram areas 51a and 51b divided into two areas by using a line passing through the optical disc 50 in a direction perpendicular to the radial direction R (tangential direction T) as a boundary line. These two hologram areas 51a and 51b are:
Each is composed of the same curve group that generates the same continuous wavefront diffracted light, and the diffracted angles of the reflected light are both diffracted at the same angle, but the diffracted directions of the reflected light are diffracted in different directions. It is configured to add a lens effect of converging to one of the diffracted lights and diverging to the other.

【0008】受光素子基板52は、その同一平面の受光
面52a上に配置された4つの第1〜第4受光領域53
〜56を有し、この4つの受光領域53〜56の各中心
と光ディスク50からの反射光の収束点Oとがホログラ
ム素子51の中心から全て光学的に略等距離になる位置
に配置されている。
The light receiving element substrate 52 has four first to fourth light receiving areas 53 arranged on the same plane light receiving surface 52a.
And the center of each of the four light receiving areas 53 to 56 and the convergence point O of the reflected light from the optical disk 50 are arranged at positions that are all optically equidistant from the center of the hologram element 51. I have.

【0009】この4つの受光領域53〜56には前記双
方のホログラム領域51a,51bからの回折光がそれ
ぞれ照射され、収束作用を受けた回折光は受光面52a
に至る前に焦点若しくは焦線を結び、発散作用を受けた
回折光は受光面52aより後方に焦点若しくは焦線を結
ぶ。そして、±1次回折光は互いに逆向きに焦点ずれを
持ち、所定(略同一)のスポットサイズで各受光領域5
3〜56を照射し、光ディスク50の焦点方向位置ずれ
に伴ってそのサイズも逆方向に変化する。
The four light receiving regions 53 to 56 are irradiated with diffracted light from the hologram regions 51a and 51b, respectively, and the converged diffracted light is applied to the light receiving surface 52a.
And the diffracted light subjected to the divergent action forms a focal point or a focal line behind the light receiving surface 52a. The ± 1st-order diffracted lights have defocuses in directions opposite to each other, and have a predetermined (substantially the same) spot size.
3 to 56, and the size of the optical disk 50 also changes in the opposite direction in accordance with the positional shift of the optical disk 50 in the focus direction.

【0010】又、図16に詳しく示すように、光軸Cを
挾んで対向配置される第1受光領域53と第2受光領域
54、及び、第3受光領域55と第4受光領域56がそ
れぞれの中心を結ぶ方向を境界方向+Rα,−Rαと
し、この境界方向+Rα,−Rαに沿って4分割されて
いる。つまり、受光領域53〜56は、それぞれ非受光
領域である中央境界線部57と、この両外側の外側境界
線部58,59とで仕切られることによって内外の中央
分割領域Ea,Ebとこれの両外側の内外の端部分割領
域Ec、Edとに4分割されている。
Further, as shown in detail in FIG. 16, a first light receiving area 53 and a second light receiving area 54, and a third light receiving area 55 and a fourth light receiving area 56, which are opposed to each other with the optical axis C interposed therebetween, respectively. Are defined as boundary directions + Rα and −Rα, and are divided into four along the boundary directions + Rα and −Rα. In other words, the light receiving regions 53 to 56 are separated by the center boundary portion 57, which is a non-light receiving region, and the outer boundary lines 58, 59 on the outer and inner sides, respectively. It is divided into four inside and outside end divided regions Ec and Ed.

【0011】次に、光ディスク装置のエラー検出手段に
ついて説明する。図15に示すように、光ディスク50
に照射されるスポット光60を4分割の領域に分割する
と、各I〜IV領域の光は各受光領域53〜56に対して
図16のローマ数字で示す位置に照射されることにな
る。そして、図17に示すように、第1受光領域53の
インナー側の中央分割領域Ea及び端部分割領域Ecか
らの光電変換信号Ri1と、第2受光領域54のインナ
ー側の中央分割領域Ea及び端部分割領域Ecからの光
電変換信号Ri2とを加算して出力I信号を、第1受光
領域53のアウター側の中央分割領域Eb及び端部分割
領域Edからの光電変換信号Ro1と、第2受光領域5
4のアウター側の中央分割領域Eb及び端部分割領域E
dからの光電変換信号Ro2とを加算して出力IV信号を
それぞれ得る。又、第3受光領域55のインナー側の中
央分割領域Ea及び端部分割領域Ecからの光電変換信
号Li1と、第4受光領域56のインナー側の中央分割
領域Ea及び端部分割領域Ecからの光電変換信号Li
2とを加算して出力III信号を、第3受光領域55のア
ウター側の中央分割領域Eb及び端部分割領域Edから
の光電変換信号Lo1と、第4受光領域56のアウター
側の中央分割領域Eb及び端部分割領域Edからの光電
変換信号Lo2とを加算して出力II信号をそれぞれ得
る。そして、この出力I〜出力IV信号に基づいて位相差
法によるトラッキングエラー信号を作成するように構成
されている。
Next, the error detecting means of the optical disk device will be described. As shown in FIG.
When the spot light 60 applied to the light-receiving area 53 is divided into four areas, the light of each of the I to IV areas is applied to the light receiving areas 53 to 56 at the positions indicated by the Roman numerals in FIG. Then, as shown in FIG. 17, the photoelectric conversion signal Ri1 from the inner side central divided region Ea and the end portion divided region Ec of the first light receiving region 53, and the inner side central divided region Ea and the second light receiving region 54 of the second light receiving region 54. The output I signal obtained by adding the photoelectric conversion signal Ri2 from the end divided region Ec and the photoelectric conversion signal Ro1 from the center divided region Eb and the end divided region Ed on the outer side of the first light receiving region 53 and the second I signal are output. Light receiving area 5
4 is a center divided region Eb and an end divided region E on the outer side.
The output IV signal is obtained by adding the photoelectric conversion signal Ro2 from d. Also, the photoelectric conversion signal Li1 from the inner side central divided region Ea and the end portion divided region Ec of the third light receiving region 55, and the photoelectric conversion signal Li1 from the inner side central divided region Ea and the end portion divided region Ec of the fourth light receiving region 56 are obtained. Photoelectric conversion signal Li
2 and the output III signal, and the photoelectric conversion signal Lo1 from the outer side center divided region Eb and the end portion divided region Ed of the third light receiving region 55 and the outer side center divided region of the fourth light receiving region 56. The output II signal is obtained by adding Eb and the photoelectric conversion signal Lo2 from the end portion divided area Ed. Then, a tracking error signal is generated by the phase difference method based on the output I to output IV signals.

【0012】又、図18に示すように、第1受光領域5
3の一対の中央分割領域Ea,Ebからの光電変換信号
R1と第2受光領域54の一対の端部分割領域Ec,E
dからの光電変換信号R2とを加算して出力Ra信号
を、第1受光領域53の一対の端部分割領域Ec,Ed
からの光電変換信号R3と第2受光領域54の一対の中
央分割領域Ea,Ebからの光電変換信号R4とを加算
して出力Rb信号をそれぞれ得る。又、第3受光領域5
5の一対の中央分割領域Ea,Ebからの光電変換信号
L1と第4受光領域56の一対の端部分割領域Ec,E
dからの光電変換信号L2とを加算して出力La信号
を、第3受光領域55の一対の端部分割領域Ec,Ed
からの光電変換信号L3と第4受光領域54の一対の中
央分割領域Ea,Ebからの光電変換信号L4とを加算
して出力Lb信号をそれぞれ得る。そして、出力Ra信
号と出力Rb信号との差レベル、及び、出力La信号と
出力Lb信号との差レベルに基づいて2系統のコンプリ
メンタリ(相補的)なスポットサイズ法によるフォーカ
スエラー信号を生成するように構成されている。
Also, as shown in FIG.
3 and a pair of end divided regions Ec and E of the second light receiving region 54.
and the output Ra signal by adding the photoelectric conversion signal R2 from the pair d to the pair of end divided regions Ec and Ed of the first light receiving region 53.
And the photoelectric conversion signal R4 from the pair of central divided areas Ea and Eb of the second light receiving area 54 are added to obtain an output Rb signal. Also, the third light receiving area 5
5 and a pair of end divided regions Ec and E of the fourth light receiving region 56.
and the output La signal obtained by adding the photoelectric conversion signal L2 from the pair d to the pair of end divided regions Ec and Ed of the third light receiving region 55.
And the photoelectric conversion signal L4 from the pair of central divided areas Ea and Eb of the fourth light receiving area 54 are added to obtain an output Lb signal. Then, based on the difference level between the output Ra signal and the output Rb signal and the difference level between the output La signal and the output Lb signal, a focus error signal is generated by a two-system complementary (complementary) spot size method. Is configured.

【0013】つまり、上記先行技術では、光ディスク5
0からの反射光束は、そのラジアル方向の2分割がホロ
グラム素子51で、そのタンジェンシャル方向の2分割
が受光素子基板52の各受光領域53〜56でそれぞれ
行うことにより位相差法で必要な4分割を実現すると共
に、2分割ホログラム素子51の±1次回折光全てを利
用することによりダブルコンプリメンタリ(相補的)な
スポットサイズ法を実現している。
That is, in the above prior art, the optical disk 5
The reflected luminous flux from 0 is divided into two in the radial direction by the hologram element 51 and divided into two in the tangential direction by the respective light receiving areas 53 to 56 of the light receiving element substrate 52. Splitting is realized, and a double complementary (complementary) spot size method is realized by using all the ± 1st-order diffracted lights of the two-divided hologram element 51.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記先
行技術では、各受光領域53〜56を4分割しなければ
ならないため、全体としてのサイズが大きくなる。具体
的には、図6(b)に示すように、4つの各分割領域E
a〜Edの作製工程上可能な最小幅をW1、3つの各境
界線部57,58,59の作製工程上可能な最小幅をW
2とすると、4W1+3W2のサイズ幅となり大型にな
る。
However, in the above prior art, each light receiving area 53 to 56 must be divided into four parts, so that the overall size becomes large. Specifically, as shown in FIG. 6B, the four divided areas E
The minimum width possible in the manufacturing process of a to Ed is W 1 , and the minimum width possible in the manufacturing process of each of the three boundary lines 57, 58, 59 is W
If it is set to 2 , the size width becomes 4W 1 + 3W 2 , and the size becomes large.

【0015】ここで、DVDシステムは、CDシステム
と比較して転送レートが高く、電気系の周波数特性もC
D比で約6倍必要となっている。この電気系の信号源と
なる受光領域53〜56においては、その面積に比例す
る容量(C)が周波数特性を左右する要因の1つである
ため、受光面積が小さければ小さいほど良い。しかし、
上記先行技術では、上記したように受光領域53〜56
のサイズを小さく設定することができないため周波数特
性の向上が図れない。
Here, the DVD system has a higher transfer rate than the CD system, and the frequency characteristic of the electrical system is C
About 6 times the D ratio is required. In the light receiving regions 53 to 56 serving as signal sources of the electric system, since the capacitance (C) proportional to the area is one of the factors that influence the frequency characteristics, the smaller the light receiving area is, the better. But,
In the prior art, as described above, the light receiving regions 53 to 56
Cannot be set small, so that the frequency characteristics cannot be improved.

【0016】また、DVDシステムでは、2層ディスク
の規格が存在する。この2層ディスクは貼り合せによっ
て2つの信号面を数十μm間隔で配置し、且つ、下層を
半透過反射膜としたものである。この2層ディスクの再
生では、いずれか1層に光スポットを合焦させるが、他
の1層によっても光スポットが非合焦状態で反射され、
受光素子基板52上に大きく広がって照射される。この
照射された光の成分が検出信号に混入することでオフセ
ットの発生する恐れがあるため、この悪影響は受光面積
が小さければ小さいほど少なく抑えられる。しかし、上
記先行技術では、上記したように受光領域53〜56の
サイズを小さく設定することができないため2層ディス
クへの対応ができない可能性がある。
In the DVD system, there is a standard for a two-layer disc. This two-layer disc has two signal surfaces arranged at intervals of several tens of μm by bonding, and the lower layer is made of a transflective film. In the reproduction of this two-layer disc, the light spot is focused on one of the layers, but the light spot is reflected in an unfocused state by the other one layer as well.
The light is greatly spread on the light receiving element substrate 52 and irradiated. Since the irradiated light component may be mixed with the detection signal to cause an offset, the adverse effect is reduced as the light receiving area is reduced. However, in the above-described prior art, the size of the light receiving areas 53 to 56 cannot be set small as described above, so that there is a possibility that it is not possible to cope with a two-layer disc.

【0017】そこで、本発明は、前記した課題を解決す
べくなされたものであり、位相差法によるトラッキング
エラー検出とスポットサイズ法によるフォーカスエラー
検出とを、各受光領域のサイズを小さく設定して実現可
能として電気系の周波数特性の向上、2層ディスクへの
対応が可能である光ピックアップ、光デバイス及び光デ
ィスク装置を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problem, and the tracking error detection by the phase difference method and the focus error detection by the spot size method are performed by setting the size of each light receiving area to be small. It is an object of the present invention to provide an optical pickup, an optical device, and an optical disk device capable of improving the frequency characteristics of an electric system and adapting to a dual-layer disk.

【0018】[0018]

【課題を解決するための手段】請求項1の発明は、光を
情報記録媒体に照射し、この情報記録媒体からの反射光
を用いて情報を読み取る光ピックアップにおいて、前記
反射光の光路上に配置され、前記反射光のほぼ光軸を通
り前記情報記録媒体のトラックにほぼ平行な方向とこれ
のほぼ直交方向との2直線で少なくとも4領域に分割さ
れ、この4領域のそれぞれ対角に配置される領域同士
を、同一のホログラム曲線群の二部分を組合せた第1ホ
ログラム対領域と、これと異なり、かつ同一のホログラ
ム曲線群の二部分を組合せた第2ホログラム対領域とし
て構成し、この第1ホログラム対領域と第2ホログラム
対領域とが前記反射光の各回折光を互いに異なる方向に
回折させ、且つ、各回折光に対してそれぞれ収束、若し
くは発散のレンズ作用を付加するように構成されたホロ
グラム素子と、このホログラム素子の前記第1ホログラ
ム対領域からの±1次回折光をそれぞれ受光する第1及
び第2受光領域と、前記第2ホログラム対領域からの±
1次回折光をそれぞれ受光する第3及び第4受光領域と
を同一平面に有する受光素子基板とを備えたことを特徴
とする光ピックアップである。
According to a first aspect of the present invention, there is provided an optical pickup for irradiating an information recording medium with light and reading information by using the reflected light from the information recording medium. And is divided into at least four areas by two straight lines, a direction substantially parallel to the track of the information recording medium, passing through the optical axis of the reflected light, and a direction substantially orthogonal to the track. Are formed as a first hologram pair region combining two portions of the same hologram curve group and a second hologram pair region different from the first hologram curve group and combining two portions of the same hologram curve group. The first hologram pair region and the second hologram pair region diffract each of the reflected lights in different directions, and converge or diverge for each of the diffracted lights. And configured hologram element so as to add the first and second light receiving regions for receiving ± 1 order diffracted lights respectively from the first hologram pair region of the hologram element, ± from the second hologram pair region
An optical pickup comprising: a light receiving element substrate having third and fourth light receiving regions for receiving the first-order diffracted light, respectively, on the same plane.

【0019】請求項2の発明は、前記請求項1に記載の
光ピックアップにおいて、前記受光素子基板は、前記第
1〜第4受光領域の各中心と前記情報記録媒体からの反
射光の収束点とが前記ホログラム素子の中心から全て光
学的に略等距離になる位置に配置されると共に、前記光
軸を挾んで対向配置される前記第1受光領域と第2受光
領域、及び、第3受光領域と第4受光領域がそれぞれの
中心を結ぶ方向を境界方向とし、この境界方向に沿って
中央分割領域とこれの両外側の端部分割領域とにそれぞ
れ3分割されたことを特徴とする光ピックアップであ
る。
According to a second aspect of the present invention, in the optical pickup according to the first aspect, the light receiving element substrate has a center of each of the first to fourth light receiving areas and a convergence point of light reflected from the information recording medium. Are positioned at optically substantially equal distances from the center of the hologram element, and the first light receiving area, the second light receiving area, and the third light receiving area, which are opposed to each other with the optical axis interposed therebetween. A light is characterized in that a direction connecting the centers of the region and the fourth light receiving region is defined as a boundary direction, and the light is divided into three along the boundary direction into a central divided region and both outer end divided regions. It is a pickup.

【0020】請求項3の発明は、光を情報記録媒体に照
射し、この情報記録媒体からの反射光を用いて情報を読
み取る光ディスク装置において、前記反射光の光路上に
配置され、前記反射光のほぼ光軸を通り前記情報記録媒
体のトラックにほぼ平行な方向とこれのほぼ直交方向と
の2直線で少なくとも4領域に分割され、この4領域の
それぞれ対角に配置される領域同士を、同一のホログラ
ム曲線群の二部分を組合せた第1ホログラム対領域と、
これと異なり、かつ同一のホログラム曲線群の二部分を
組合せた第2ホログラム対領域として構成し、この第1
ホログラム対領域と第2ホログラム対領域とが前記反射
光の各回折光を互いに異なる方向に回折させ、且つ、各
回折光に対してそれぞれ収束、若しくは発散のレンズ作
用を付加するように構成されたホログラム素子と、この
ホログラム素子の前記第1ホログラム対領域からの±1
次回折光をそれぞれ受光する第1及び第2受光領域と、
前記第2ホログラム対領域からの±1次回折光をそれぞ
れ受光する第3及び第4受光領域とを同一平面に有し、
前記第1〜第4受光領域の各中心と前記情報記録媒体か
らの反射光の収束点とが前記ホログラム素子の中心から
全て光学的に略等距離になる位置に配置されると共に、
前記光軸を挾んで対向配置される前記第1受光領域と前
記第2受光領域、及び、前記第3受光領域と前記第4受
光領域がそれぞれの中心を結ぶ方向を境界方向とし、こ
の境界方向に沿って中央分割領域とこれの両外側の端部
分割領域とにそれぞれ3分割された受光素子基板と、こ
の受光素子基板の前記第1〜第4受光領域の前記中央分
割領域からの光電変換信号と両側の端部受光領域からの
光電変換信号の加算値との差レベルを取り、これに基づ
いていわゆるスポットサイズ法のフォーカスエラー信号
を得ると共に、前記第1受光領域と前記第2受光領域か
らの全ての光電変換信号を加算し、及び、前記第3受光
領域と前記第4受光領域からの全ての光電変換信号を加
算し、これら2系統の出力からいわゆる2素子位相差法
のトラッキングエラー信号を同時に得るエラー信号検出
手段とを備えたことを特徴とする光ディスク装置であ
る。
According to a third aspect of the present invention, there is provided an optical disc apparatus for irradiating light onto an information recording medium and reading information using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, Are divided into at least four areas by two straight lines, a direction substantially parallel to a track of the information recording medium and a direction substantially orthogonal to the track of the information recording medium. A first hologram pair region combining two parts of the same hologram curve group,
In contrast to this, the second hologram pair region is formed by combining two portions of the same hologram curve group, and
The hologram pair region and the second hologram pair region are configured to diffract the respective diffracted lights of the reflected light in directions different from each other, and to add a convergent or divergent lens function to each diffracted light, respectively. A hologram element and ± 1 from the first hologram pair area of the hologram element.
First and second light receiving areas for receiving the second order diffracted light, respectively;
Third and fourth light receiving areas for receiving ± 1st-order diffracted light from the second hologram pair area, respectively, on the same plane;
Each of the centers of the first to fourth light receiving areas and the convergence point of the reflected light from the information recording medium are arranged at positions where they are all optically equidistant from the center of the hologram element,
A direction in which the centers of the first light receiving region and the second light receiving region, and the third light receiving region and the fourth light receiving region, which are opposed to each other with the optical axis interposed therebetween, is defined as a boundary direction. The light receiving element substrate is divided into three parts along the central divided area and the end divided areas on both sides thereof, and the photoelectric conversion from the central divided area of the first to fourth light receiving areas of the light receiving element substrate The difference level between the signal and the added value of the photoelectric conversion signals from the end light receiving areas on both sides is obtained, and a focus error signal of a so-called spot size method is obtained based on the difference level, and the first light receiving area and the second light receiving area are obtained. , And all the photoelectric conversion signals from the third light receiving area and the fourth light receiving area are added. From the outputs of these two systems, the tracking error of the so-called two-element phase difference method is obtained. An optical disk apparatus characterized by comprising an error signal detecting means for obtaining a over signal simultaneously.

【0021】請求項4の発明は、光を情報記録媒体に照
射し、この情報記録媒体からの反射光を用いて情報を読
み取る光ディスク装置において、前記反射光の光路上に
配置され、前記反射光のほぼ光軸を通り前記情報記録媒
体のトラックにほぼ平行な方向とこれのほぼ直交方向と
の2直線で少なくとも4領域に分割され、この4領域の
それぞれ対角に配置される領域同士を、同一のホログラ
ム曲線群の二部分を組合せた第1ホログラム対領域と、
これと異なり、かつ同一のホログラム曲線群の二部分を
組合せた第2ホログラム対領域として構成し、この第1
ホログラム対領域と第2ホログラム対領域とが前記反射
光の各回折光を互いに異なる方向に回折させ、且つ、各
回折光に対してそれぞれ収束、若しくは発散のレンズ作
用を付加するように構成されたホログラム素子と、この
ホログラム素子の前記第1ホログラム対領域からの±1
次回折光をそれぞれ受光する第1及び第2受光領域と、
前記第2ホログラム対領域からの±1次回折光をそれぞ
れ受光する第3及び第4受光領域とを同一平面に有し、
前記第1〜第4受光領域の各中心と前記情報記録媒体か
らの反射光の収束点とが前記ホログラム素子の中心から
全て光学的に略等距離になる位置に配置されると共に、
前記光軸を挾んで対向配置される前記第1受光領域と前
記第2受光領域、及び、前記第3受光領域と前記第4受
光領域がそれぞれの中心を結ぶ方向を境界方向とし、こ
の境界方向に沿って中央分割領域とこれの両外側の端部
分割領域とにそれぞれ3分割された受光素子基板と、こ
の受光素子基板の前記第1〜第4受光領域の前記中央分
割領域からの光電変換信号と両外側の端部受光領域から
の光電変換信号の加算値との差レベルを取り、これに基
づいていわゆるスポットサイズ法のフォーカスエラー信
号を得ると共に、前記第1受光領域と前記第2受光領域
との対応する端部分割領域からの光電変換信号をそれぞ
れ加算して2系統の出力を得、前記第3受光領域と前記
第4受光領域との対応する端部分割領域からの光電変換
信号をそれぞれ加算して2系統の出力を得て、これら4
系統の出力からいわゆる4素子位相差法のトラッキング
エラー信号を同時に得るエラー信号検出手段とを備えた
ことを特徴とする光ディスク装置である。
According to a fourth aspect of the present invention, there is provided an optical disc apparatus for irradiating an information recording medium with light and reading information using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, Are divided into at least four areas by two straight lines, a direction substantially parallel to a track of the information recording medium and a direction substantially orthogonal to the track of the information recording medium. A first hologram pair region combining two parts of the same hologram curve group,
In contrast to this, the second hologram pair region is formed by combining two portions of the same hologram curve group, and
The hologram pair region and the second hologram pair region are configured to diffract the respective diffracted lights of the reflected light in directions different from each other, and to add a convergent or divergent lens function to each diffracted light, respectively. A hologram element and ± 1 from the first hologram pair area of the hologram element.
First and second light receiving areas for receiving the second order diffracted light, respectively;
Third and fourth light receiving areas for receiving ± 1st-order diffracted light from the second hologram pair area, respectively, on the same plane;
Each of the centers of the first to fourth light receiving areas and the convergence point of the reflected light from the information recording medium are arranged at positions where they are all optically equidistant from the center of the hologram element,
A direction in which the centers of the first light receiving region and the second light receiving region, and the third light receiving region and the fourth light receiving region, which are opposed to each other with the optical axis interposed therebetween, is defined as a boundary direction. The light receiving element substrate is divided into three parts along the central divided area and the end divided areas on both sides thereof, and the photoelectric conversion from the central divided area of the first to fourth light receiving areas of the light receiving element substrate The difference level between the signal and the added value of the photoelectric conversion signals from both outer end light receiving areas is obtained. Based on the difference level, a focus error signal of a so-called spot size method is obtained, and the first light receiving area and the second light receiving area are obtained. The photoelectric conversion signals from the end divided regions corresponding to the respective regions are added to obtain outputs of two systems, and the photoelectric conversion signals from the corresponding end divided regions of the third light receiving region and the fourth light receiving region are obtained. Each To obtain two outputs by these 4
An optical disc device comprising: an error signal detecting means for simultaneously obtaining a so-called four-element phase difference tracking error signal from a system output.

【0022】請求項5の発明は、光を情報記録媒体に照
射し、この情報記録媒体からの反射光を用いて情報を読
み取る光ディスク装置において、前記反射光の光路上に
配置され、前記反射光のほぼ光軸を通り前記情報記録媒
体のトラックにほぼ平行な方向とこれのほぼ直交方向と
の2直線で少なくとも4領域に分割され、この4領域の
それぞれ対角に配置される領域同士を、同一のホログラ
ム曲線群の二部分を組合せた第1ホログラム対領域と、
これと異なり、かつ同一のホログラム曲線群の二部分を
組合せた第2ホログラム対領域として構成し、この第1
ホログラム対領域と第2ホログラム対領域とが前記反射
光の各回折光を互いに異なる方向に回折させ、且つ、各
回折光に対してそれぞれ収束、若しくは発散のレンズ作
用を付加するように構成されたホログラム素子と、この
ホログラム素子の前記第1ホログラム対領域からの±1
次回折光をそれぞれ受光する第1及び第2受光領域と、
前記第2ホログラム対領域からの±1次回折光をそれぞ
れ受光する第3及び第4受光領域とを同一平面に有し、
前記第1〜第4受光領域の各中心と前記情報記録媒体か
らの反射光の収束点とが前記ホログラム素子の中心から
全て光学的に略等距離になる位置に配置されると共に、
前記光軸を挾んで対向配置される前記第1受光領域と前
記第2受光領域、及び、前記第3受光領域と前記第4受
光領域がそれぞれの中心を結ぶ方向を境界方向とし、こ
の境界方向に沿って中央分割領域とこれの両外側の端部
分割領域とにそれぞれ3分割された受光素子基板と、こ
の受光素子基板の前記第1〜第4受光領域の前記中央分
割領域からの光電変換信号と両外側の端部受光領域から
の光電変換信号の加算値との差レベルを取り、これに基
づいていわゆるスポットサイズ法のフォーカスエラー信
号を得ると共に、前記第1受光領域と前記第2受光領域
との対応する端部分割領域からの光電変換信号をそれぞ
れ加算し、且つ、この各加算値に前記第1受光領域と前
記第2受光領域との各中央分割領域からの光電変換信号
をさらに加算して2系統の出力を得、前記第3受光領域
と前記第4受光領域との対応する端部分割領域からの光
電変換信号をそれぞれ加算し、且つ、この各加算値に前
記第3受光領域と前記第4受光領域との中央分割領域か
らの各光電変換信号をさらに加算して2系統の出力を得
て、これら4系統の出力からいわゆる4素子位相差法の
トラッキングエラー信号を同時に得るエラー信号検出手
段とを備えたことを特徴とする光ディスク装置である。
According to a fifth aspect of the present invention, there is provided an optical disc apparatus for irradiating light to an information recording medium and reading information by using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, Are divided into at least four areas by two straight lines, a direction substantially parallel to a track of the information recording medium and a direction substantially orthogonal to the track of the information recording medium. A first hologram pair region combining two parts of the same hologram curve group,
In contrast to this, the second hologram pair region is formed by combining two portions of the same hologram curve group, and
The hologram pair region and the second hologram pair region are configured to diffract the respective diffracted lights of the reflected light in directions different from each other, and to add a convergent or divergent lens function to each diffracted light, respectively. A hologram element and ± 1 from the first hologram pair area of the hologram element.
First and second light receiving areas for receiving the second order diffracted light, respectively;
Third and fourth light receiving areas for receiving ± 1st-order diffracted light from the second hologram pair area, respectively, on the same plane;
Each of the centers of the first to fourth light receiving areas and the convergence point of the reflected light from the information recording medium are arranged at positions where they are all optically equidistant from the center of the hologram element,
A direction in which the centers of the first light receiving region and the second light receiving region, and the third light receiving region and the fourth light receiving region, which are opposed to each other with the optical axis interposed therebetween, is defined as a boundary direction. The light receiving element substrate is divided into three parts along the central divided area and the end divided areas on both sides thereof, and the photoelectric conversion from the central divided area of the first to fourth light receiving areas of the light receiving element substrate The difference level between the signal and the added value of the photoelectric conversion signals from both outer end light receiving areas is obtained. Based on the difference level, a focus error signal of a so-called spot size method is obtained, and the first light receiving area and the second light receiving area are obtained. The photoelectric conversion signals from the end divided regions corresponding to the regions are respectively added, and the photoelectric conversion signals from the central divided regions of the first light receiving region and the second light receiving region are further added to the respective added values. Add System outputs, add the photoelectric conversion signals from the corresponding end divided areas of the third light-receiving area and the fourth light-receiving area, and add the third light-receiving area and the Error signal detecting means for obtaining the outputs of two systems by further adding the respective photoelectric conversion signals from the central divided region with the four light receiving regions, and simultaneously obtaining a so-called four-element phase difference tracking error signal from the outputs of these four systems. An optical disk device comprising:

【0023】また、上記以外の発明としては、光を情報
記録媒体に照射し、この情報記録媒体からの反射光を用
いて情報を読み取る光ディスク装置において、前記反射
光の光路上に配置され、前記反射光のほぼ光軸を通り前
記情報記録媒体のほぼトラッキング方向とこれのほぼ直
交方向との2直線で少なくとも4領域に分割され、この
4領域のそれぞれ対角に配置される領域同士を、同一の
ホログラム曲線群の二部分を組合せた第1ホログラム対
領域と、これと異なり、かつ同一のホログラム曲線群の
二部分を組合せた第2ホログラム対領域として構成し、
この第1ホログラム対領域と第2ホログラム対領域とが
前記反射光の各回折光を互いに異なる方向に回折させ、
且つ、各回折光に対してそれぞれ収束、若しくは発散の
レンズ作用を付加するように構成されたホログラム素子
と、このホログラム素子の前記第1ホログラム対領域か
らの±1次回折光をそれぞれ受光する第1及び第2受光
領域と、前記第2ホログラム対領域からの±1次回折光
をそれぞれ受光する第3及び第4受光領域とを同一平面
に有し、前記第1〜第4受光領域の各中心と前記情報記
録媒体からの反射光の収束点とが前記ホログラム素子の
中心から全て光学的に略等距離になる位置に配置される
と共に、前記光軸を挾んで対向配置される前記第1受光
領域と前記第2受光領域、及び、前記第3受光領域と前
記第4受光領域がそれぞれの中心を結ぶ方向を境界方向
とし、この境界方向に沿って中央分割領域とこれの両側
の端部分割領域とにそれぞれ3分割された受光素子基板
と、この受光素子基板の前記第1〜第4受光領域の前記
中央分割領域からの光電変換信号と両側の端部受光領域
からの光電変換信号の加算値との差レベルを取り、これ
に基づいていわゆるスポットサイズ法のフォーカスエラ
ー信号を得ると共に、前記第1受光領域と前記第2受光
領域との対応する端部分割領域からの光電変換信号をそ
れぞれ加算して2系統の出力を得、前記第3受光領域と
前記第4受光領域との対応する端部分割領域からの光電
変換信号をそれぞれ加算して2系統の出力を得、第1受
光領域と第2受光領域の前記各中央分割領域からの光電
変換信号を加算して1系統の出力を得、第3受光領域と
第4受光領域の前記各中央分割領域からの光電変換信号
を加算して1系統の出力を得て、これら6系統の出力か
らトラッキングエラー信号を同時に得るエラー信号検出
手段とを備えたことを特徴とする光ディスク装置であ
る。
According to another aspect of the present invention, there is provided an optical disc apparatus that irradiates an information recording medium with light and reads information using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, The information recording medium is divided into at least four areas by two straight lines passing through the optical axis of the reflected light and substantially in the tracking direction of the information recording medium and in the direction substantially orthogonal to the information recording medium. A first hologram pair region in which two portions of the hologram curve group are combined, and a second hologram pair region in which two portions of the different and the same hologram curve group are combined,
The first hologram pair region and the second hologram pair region diffract each reflected light of the reflected light in different directions,
A hologram element configured to add a convergent or divergent lens function to each diffracted light, and a first hologram element that receives ± first-order diffracted lights from the first hologram pair region of the hologram element, respectively. And a second light receiving area, and third and fourth light receiving areas for respectively receiving ± 1st-order diffracted light from the second hologram pair area on the same plane. The first light receiving area is disposed at a position where the convergence point of the reflected light from the information recording medium and the center of the hologram element are all optically substantially equidistant from each other, and is opposed to the optical axis. A direction in which the centers of the third light receiving region and the fourth light receiving region are connected to each other is defined as a boundary direction. A center divided region and end divided regions on both sides of the central divided region along the boundary direction. And to A light receiving element substrate divided into three, a photoelectric conversion signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate, and an added value of the photoelectric conversion signals from the end light receiving areas on both sides. The difference level is taken, and a focus error signal of a so-called spot size method is obtained based on the difference level, and the photoelectric conversion signals from the corresponding end divided regions of the first light receiving region and the second light receiving region are added, respectively. Two systems of outputs are obtained, and the photoelectric conversion signals from the corresponding end divided regions of the third light receiving region and the fourth light receiving region are respectively added to obtain two systems of outputs. One system is obtained by adding the photoelectric conversion signals from the respective central divided regions of the light receiving region, and one system is obtained by adding the photoelectric conversion signals from the respective central divided regions of the third light receiving region and the fourth light receiving region. And get the output of Further comprising an error signal detecting means for obtaining a tracking error signal simultaneously from the output of the six systems is an optical disk apparatus according to claim.

【0024】この発明によれば、遅延回路等を併用する
ことにより、いわゆる2素子位相法では回避困難な、対
物レンズ移動に伴うトラッキングエラー信号へのオフセ
ット発生を、良好に回避可能である。
According to the present invention, by using a delay circuit or the like, it is possible to satisfactorily avoid the occurrence of an offset to the tracking error signal due to the movement of the objective lens, which is difficult to avoid by the so-called two-element phase method.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1は本発明の第1実施形態の光ディスク
装置の光ピックアップの概略斜視図、図2はその光ピッ
クアップの要部斜視図、図3(a)は光ディスク6から
反射された光束20の光ディスク6とホログラム8との
間における断面の4領域を示す図、図3(b)はホログ
ラム素子8の平面図、図4は受光素子基板2の平面図、
図5は4つの受光領域10〜13とこれに照射されるス
ポット光SP1〜SP4を示す要部平面図である。
FIG. 1 is a schematic perspective view of an optical pickup of an optical disk device according to a first embodiment of the present invention, FIG. 2 is a perspective view of a main part of the optical pickup, and FIG. FIG. 3B is a diagram showing four regions of a cross section between the optical disk 6 and the hologram 8, FIG. 3B is a plan view of the hologram element 8, FIG.
FIG. 5 is a main part plan view showing four light receiving areas 10 to 13 and spot lights SP1 to SP4 applied to the light receiving areas 10 to 13.

【0027】図1〜図5において、配線基板1上には受
光素子基板2が固定され、この受光素子基板2の構成は
後述する。受光素子基板2上には一直線上にレーザ光源
3とマイクロミラー4とが固定されている。レーザ光源
3は、例えば半導体レーザにて構成され、受光素子基板
2上に固定されたサブマウント部材5を介して固定され
ている。マイクロミラー4は、レーザ光源3との対向面
がミラー面(特に、符号を付さず)として構成され、こ
のミラー面は水平面に対し45度傾斜した面として構成
されている。
1 to 5, a light receiving element substrate 2 is fixed on a wiring board 1, and the structure of the light receiving element substrate 2 will be described later. A laser light source 3 and a micro mirror 4 are fixed on the light receiving element substrate 2 in a straight line. The laser light source 3 is composed of, for example, a semiconductor laser, and is fixed via a submount member 5 fixed on the light receiving element substrate 2. The micro mirror 4 has a surface facing the laser light source 3 configured as a mirror surface (particularly, without a reference numeral), and the mirror surface is configured as a surface inclined at 45 degrees with respect to a horizontal plane.

【0028】つまり、レーザ光源3からの射出光はマイ
クロミラー4で反射されることによって垂直方向の光軸
Cを有する光に方向変換され、この垂直方向の光軸Cを
通って情報記録媒体である光ディスク6に射出され、且
つ、光ディスク6からの反射光が同一の光軸Cを通って
戻るように構成されている。
That is, the emitted light from the laser light source 3 is reflected by the micromirror 4 to be converted into light having a vertical optical axis C, and passes through the vertical optical axis C to be transmitted to the information recording medium. It is configured such that light emitted to a certain optical disk 6 and reflected from the optical disk 6 returns through the same optical axis C.

【0029】この垂直方向の上記光軸C上には、光ディ
スク6側から対物レンズ7、ホログラム素子8の順に配
置されている。対物レンズ7はレーザ光源3からホログ
ラム素子8を介して導かれる光を光ディスク6の情報記
録層(図示せず)に収束させる。
On the optical axis C in the vertical direction, an objective lens 7 and a hologram element 8 are arranged in this order from the optical disk 6 side. The objective lens 7 converges light guided from the laser light source 3 via the hologram element 8 to an information recording layer (not shown) of the optical disc 6.

【0030】ホログラム素子8は、偏平方形状を有し、
その上面に円形状のホログラム構成部8aを有する。こ
のホログラム構成部8aは、反射光20の光軸Cを通
り、且つ、光ディスク6のほぼタンジェンシャル方向
(トラックと平行な方向)Tと、これのほぼ直交方向R
(光ディスク6のほぼラジアル方向)との直交2直線で
4領域SI,SII,SIII,SIVに分割されている。こ
の4領域の対角に配置される領域SII,SIV同士が第1
ホログラム対領域9aとして、他の対角に配置される領
域SI,SIII同士が第2ホログラム対領域9bとして
それぞれ構成されている。
The hologram element 8 has a partial square shape,
It has a circular hologram component 8a on its upper surface. The hologram forming unit 8a passes through the optical axis C of the reflected light 20 and has a substantially tangential direction (direction parallel to the track) T of the optical disk 6 and a substantially perpendicular direction R
It is divided into four areas SI, SII, SIII and SIV by two straight lines orthogonal to (almost in the radial direction of the optical disc 6). Regions SII and SIV arranged diagonally to these four regions are the first region.
As the hologram pair region 9a, regions SI and SIII arranged at other diagonals are each configured as a second hologram pair region 9b.

【0031】この第1ホログラム対領域9aと第2ホロ
グラム対領域9bは、それぞれ同一の連続した波面の回
折光を生成する同一のホログラム曲線群の二部分を組合
せることによって構成され、反射光20の回折光を共に
同一の回折角で回折するが、反射光20の回折光を互い
に異なる回折方向に回折させると共に、それぞれ対とな
る±1次回折光21a,21b,22a,22bの一方
に対して収束、他方に対して発散のレンズ作用を付加す
るように構成されている。
The first hologram pair region 9a and the second hologram pair region 9b are formed by combining two portions of the same hologram curve group that generates diffracted light beams having the same continuous wavefront, respectively. Are diffracted at the same diffraction angle, but the diffracted light of the reflected light 20 is diffracted in different diffraction directions, and one of the paired ± first-order diffracted lights 21a, 21b, 22a, and 22b is It is configured to add convergence and divergence lens action to the other.

【0032】ここで、第1ホログラム対領域9aと第2
ホログラム対領域9bにおいて同一の回折角で回折され
るため、4つの受光素子基板2上のスポット光SP1〜
SP4が受光素子基板2上の光軸C直交点に対して等距
離の位置に照射され、且つ、第1ホログラム対領域9a
による±1次回折光21a,21bと第2ホログラム対
領域9bによる±1次回折光22a,22bとが互いに
異なる回折方向に回折されるため、4つのスポット光S
P1〜SP4は受光素子基板2上においてラジアル方向
Rに対して±α度だけそれぞれ回転した位置に照射され
る。
Here, the first hologram pair area 9a and the second hologram pair 9a
Since the light is diffracted at the same diffraction angle in the hologram pair region 9b, the spot lights SP1 to SP4 on the four light receiving element substrates 2
SP4 is irradiated to a position equidistant with respect to a point orthogonal to the optical axis C on the light receiving element substrate 2, and the first hologram pair region 9a
± 1st-order diffracted lights 21a and 21b and the ± 1st-order diffracted lights 22a and 22b by the second hologram pair region 9b are diffracted in different diffraction directions, so that four spot lights S
P1 to SP4 are irradiated on the light receiving element substrate 2 at positions rotated by ± α degrees with respect to the radial direction R.

【0033】前記受光素子基板2は、同一平面の受光面
2a上に配置された4つの受光領域10〜13を有し、
この第1〜第4受光領域10〜13に上記4つの回折光
21a,21b,22a,22bがそれぞれ照射される
ように構成されている。又、第1〜第4受光領域10〜
13は、その各中心と光ディスク6からの反射光20の
収束点Oとがホログラム素子8の中心から全て光学的に
略等距離になる位置に配置されている。光軸Cを挾んで
対向配置される第1受光領域10と第2受光領域11、
及び、第3受光領域12と第4受光領域13は、それぞ
れの中心を結ぶ方向を境界方向+Rα,−Rαとし、こ
の境界方向+Rα,−Rαに沿って中央分割領域Eaと
これの両外側の端部分割領域Eb,Ecとにそれぞれ3
分割されている。この分割割合はジャストフォーカス状
態において中央分割領域Eaと2つの端部分割領域E
b,Ecとのスポット光量が同じ量になるように設定さ
れている。又、この3分割は、図6(a)に示すよう
に、具体的には非受光部である2つの境界線部17,1
8にて仕切ることによって構成されている。
The light receiving element substrate 2 has four light receiving areas 10 to 13 arranged on the same plane light receiving surface 2a.
The first to fourth light receiving regions 10 to 13 are configured to be irradiated with the four diffracted lights 21a, 21b, 22a, and 22b, respectively. Also, the first to fourth light receiving areas 10 to 10
Reference numeral 13 denotes a position where each of the centers and the convergence point O of the reflected light 20 from the optical disk 6 are optically substantially equidistant from the center of the hologram element 8. A first light receiving region 10 and a second light receiving region 11, which are opposed to each other with the optical axis C interposed therebetween;
The direction connecting the centers of the third light receiving region 12 and the fourth light receiving region 13 is defined as a boundary direction + Rα, −Rα, and along the boundary direction + Rα, −Rα, the central divided region Ea and both outer sides thereof are arranged. 3 for each of the end divided regions Eb and Ec
Has been split. This division ratio is such that the center division area Ea and the two end division areas E
The spot light amounts of b and Ec are set to be the same. In addition, as shown in FIG. 6A, the three divisions are, specifically, two boundary portions 17, 1 which are non-light receiving portions.
8 is used.

【0034】また、前記した受光素子基板2とレーザ光
源3とは、同一の配線基板1に一体に固定され、さらに
ホログラム素子8で封止され、一体の光デバイス19と
して構成されている。また、対物レンズ7とを組合せて
筐体14に組み込まれ、光ピックアップとして構成され
ている。尚、図1及び図2では、配線基板1とホログラ
ム素子とは便宜上分離されているように図示されている
が、実用上は配線基板1にホログラム素子8を載置し、
受光素子基板2とレーザ光源3とが封止される。 次
に、光ディスク装置のエラー検出手段15について説明
する。エラー検出手段15は、図7及び図8に示すよう
に、第1受光領域10の中央分割領域Eaからの出力よ
り光電変換出力R1を、第1受光領域10の一対の端部
分割領域Eb,Ecからの合計出力より光電変換出力R
3をそれぞれ得る。第2受光領域11の中央分割領域E
aからの出力より光電変換出力R4を、第2受光領域1
1の一対の端部分割領域Eb,Ecからの合計出力より
光電変換出力R2をそれぞれ得る。又、第3受光領域1
2の中央分割領域Eaからの出力より光電変換出力L1
を、第3受光領域12の一対の端部分割領域Eb,Ec
からの合計出力より光電変換出力L3をそれぞれ得る。
第4受光領域13の中央分割領域Eaからの出力より光
電変換出力L4を、第4受光領域13の一対の端部分割
領域Eb,Ecからの合計出力より光電変換出力L2を
それぞれ得る。そして、FE1=(R1+R2)−(R
3+R4)、及び、FE2=(L1+L2)−(L3+
L4)の演算を行うように構成されている。
The light receiving element substrate 2 and the laser light source 3 are integrally fixed to the same wiring substrate 1 and further sealed with the hologram element 8 to form an integrated optical device 19. Further, the optical pickup is incorporated in the housing 14 in combination with the objective lens 7 to constitute an optical pickup. 1 and 2, the wiring substrate 1 and the hologram element are illustrated as being separated for convenience. However, in practice, the hologram element 8 is placed on the wiring substrate 1,
The light receiving element substrate 2 and the laser light source 3 are sealed. Next, the error detecting means 15 of the optical disk device will be described. As shown in FIGS. 7 and 8, the error detecting means 15 converts the photoelectric conversion output R1 from the output from the central divided area Ea of the first light receiving area 10 into a pair of end divided areas Eb, Eb, From the total output from Ec, the photoelectric conversion output R
3 are obtained. Central divided area E of second light receiving area 11
a from the output from the second light receiving area 1
A photoelectric conversion output R2 is obtained from the total output from one pair of end divided regions Eb and Ec. Also, the third light receiving area 1
2 from the output from the central divided area Ea
Is divided into a pair of end divided areas Eb and Ec of the third light receiving area 12.
The photoelectric conversion output L3 is obtained from the total output from.
The photoelectric conversion output L4 is obtained from the output from the central divided area Ea of the fourth light receiving area 13, and the photoelectric conversion output L2 is obtained from the total output from the pair of end divided areas Eb and Ec of the fourth light receiving area 13. Then, FE 1 = (R1 + R2 ) - (R
3 + R4) and FE 2 = (L1 + L2) − (L3 +
L4).

【0035】つまり、ホログラム素子8により回折され
た+1次回折光21a,21bは受光素子基板2の手前
で焦点を結び、−1次回折光22a,22bは受光素子
基板2を過ぎてから焦点を結び、焦点が合っている場合
には双方のスポット光SP1〜SP4の大きさが同じに
なる。そして、上述したように、ジャストフォーカス状
態において各受光領域10〜13の中央分割領域Eaの
受光量と一対の端部分割領域Eb,Ecの合計受光量と
が同じ量になるように設定されているため、FE1
値、FE2の値がそれぞれゼロになる。又、焦点が合っ
ていない場合には+1次回折光21a,21b又は−1
次回折光22a,22bの一方が大きく、他方が小さく
なるため、上記FE1の値、FE2の値がゼロよりシフト
した値となり、FE1,FE2によって2系統のコンプリ
メンタリ(相補的)なフォーカスエラー信号を得ること
ができる。
That is, the + 1st-order diffracted lights 21a and 21b diffracted by the hologram element 8 are focused before the light receiving element substrate 2, and the -1st order diffracted lights 22a and 22b are focused after passing the light receiving element substrate 2, When focused, both spot lights SP1 to SP4 have the same size. Then, as described above, in the just-focused state, the light receiving amount of the central divided region Ea of each of the light receiving regions 10 to 13 and the total light receiving amount of the pair of end divided regions Eb and Ec are set to be the same amount. Therefore, the value of FE 1 and the value of FE 2 are both zero. When the focus is not focused, the + 1st-order diffracted light 21a, 21b or -1
Order diffracted light 22a, 22b one is large, because the other is small, the value of the FE 1, the value of the FE 2 becomes a value shifted from zero, FE 1, FE 2 by two systems of complementary (complementary) focus An error signal can be obtained.

【0036】また、エラー検出手段15は、図8に示す
ように、第1受光領域10の中央分割領域Ea及び両外
側の端部分割領域Eb,Ecからの光電変換信号と、第
2受光領域11の中央分割領域Ea及び両外側の端部分
割領域Eb,Ecからの光電変換信号とを加算して出力
II+IV信号を得る。又、第3受光領域12の中央分割領
域Ea及び両外側の端部分割領域Eb,Ecからの光電
変換信号と、第4受光領域13の中央分割領域Ea及び
両外側の端部分割領域Eb,Ecからの光電変換信号と
を加算して出力I+III信号を得る。そして、この出力
(II+IV)信号と出力(I+III)信号に基づいてDP
D演算回路16が位相差法によるトラッキングエラー信
号を作製するように構成されている。
As shown in FIG. 8, the error detecting means 15 converts the photoelectric conversion signals from the central divided area Ea of the first light receiving area 10 and the end divided areas Eb and Ec on both sides into the second light receiving area. 11 and output by adding the photoelectric conversion signals from the center divided area Ea and the outer edge divided areas Eb and Ec.
Get II + IV signal. Also, the photoelectric conversion signals from the center divided region Ea and the outer end divided regions Eb and Ec of the third light receiving region 12 and the center divided region Ea and both outer end divided regions Eb and Eb of the fourth light receiving region 13 are provided. The output I + III signal is obtained by adding the photoelectric conversion signal from Ec. Then, based on the output (II + IV) signal and the output (I + III) signal, DP
The D operation circuit 16 is configured to generate a tracking error signal by the phase difference method.

【0037】次に、上記構成の作用を説明する。レーザ
光源3からレーザ光が射出されると、この射出光はマイ
クロミラー4で反射されて垂直方向の光軸Cを有する光
に変更される。この光軸Cを有する光は、ホログラム素
子8を通過後、通常はコリメータレンズ(図示せず)で
平行光とされ、対物レンズ7によって光ディスク6の情
報記録層(図示せず)に焦点を結ぶ。光ディスク6から
の反射光は、上記と逆の経路で再びホログラム素子8に
収束しながら入射する。
Next, the operation of the above configuration will be described. When laser light is emitted from the laser light source 3, the emitted light is reflected by the micromirror 4 and changed to light having an optical axis C in the vertical direction. After passing through the hologram element 8, the light having the optical axis C is usually collimated by a collimator lens (not shown), and focused on an information recording layer (not shown) of the optical disk 6 by the objective lens 7. . The reflected light from the optical disk 6 is incident on the hologram element 8 again while converging along the reverse path.

【0038】ここで、ホログラム素子8を0次回折光と
して通過した光は収束点Oに収束し、この収束点Oまで
の光学的距離に各受光領域10〜13までの光学的距離
が略等しく設定されているため、ホログラム素子8にレ
ンズパワーがないと仮定したときには各回折光は各受光
領域10〜13に収束する関係を有する。又、図3
(a)に示すように、光ディスク6へのスポット光23
を4分割の領域に分割すると、各I〜IV領域の光はホロ
グラム構成部8aに対して図3(b)のローマ数字で示
す位置に照射されることになる。
Here, the light that has passed through the hologram element 8 as the 0th-order diffracted light converges to a convergence point O, and the optical distance to the convergence point O is set to be substantially equal to the optical distance to each of the light receiving regions 10 to 13. Therefore, when it is assumed that the hologram element 8 has no lens power, each diffracted light has a relationship converging on each of the light receiving regions 10 to 13. FIG.
As shown in (a), the spot light 23 on the optical disc 6
Is divided into four regions, the light in each of the I to IV regions is irradiated to the position indicated by the Roman numeral in FIG.

【0039】従って、第1ホログラム対領域9aによる
±1次回折光21a,21bの一方がレンズパワーによ
り受光面2aに至る前に焦点若しは焦線を結び、±1次
回折光21a,21bの他方がレンズパワーにより受光
面2aより後方に焦点若しくは焦線を結ぶ。そして、±
1次回折光21a,21bのスポット光SP1,SP2
は互いに逆向きに焦点ずれを持ち、所定(略同一)のス
ポットサイズで第1及び第2受光領域10,11に照射
され、光ディスク6の焦点方向位置ずれに伴ってそのサ
イズも逆方向に変化することになる。又、第1ホログラ
ム対領域9aによる±1次回折光21a,21bのスポ
ット光SP1,SP2は、図3(a)に示すスポット光
23のII領域とIV領域の成分を有することになる。
Accordingly, before one of the ± first-order diffracted lights 21a and 21b by the first hologram pair region 9a reaches the light receiving surface 2a due to the lens power, a focal point or a focal line is formed, and the other of the ± first-order diffracted lights 21a and 21b. Makes a focal point or a focal line behind the light receiving surface 2a by the lens power. And ±
Spot lights SP1, SP2 of the first-order diffracted lights 21a, 21b
Are defocused in opposite directions to each other, are radiated to the first and second light receiving areas 10 and 11 with a predetermined (substantially the same) spot size, and the size of the optical disc 6 also changes in the opposite direction due to a positional shift in the focus direction. Will do. Further, the spot lights SP1 and SP2 of the ± 1st-order diffracted lights 21a and 21b by the first hologram pair area 9a have components of the II area and the IV area of the spot light 23 shown in FIG.

【0040】また、第2ホログラム対領域9bによる±
1次回折光22a,22bの一方がレンズパワーにより
受光面2aに至る前に焦点若しは焦線を結び、±1次回
折光22a,22bの他方がレンズパワーにより受光面
2aより後方に焦点若しくは焦線を結ぶ。そして、±1
次回折光22a,22bのスポット光SP3,SP4は
互いに逆向きに焦点ずれを持ち、所定(略同一)のスポ
ットサイズで第3及び第4受光領域12,13に照射さ
れ、光ディスク6の焦点方向位置ずれに伴ってそのサイ
ズも逆方向に変化することになる。又、第2ホログラム
対領域9bによる±1次回折光22a,22bのスポッ
ト光SP3,SP4は、図3(a)に示すスポット光2
3のI領域とIII領域の成分を有することになる。
The second hologram pair area 9b
One of the first-order diffracted lights 22a and 22b is focused or focused before reaching the light receiving surface 2a by the lens power, and the other of the ± first-order diffracted lights 22a and 22b is focused or focused backward from the light receiving surface 2a by the lens power. Connect the lines. And ± 1
The spot lights SP3 and SP4 of the next-order diffracted lights 22a and 22b have defocuses in opposite directions, and are radiated to the third and fourth light receiving areas 12 and 13 with a predetermined (substantially the same) spot size. The size also changes in the opposite direction with the displacement. The spot lights SP3 and SP4 of the ± 1st-order diffracted lights 22a and 22b by the second hologram pair region 9b are the spot lights 2 shown in FIG.
It has three I region and III region components.

【0041】つまり、各受光領域10〜13には、光デ
ィスク6の焦点方向位置ずれに伴ってそのサイズも逆方
向に変化するスポット光SP1,SP2,SP3,SP
4がそれぞれ照射されるため、図7に示すように、各光
電変換信号を加算して各出力R2,R3,L2,L3信
号をそれぞれ得ることにより、FE1=(R1+R2)
−(R3+R4)、及び、FE2=(L1+L2)−
(L3+L4)の2系統のコンプリメンタリ(相補的)
なスポットサイズ法によるフォーカスエラー検出ができ
る。又、各受光領域10〜13には、図3(a)に示す
スポット光23の4分割の対角成分がそれぞれ照射され
るため、図8に示すように、各光電変換信号を加算等し
て出力II+IV信号と出力I+III信号をそれぞれ得るこ
とにより、出力(II+IV)信号と出力(I+III)信号
に基づいて2系統の位相差法によるトラッキングエラー
検出ができる。
That is, spot light SP1, SP2, SP3, and SP3 whose sizes change in the opposite direction in accordance with the positional shift of the optical disk 6 in the focus direction are provided in the respective light receiving regions 10 to 13.
4 are illuminated, respectively, and as shown in FIG. 7, by adding each photoelectric conversion signal to obtain each output R2, R3, L2, L3 signal, FE 1 = (R1 + R2)
− (R3 + R4) and FE 2 = (L1 + L2) −
Complementary (complementary) of two lines of (L3 + L4)
Focus error can be detected by a simple spot size method. In addition, since the light receiving areas 10 to 13 are respectively irradiated with the four-diagonal components of the spot light 23 shown in FIG. 3A, as shown in FIG. By obtaining the output II + IV signal and the output I + III signal respectively, the tracking error can be detected by the two-phase difference method based on the output (II + IV) signal and the output (I + III) signal.

【0042】即ち、本発明では、光ディスク6からの反
射光束は、ホログラム素子8にて位相差法で必要な4光
束に分岐し、且つ、各分岐光に位相差法で必要な4分割
の対角成分を含むように構成することによって位相差法
を実現すると共に、4分割ホログラム素子8の±1次回
折光全てを利用することによりダブルコンプリメンタリ
(相補的)なスポットサイズ法を実現している。
That is, in the present invention, the reflected light beam from the optical disk 6 is split into four light beams required by the phase difference method in the hologram element 8, and each split light beam is divided into four light beams required by the phase difference method. A phase difference method is realized by including an angular component, and a double complementary (complementary) spot size method is realized by using all the ± 1st-order diffracted lights of the 4-division hologram element 8.

【0043】また、各受光領域10〜13は、図6
(a)に詳しく示すように、中央分割領域Eaとこの両
外側の端部分割領域Eb,Ecとの3分割にて構成さ
れ、各分割領域Ea,Eb,Ecの作製工程上可能な最
小幅をW1、各境界線部17,18の作製工程上可能な
最小幅をW2とすると、全体の幅は3W1+2W2とな
る。従って、先行技術のものは、図6(b)に示すよう
に、4W1+3W2のサイズ幅であるため、W1+W2のサ
イズ幅だけ小さく設定できる。この結果、電気系の周波
数特性を向上させることができ、又、2層ディスクの再
生も良好に行われる。
Each of the light receiving areas 10 to 13 is shown in FIG.
As shown in detail in (a), it is constituted by three divisions of a center division region Ea and both outer end division regions Eb and Ec, and the minimum width which is possible in the manufacturing process of each division region Ea, Eb and Ec the W 1, when the process on the smallest possible width manufacture of each of the boundary lines 17 and 18 and W 2, the overall width is 3W 1 + 2W 2. Therefore, in the prior art, as shown in FIG. 6B, the size width is 4W 1 + 3W 2 , so that it can be set smaller by the size width of W 1 + W 2 . As a result, the frequency characteristics of the electric system can be improved, and the reproduction of the double-layer disc can be performed well.

【0044】又、各受光領域10〜13は、3分割にて
構成されているため、各受光領域10〜13から引き出
される配線パターン本数が先行技術に比べて少なくて済
み、配線パターンの簡素化、回路の簡素化等に寄与す
る。
Further, since each of the light receiving areas 10 to 13 is constituted by three divisions, the number of wiring patterns drawn out from each of the light receiving areas 10 to 13 can be reduced as compared with the prior art, and the wiring pattern can be simplified. This contributes to simplification of the circuit and the like.

【0045】さらに、先行技術と同様に、レーザ光源3
から光ディスク6までの入射光軸Cと光ディスク6から
受光素子基板2までの入射光軸Cを共通化し、且つ、ホ
ログラム素子8の4つの±1次回折光21a,21b,
22a,22bを単一の受光素子基板2で受光できるた
め、光学系の集積化に寄与する。従って、かかる光ピッ
クアップの光学系を集積化した光デバイス19は、コン
パクトなものとして構成できる。
Further, as in the prior art, the laser light source 3
The optical axis C from the optical disk 6 to the optical disk 6 and the optical axis C from the optical disk 6 to the light receiving element substrate 2 are shared, and the four ± 1st-order diffracted lights 21a, 21b,
Since the light receiving elements 22a and 22b can be received by the single light receiving element substrate 2, this contributes to the integration of the optical system. Therefore, the optical device 19 in which the optical system of the optical pickup is integrated can be configured as a compact device.

【0046】また、この第1実施形態では、位相差法に
よるトラッキングエラー信号を作製するのに、配線基板
1からの配線として出力(II+IV)信号と出力(I+II
I)信号との2系統のみで足りるため、先行技術と比較
して配線基板1の出力ピン数の削減となり、配線基板
1、ひいては光ピックアップや光デバイス19の小型化
に寄与する。
In the first embodiment, in order to produce a tracking error signal by the phase difference method, an output (II + IV) signal and an output (I + II)
I) Since only two systems for signals are required, the number of output pins of the wiring board 1 is reduced as compared with the prior art, which contributes to downsizing of the wiring board 1 and eventually the optical pickup and the optical device 19.

【0047】次に、本発明の第2実施形態を説明する。
この第2実施形態は、前記第1実施形態と比較してエラ
ー検出手段15のトラッキングエラー検出の構成のみが
相違し、他の構成は同一なので重複説明を回避するた
め、その説明を省略しトラッキングエラー検出の構成の
みを説明する。
Next, a second embodiment of the present invention will be described.
The second embodiment is different from the first embodiment only in the configuration of the tracking error detection of the error detection means 15 and the other configurations are the same. Only the configuration for error detection will be described.

【0048】即ち、図9に示すように、第1受光領域1
0のインナー側の端部分割領域Ebからの光電変換信号
と、第2受光領域11のインナー側の端部分割領域Eb
からの光電変換信号とを加算して出力IV信号を得る。第
1受光領域10のアウター側の端部分割領域Ecからの
光電変換信号と、第2受光領域11のアウター側の端部
分割領域Ecからの光電変換信号とを加算して出力II信
号を得る。
That is, as shown in FIG.
0 and the photoelectric conversion signal from the inner side end divided region Eb of the second light receiving region 11 and the inner side end divided region Eb of the second light receiving region 11.
To obtain an output IV signal. The output II signal is obtained by adding the photoelectric conversion signal from the outer side end divided region Ec of the first light receiving region 10 and the photoelectric conversion signal from the outer side end divided region Ec of the second light receiving region 11. .

【0049】又、第3受光領域12のインナー側の端部
分割領域Ebからの光電変換信号と、第4受光領域13
のインナー側の端部分割領域Ebからの光電変換信号と
を加算して出力I信号を得る。第3受光領域12のアウ
ター側の端部分割領域Ecからの光電変換信号と、第4
受光領域13のアウター側の端部分割領域Ecからの光
電変換信号とを加算して出力III信号を得る。そして、
この出力I〜IV信号に基づいてDPD演算回路16が4
系統の位相差法によるトラッキングエラー信号を作成す
るように構成されている。
The photoelectric conversion signal from the inner side end divided area Eb of the third light receiving area 12 and the fourth light receiving area 13
And the photoelectric conversion signal from the inner-side end portion divided area Eb is added to obtain an output I signal. The photoelectric conversion signal from the outer side end portion divided region Ec of the third light receiving region 12 and the fourth
The output III signal is obtained by adding the photoelectric conversion signal from the outer side end divided region Ec of the light receiving region 13. And
Based on the output signals I to IV, the DPD operation circuit 16
It is configured to generate a tracking error signal by a system phase difference method.

【0050】この第2実施形態によれば、各中央分割領
域Eaの光電変換信号を利用しない。各中央分割領域E
aには各受光領域10〜13の分割方向+Rα,−Rα
とスポット光23の分割方向Rとが異なることにより他
領域のクロストーク成分が混入するが各中央分割領域E
aの光電変換信号を利用しないため、クロストーク成分
による誤差がないトラッキングエラー信号を作成するこ
とができる。
According to the second embodiment, the photoelectric conversion signal of each central divided area Ea is not used. Each central divided area E
In a, the dividing directions + Rα, -Rα of the respective light receiving areas 10 to 13 are shown.
And the division direction R of the spot light 23, the crosstalk component of another area is mixed.
Since the photoelectric conversion signal of “a” is not used, a tracking error signal having no error due to the crosstalk component can be created.

【0051】次に、本発明の第3実施形態を説明する。
この第3実施形態は、前記第1実施形態と比較してエラ
ー検出手段15のトラッキングエラー検出の構成のみが
相違し、他の構成は同一なので重複説明を回避するた
め、その説明を省略しトラッキングエラー検出の構成の
みを説明する。
Next, a third embodiment of the present invention will be described.
The third embodiment is different from the first embodiment only in the configuration of the tracking error detection of the error detecting means 15 and the other configurations are the same. Only the configuration for error detection will be described.

【0052】即ち、図10に示すように、第1受光領域
10のインナー側(インナー側とは、受光素子基板2上
のラジアル方向Rを示す線に近い側を、アウター側とは
遠い側をいうものとする。以下同じ。)の端部分割領域
Ebからの光電変換信号と、第2受光領域11のインナ
ー側の端部分割領域Eb及び中央分割領域Eaからの光
電変換信号とを加算して出力IV信号を得る。第1受光領
域10のアウター側の端部分割領域Ec及び中央分割領
域Eaからの光電変換信号と、第2受光領域11のアウ
ター側の端部分割領域Ecからの光電変換信号とを加算
して出力II信号を得る。
That is, as shown in FIG. 10, the inner side of the first light receiving region 10 (the inner side is the side closer to the line indicating the radial direction R on the light receiving element substrate 2, and the side farther from the outer side). The same applies to the following.) The photoelectric conversion signal from the end divided region Eb and the photoelectric conversion signals from the inner end divided region Eb and the central divided region Ea of the second light receiving region 11 are added. To obtain an output IV signal. The photoelectric conversion signal from the outer side end divided region Ec and the center divided region Ea of the first light receiving region 10 and the photoelectric conversion signal from the outer side end divided region Ec of the second light receiving region 11 are added. Obtain the output II signal.

【0053】又、第3受光領域12のインナー側の端部
分割領域Ebからの光電変換信号と、第4受光領域13
のインナー側の端部分割領域Eb及び中央分割領域Ea
からの光電変換信号とを加算して出力I信号を得る。第
3受光領域12のアウター側の端部分割領域Ec及び中
央分割領域Eaからの光電変換信号と、第4受光領域1
3のアウター側の端部分割領域Ecからの光電変換信号
とを加算して出力III信号を得る。そして、この出力I
〜IV信号に基づいてDPD演算回路16が4系統の位相
差法によるトラッキングエラー信号を作成するよう構成
されている。
Further, the photoelectric conversion signal from the inner side end divided area Eb of the third light receiving area 12 and the fourth light receiving area 13
Of the inner side end divided region Eb and the central divided region Ea
To obtain an output I signal. The photoelectric conversion signals from the outer side end divided region Ec and the central divided region Ea of the third light receiving region 12 and the fourth light receiving region 1
3 to obtain an output III signal by adding the photoelectric conversion signal from the outer side end divided area Ec. And this output I
The DPD arithmetic circuit 16 is configured to create a tracking error signal by a four-system phase difference method based on the signals IV to IV.

【0054】この第3実施形態によれば、各中央分割領
域Eaの光電変換信号が各出力I〜IV信号に加算されて
いるため、第2実施形態に比べて出力レベルの向上が図
られる。
According to the third embodiment, since the photoelectric conversion signal of each central divided area Ea is added to each of the outputs I to IV, the output level is improved as compared with the second embodiment.

【0055】次に、本発明の第4実施形態を説明する。
この第4実施形態は、前記第1実施形態と比較してエラ
ー検出手段15のトラッキングエラー検出の構成のみが
相違し、他の構成は同一なので重複説明を回避するた
め、その説明を省略しトラッキングエラー検出の構成の
みを説明する。
Next, a fourth embodiment of the present invention will be described.
The fourth embodiment differs from the first embodiment only in the configuration of the tracking error detection of the error detecting means 15 and other configurations are the same. Only the configuration for error detection will be described.

【0056】即ち、図11に示すように、第1受光領域
10のインナー側の端部分割領域Ebからの光電変換信
号と、第2受光領域11のインナー側の端部分割領域E
bからの光電変換信号とを加算して出力IV信号を得る。
第1受光領域10のアウター側の端部分割領域Ecから
の光電変換信号と、第2受光領域11のアウター側の端
部分割領域Ecからの光電変換信号とを加算して出力II
信号を得る。
That is, as shown in FIG. 11, the photoelectric conversion signal from the inner side end divided region Eb of the first light receiving region 10 and the inner side end divided region Eb of the second light receiving region 11 are formed.
The output IV signal is obtained by adding the photoelectric conversion signal from b.
The output II is obtained by adding the photoelectric conversion signal from the outer side end divided region Ec of the first light receiving region 10 and the photoelectric conversion signal from the outer side end divided region Ec of the second light receiving region 11.
Get the signal.

【0057】又、第3受光領域12のインナー側の端部
分割領域Ebからの光電変換信号と、第4受光領域13
のインナー側の端部分割領域Ebからの光電変換信号と
を加算して出力I信号を得る。第3受光領域12のアウ
ター側の端部分割領域Ecからの光電変換信号と、第4
受光領域13のアウター側の端部分割領域Ecからの光
電変換信号とを加算して出力III信号を得る。
The photoelectric conversion signal from the inner side end divided area Eb of the third light receiving area 12 and the fourth light receiving area 13
And the photoelectric conversion signal from the inner-side end portion divided area Eb is added to obtain an output I signal. The photoelectric conversion signal from the outer side end portion divided region Ec of the third light receiving region 12 and the fourth
The output III signal is obtained by adding the photoelectric conversion signal from the outer side end divided region Ec of the light receiving region 13.

【0058】更に、第1受光領域10の中央分割領域E
aからの光電変換信号と第2受光領域11の中央分割領
域Eaからの光電変換信号とを加算して出力RF1信号
を、第3受光領域12の中央分割領域Eaからの光電変
換信号と第4受光領域13の中央分割領域Eaからの光
電変換信号とを加算して出力RF2信号をそれぞれ得
る。そして、この出力I〜IV信号、及び、出力RF1信
号と出力RF2信号に基づいてDPD演算回路16が6
系統の位相差法によるトラッキングエラー信号を作成す
るように構成されている。
Further, the center divided area E of the first light receiving area 10
a is added to the photoelectric conversion signal from the central divided area Ea of the second light receiving area 11, and the output RF1 signal is added to the photoelectric conversion signal from the central divided area Ea of the third light receiving area 12 and the fourth signal. The output RF2 signal is obtained by adding the photoelectric conversion signal from the central divided region Ea of the light receiving region 13 and the output. Then, based on the output I-IV signals, the output RF1 signal and the output RF2 signal, the DPD operation circuit 16
It is configured to generate a tracking error signal by a system phase difference method.

【0059】この第4実施形態によれば、出力I〜IV信
号には各中央分割領域Eaの光電変換信号が含まれてい
ない。各中央分割領域Eaには各受光領域10〜13の
分割方向+Rα,−Rαとスポット光23の分割方向R
とが異なることにより他領域のクロストーク成分が混入
するが各中央分割領域Eaの光電変換信号を利用しない
ため、クロストーク成分による誤差がないトラッキング
エラー信号を作成することができる。又、遅延回路等を
併用することにより、いわゆる2素子位相差法では回避
困難な、対物レンズ移動に伴うトラッキングエラー信号
へのオフセット発生を、良好に回避可能である。
According to the fourth embodiment, the output signals I to IV do not include the photoelectric conversion signal of each central divided area Ea. In each central divided region Ea, the division directions + Rα and −Rα of the light receiving regions 10 to 13 and the division direction R of the spot light 23 are set.
However, since the crosstalk component of the other region is mixed due to the difference between the two, the photoelectric conversion signal of each center divided region Ea is not used, so that it is possible to create a tracking error signal having no error due to the crosstalk component. Also, by using a delay circuit or the like, it is possible to satisfactorily avoid the occurrence of an offset to the tracking error signal due to the movement of the objective lens, which is difficult to avoid by the so-called two-element phase difference method.

【0060】尚、前記各実施形態によれば、ホログラム
素子8を4領域に分割して構成したが、対角に配置され
る領域についてそれぞれの反射光量が得られれば5領域
以上に分割しても良い。
According to each of the above embodiments, the hologram element 8 is divided into four regions. However, if the reflected light amount can be obtained for the diagonally arranged regions, the hologram element 8 is divided into five or more regions. Is also good.

【0061】尚、前記各実施形態によれば、受光素子基
板2とレーザ光源3とが同一の配線基板1に一体に固定
され、さらにホログラム素子8で封止され、一体の光デ
バイス19として構成されているが、これらの部品を別
体に構成しても良い。
According to each of the above embodiments, the light receiving element substrate 2 and the laser light source 3 are integrally fixed to the same wiring substrate 1 and further sealed with the hologram element 8 to form an integrated optical device 19. However, these components may be configured separately.

【0062】尚、前記各実施形態によれば、レーザ光源
3は、受光素子基板2にサブマウント部材5を介して固
定して、光軸C上にレーザ光源3の発光点の共役点(収
束点O)が位置するように構成したが、レーザ光源3は
上記光デバイス19と別体に構成しても良い。つまり、
光軸C上にレーザ光源3の発光点若しくはその共役点が
位置しない位置に配置しても良い。但し、上記各実施形
態のようにレーザ光源3を受光素子基板2に固定した方
が、より光学系の集積化に寄与する。
According to each of the above embodiments, the laser light source 3 is fixed to the light receiving element substrate 2 via the sub-mount member 5, and the conjugate point (convergence point) of the light emission point of the laser light source 3 on the optical axis C. Although the configuration is such that the point O) is located, the laser light source 3 may be configured separately from the optical device 19. That is,
The light emitting point of the laser light source 3 or a conjugate point thereof may not be located on the optical axis C. However, fixing the laser light source 3 to the light receiving element substrate 2 as in the above embodiments contributes to the integration of the optical system.

【0063】尚、前記各実施形態によれば、レーザ光源
3は、サブマウント部材5を介して受光素子基板2上に
固定したが、レーザ光源3の発光点の共役点を受光素子
基板2の受光面2aの近傍に位置できれば、レーザ光源
3を受光素子基板2に直接固定しても良い。このように
構成すれば、さらなる部品点数の削減になると共に薄型
化が可能になる。
According to each of the above embodiments, the laser light source 3 is fixed on the light receiving element substrate 2 via the submount member 5, but the conjugate point of the light emitting point of the laser light source 3 is The laser light source 3 may be directly fixed to the light receiving element substrate 2 as long as it can be located near the light receiving surface 2a. With this configuration, the number of components can be further reduced and the thickness can be reduced.

【0064】[0064]

【発明の効果】以上説明したように、請求項1の発明に
よれば、光を情報記録媒体に照射し、この情報記録媒体
からの反射光を用いて情報を読み取る光ピックアップに
おいて、前記反射光の光路上に配置され、前記反射光の
ほぼ光軸を通り前記情報記録媒体のトラックにほぼ平行
な方向とこれのほぼ直交方向との2直線で少なくとも4
領域に分割され、この4領域のそれぞれ対角に配置され
る領域同士を、同一のホログラム曲線群の二部分を組合
せた第1ホログラム対領域と、これと異なり、かつ同一
のホログラム曲線群の二部分を組合せた第2ホログラム
対領域として構成し、この第1ホログラム対領域と第2
ホログラム対領域とが前記反射光の各回折光を互いに異
なる方向に回折させ、且つ、各回折光に対してそれぞれ
収束、若しくは発散のレンズ作用を付加するように構成
されたホログラム素子と、このホログラム素子の前記第
1ホログラム対領域からの±1次回折光をそれぞれ受光
する第1及び第2受光領域と、前記第2ホログラム対領
域からの±1次回折光をそれぞれ受光する第3及び第4
受光領域とを同一平面に有する受光素子基板とを備えた
ので、ホログラム素子の前記第1ホログラム対領域から
の±1次回折光は、情報記録媒体に照射されたスポット
光を4分割すると、対角方向に配置された一方の対領域
の成分を有し、ホログラム素子の前記第2ホログラム対
領域からの±1次回折光は、情報記録媒体に照射された
スポット光を4分割すると、対角方向に配置された他方
の対領域の成分を有し、この4つの±1次回折光が受光
素子基板の各受光領域にそれぞれ照射されるため、各受
光領域で±1次回折光を中心で分割する必要がなく位相
差法によるトラッキングエラー信号やスポットサイズ法
によるフォーカスエラー信号を得るには各受光領域を3
分割すれば足り、各受光領域のサイズを小さく設定で
き、この結果、電気系の周波数特性を向上させることが
でき、又、2層ディスクの再生も良好に行われる。
As described above, according to the first aspect of the present invention, there is provided an optical pickup for irradiating an information recording medium with light and reading information using reflected light from the information recording medium. And at least four straight lines, a direction substantially passing through the optical axis of the reflected light and a direction substantially parallel to the track of the information recording medium and a direction substantially orthogonal to the track.
The four holograms are divided into regions, and the four diagonally arranged regions are referred to as a first hologram pair region obtained by combining two portions of the same hologram curve group, and two hologram curve groups different from the first hologram curve group. The first hologram pair region and the second hologram pair region
A hologram element configured such that the hologram pair region diffracts each of the reflected lights in different directions, and adds a convergent or divergent lens function to each of the diffracted lights; First and second light receiving regions for respectively receiving ± 1st-order diffracted light from the first hologram pair region of the element, and third and fourth light-receiving regions for receiving ± 1st-order diffracted light from the second hologram pair region, respectively.
Since a light receiving element substrate having a light receiving area and a light receiving area on the same plane is provided, the ± 1st-order diffracted light from the first hologram pair area of the hologram element becomes diagonal when the spot light applied to the information recording medium is divided into four parts. ± 1st-order diffracted light from the second hologram pair region of the hologram element is divided into four spot light beams applied to the information recording medium, and is divided in the diagonal direction. Since the four ± 1st-order diffracted lights are applied to the respective light-receiving areas of the light-receiving element substrate, the ± 1st-order diffracted lights need to be divided at the respective light-receiving areas at the center. To obtain a tracking error signal by the phase difference method and a focus error signal by the spot size method,
The division is sufficient, and the size of each light receiving area can be set small. As a result, the frequency characteristics of the electric system can be improved, and the reproduction of the two-layer disc can be performed well.

【0065】請求項2の発明によれば、前記請求項1に
記載の光ピックアップにおいて、前記受光素子基板は、
前記第1〜第4受光領域の各中心と前記情報記録媒体か
らの反射光の収束点とが前記ホログラム素子の中心から
全て光学的に略等距離になる位置に配置されると共に、
前記光軸を挾んで対向配置される前記第1受光領域と第
2受光領域、及び、第3受光領域と第4受光領域がそれ
ぞれの中心を結ぶ方向を境界方向とし、この境界方向に
沿って中央分割領域とこれの両外側の端部分割領域とに
それぞれ3分割されたので、各受光領域にはスポット光
の対角成分が照射されるため、位相差法によるトラッキ
ングエラー信号やスポットサイズ法によるフォーカスエ
ラー信号を得ることができ、且つ、各受光領域の分割数
が3つであるため、各受光領域のサイズを小さく設定で
き、この結果、電気系の周波数特性を向上させることが
でき、又、2層ディスクの再生も良好に行われる。
According to a second aspect of the present invention, in the optical pickup according to the first aspect, the light receiving element substrate is
Each of the centers of the first to fourth light receiving areas and the convergence point of the reflected light from the information recording medium are arranged at positions where they are all optically equidistant from the center of the hologram element,
A direction connecting the centers of the first light receiving region and the second light receiving region, and the third light receiving region and the fourth light receiving region, which are opposed to each other with the optical axis interposed therebetween, is defined as a boundary direction. Since each of the light receiving regions is irradiated with the diagonal component of the spot light because the central divided region and the outer end divided regions are respectively divided into three, the tracking error signal and the spot size method by the phase difference method are applied. , And the number of divisions of each light receiving region is three, so that the size of each light receiving region can be set small, and as a result, the frequency characteristics of the electric system can be improved, Also, the reproduction of the double-layer disc is performed well.

【0066】請求項3の発明によれば、請求項2の光ピ
ックアップを有する光ディスク装置にあって、受光素子
基板の前記第1〜第4受光領域の前記中央分割領域から
の光電変換信号と両外側の端部受光領域からの光電変換
信号の加算値との差レベルを取り、これに基づいていわ
ゆるスポットサイズ法のフォーカスエラー信号を得ると
共に、前記第1受光領域と前記第2受光領域からの全て
の光電変換信号を加算し、及び、前記第3受光領域と前
記第4受光領域からの全ての光電変換信号を加算し、こ
れら2系統の出力からいわゆる2素子位相差法のトラッ
キングエラー信号を同時に得るエラー信号検出手段を備
えたので、いわゆるスポットサイズ法のフォーカスエラ
ー検出といわゆる2素子位相差法のトラッキングエラー
検出とを行うことができる。又、トラッキングエラー信
号が2系統のみで足るため、先行技術と比較して出力ピ
ン数の削減となり、例えば配線基板ひいては光ピックア
ップや光デバイスの小型化に寄与する。
According to a third aspect of the present invention, in the optical disk device having the optical pickup according to the second aspect, the photoelectric conversion signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate is transmitted to both the optical pickup apparatus and the optical pickup. The difference level between the sum of the photoelectric conversion signals from the outer end light receiving area and the focus error signal of the so-called spot size method is obtained based on the difference level, and the difference between the first light receiving area and the second light receiving area is obtained. All the photoelectric conversion signals are added, and all the photoelectric conversion signals from the third light receiving region and the fourth light receiving region are added. From the outputs of these two systems, a so-called two-element phase difference tracking error signal is obtained. Since an error signal detecting means which is obtained at the same time is provided, it is possible to perform focus error detection by a so-called spot size method and tracking error detection by a so-called two-element phase difference method. It can be. In addition, since only two systems of tracking error signals are required, the number of output pins is reduced as compared with the prior art, and this contributes to, for example, miniaturization of a wiring board, and furthermore, an optical pickup and an optical device.

【0067】請求項4の発明によれば、請求項2の光ピ
ックアップを有する光ディスク装置にあって、受光素子
基板の前記第1〜第4受光領域の前記中央分割領域から
の光電変換信号と両外側の端部受光領域からの光電変換
信号の加算値との差レベルを取り、これに基づいていわ
ゆるスポットサイズ法のフォーカスエラー信号を得ると
共に、前記第1受光領域と前記第2受光領域との対応す
る端部分割領域からの光電変換信号をそれぞれ加算して
2系統の出力を得、前記第3受光領域と前記第4受光領
域との対応する端部分割領域からの光電変換信号をそれ
ぞれ加算して2系統の出力を得て、これら4系統の出力
からいわゆる4素子位相差法のトラッキングエラー信号
を同時に得るエラー信号検出手段とを備えたので、いわ
ゆるスポットサイズ法のフォーカスエラー検出といわゆ
る4素子位相差法のトラッキングエラー検出とを行うこ
とができる。又、請求項5の発明に比べて、各中央分割
領域の光電変換信号を利用しないため、クロストーク成
分による誤差がないトラッキングエラー信号を作成する
ことができる。
According to a fourth aspect of the present invention, there is provided the optical disk apparatus having the optical pickup according to the second aspect, wherein the photoelectric conversion signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate is transmitted to both of the optical pickup device. The difference level between the sum of the photoelectric conversion signals from the outer end light receiving area and the focus error signal of the so-called spot size method is obtained based on the difference level, and the difference between the first light receiving area and the second light receiving area is obtained. The photoelectric conversion signals from the corresponding end divided areas are respectively added to obtain outputs of two systems, and the photoelectric conversion signals from the corresponding end divided areas of the third light receiving area and the fourth light receiving area are respectively added. And error signal detecting means for simultaneously obtaining a so-called four-element phase difference tracking error signal from these four outputs. It can be performed modulo the focus error detection and a so-called four-element phase difference method and a tracking error detection. Further, as compared with the invention of claim 5, since a photoelectric conversion signal of each central divided area is not used, a tracking error signal having no error due to a crosstalk component can be created.

【0068】請求項5の発明によれば、請求項2の光ピ
ックアップを有する光ディスク装置にあって、受光素子
基板の前記第1〜第4受光領域の前記中央分割領域から
の光電変換信号と両外側の端部受光領域からの光電変換
信号の加算値との差レベルを取り、これに基づいていわ
ゆるスポットサイズ法のフォーカスエラー信号を得ると
共に、前記第1受光領域と前記第2受光領域との対応す
る端部分割領域からの光電変換信号をそれぞれ加算し、
且つ、この各加算値に前記第1受光領域と前記第2受光
領域との各中央分割領域からの光電変換信号をさらに加
算して2系統の出力を得、前記第3受光領域と前記第4
受光領域との対応する端部分割領域からの光電変換信号
をそれぞれ加算し、且つ、この各加算値に前記第3受光
領域と前記第4受光領域との中央分割領域からの各光電
変換信号をさらに加算して2系統の出力を得て、これら
4系統の出力からいわゆる4素子位相差法のトラッキン
グエラー信号を同時に得るエラー信号検出手段とを備え
たので、いわゆるスポットサイズ法のフォーカスエラー
検出といわゆる4素子位相差法のトラッキングエラー検
出とを行うことができる。又、請求項4の発明に比べ
て、各中央分割領域の光電変換信号が各出力信号に加算
されているため、出力レベルの向上が図られる。
According to a fifth aspect of the present invention, there is provided the optical disk device having the optical pickup according to the second aspect, wherein the photoelectric conversion signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate is transmitted to both of the optical pickup apparatus. The difference level between the sum of the photoelectric conversion signals from the outer end light receiving area and the focus error signal of the so-called spot size method is obtained based on the difference level, and the difference between the first light receiving area and the second light receiving area is obtained. The photoelectric conversion signals from the corresponding end divided regions are added, respectively,
Further, the photoelectric conversion signals from the respective central divided regions of the first light receiving region and the second light receiving region are further added to the respective added values to obtain two-system outputs, and the third light receiving region and the fourth light receiving region are output.
The photoelectric conversion signals from the end divided regions corresponding to the light receiving region are added, and the photoelectric conversion signals from the central divided region of the third light receiving region and the fourth light receiving region are added to the respective added values. Further, an error signal detecting means for obtaining outputs of two systems by addition and obtaining a tracking error signal of a so-called four-element phase difference method from the outputs of the four systems at the same time is provided. It is possible to perform tracking error detection by a so-called four-element phase difference method. Further, since the photoelectric conversion signal of each central divided area is added to each output signal as compared with the invention of claim 4, the output level is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る光ディスク装置の
光ピックアップの概略斜視図である。
FIG. 1 is a schematic perspective view of an optical pickup of an optical disc device according to a first embodiment of the present invention.

【図2】本発明の第1実施形態に係る光ディスク装置の
光ピックアップの要部斜視図である。
FIG. 2 is a perspective view of a main part of an optical pickup of the optical disc device according to the first embodiment of the present invention.

【図3】(a)は本発明の第1実施形態に係る光ディス
クから反射された光束の光ディスクとホログラムとの間
における断面の4領域を示す図、(b)はホログラム素
子の平面図である。
3A is a diagram showing four regions of a cross section between the optical disk and the hologram of a light beam reflected from the optical disk according to the first embodiment of the present invention, and FIG. 3B is a plan view of the hologram element. .

【図4】本発明の第1実施形態に係る受光素子基板の平
面図である。
FIG. 4 is a plan view of a light receiving element substrate according to the first embodiment of the present invention.

【図5】本発明の第1実施形態に係る4つの受光領域と
照射されるスポット光の領域を示す要部平面図である。
FIG. 5 is a main part plan view showing four light receiving regions and a region of spot light to be irradiated according to the first embodiment of the present invention.

【図6】(a)は本発明の第1実施形態に係る受光領域
の構成を示す図、(b)は先行技術の受光領域の構成を
示す図である。
FIG. 6A is a diagram illustrating a configuration of a light receiving region according to the first embodiment of the present invention, and FIG. 6B is a diagram illustrating a configuration of a light receiving region in the prior art.

【図7】本発明の第1実施形態に係るフォーカスエラー
信号の検出を説明する図である。
FIG. 7 is a diagram illustrating detection of a focus error signal according to the first embodiment of the present invention.

【図8】本発明の第1実施形態に係るトラッキングエラ
ー信号の検出を説明する図である。
FIG. 8 is a diagram illustrating detection of a tracking error signal according to the first embodiment of the present invention.

【図9】本発明の第2実施形態に係るトラッキングエラ
ー信号の検出を説明する図である。
FIG. 9 is a diagram illustrating detection of a tracking error signal according to a second embodiment of the present invention.

【図10】本発明の第3実施形態に係るトラッキングエ
ラー信号の検出を説明する図である。
FIG. 10 is a diagram illustrating detection of a tracking error signal according to a third embodiment of the present invention.

【図11】本発明の第4実施形態に係るトラッキングエ
ラー信号の検出を説明する図である。
FIG. 11 is a diagram illustrating detection of a tracking error signal according to a fourth embodiment of the present invention.

【図12】先行技術に係わる光ピックアップの概略斜視
図である。
FIG. 12 is a schematic perspective view of an optical pickup according to the prior art.

【図13】先行技術に係わるホログラム素子の平面図で
ある。
FIG. 13 is a plan view of a hologram element according to the prior art.

【図14】先行技術に係わる受光素子基板の平面図であ
る。
FIG. 14 is a plan view of a light receiving element substrate according to the prior art.

【図15】先行技術に係わるスポット光の分割領域を示
す図である。
FIG. 15 is a diagram showing a divided region of a spot light according to the prior art.

【図16】先行技術に係わる各受光領域の照射状態を示
す図である。
FIG. 16 is a diagram showing an irradiation state of each light receiving region according to the prior art.

【図17】先行技術に係わるトラッキングエラー信号の
検出を説明する図である。
FIG. 17 is a diagram illustrating detection of a tracking error signal according to the prior art.

【図18】先行技術に係わるフォーカスエラー信号の検
出を説明する図である。
FIG. 18 is a diagram illustrating detection of a focus error signal according to the related art.

【符号の説明】[Explanation of symbols]

2 受光素子基板 6 光ディスク(情報記録媒体) 8 ホログラム素子 9a 第1ホログラム対領域 9b 第2ホログラム対領域 10 第1受光領域 11 第2受光領域 12 第3受光領域 13 第4受光領域 14 筐体 15 エラー検出手段 19 光デバイス 20 反射光 21a,21b ±1次回折光 22a,22b ±1次回折光 23 スポット光 C 光軸 T タンジェンシャル方向(トラックと平行な方向) R ラジアル方向(トラッキング方向の直交方向) +Rα 境界方向 −Rα 境界方向 O 収束点 Ea 中央分割領域 Eb,Ec 端部分割領域 Reference Signs List 2 light receiving element substrate 6 optical disk (information recording medium) 8 hologram element 9a first hologram pair area 9b second hologram pair area 10 first light reception area 11 second light reception area 12 third light reception area 13 fourth light reception area 14 housing 15 Error detecting means 19 Optical device 20 Reflected light 21a, 21b ± 1st-order diffracted light 22a, 22b ± 1st-order diffracted light 23 Spot light C Optical axis T Tangential direction (direction parallel to track) R Radial direction (perpendicular to tracking direction) + Rα Boundary direction -Rα Boundary direction O Convergence point Ea Central divided area Eb, Ec Edge divided area

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 CA01 CA05 CA08 CA15 CA17 CA20 5D118 AA14 BA01 BB08 BF02 CA24 CB03 CB05 CD02 CD03 CF04 CF06 DA20 DB02 DB04 DB07 DB18 DB27 5D119 AA11 BA01 BB13 CA15 DA05 EA02 EA03 JA15 JA24 KA04 KA08 KA18 KA27 KA43 LB06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H049 CA01 CA05 CA08 CA15 CA17 CA20 5D118 AA14 BA01 BB08 BF02 CA24 CB03 CB05 CD02 CD03 CF04 CF06 DA20 DB02 DB04 DB07 DB18 DB27 5D119 AA11 BA01 BB13 CA15 DA05 EA02 EA03 KA04 JA15 KA03 JA15 KA27 KA43 LB06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光を情報記録媒体に照射し、この情報記
録媒体からの反射光を用いて情報を読み取る光ピックア
ップにおいて、 前記反射光の光路上に配置され、前記反射光のほぼ光軸
を通り前記情報記録媒体のトラックにほぼ平行な方向と
これのほぼ直交方向との2直線で少なくとも4領域に分
割され、この4領域のそれぞれ対角に配置される領域同
士を、同一のホログラム曲線群の二部分を組合せた第1
ホログラム対領域と、これと異なり、かつ同一のホログ
ラム曲線群の二部分を組合せた第2ホログラム対領域と
して構成し、この第1ホログラム対領域と第2ホログラ
ム対領域とが前記反射光の各回折光を互いに異なる方向
に回折させ、且つ、各回折光に対してそれぞれ収束、若
しくは発散のレンズ作用を付加するように構成されたホ
ログラム素子と、 このホログラム素子の前記第1ホログラム対領域からの
±1次回折光をそれぞれ受光する第1及び第2受光領域
と、前記第2ホログラム対領域からの±1次回折光をそ
れぞれ受光する第3及び第4受光領域とを同一平面に有
する受光素子基板とを備えたことを特徴とする光ピック
アップ。
1. An optical pickup for irradiating an information recording medium with light and reading information using reflected light from the information recording medium, wherein the optical pickup is arranged on an optical path of the reflected light, and substantially aligns an optical axis of the reflected light. Are divided into at least four areas by two straight lines, a direction substantially parallel to the track of the information recording medium and a direction substantially orthogonal to the track, and areas arranged diagonally of the four areas are defined as the same hologram curve group. The first combining the two parts of
A hologram pair region and a second hologram pair region in which two different hologram curve groups different from each other are combined are configured as a second hologram pair region, and the first hologram pair region and the second hologram pair region are each diffracted by the reflected light. A hologram element configured to diffract light in directions different from each other and to add a convergent or divergent lens action to each of the diffracted lights, and a hologram element from the first hologram pair region of the hologram element. A light receiving element substrate having first and second light receiving areas for receiving first order diffracted light, and third and fourth light receiving areas for receiving ± first order diffracted light from the second hologram pair area, respectively, on the same plane; An optical pickup, comprising:
【請求項2】 前記請求項1に記載の光ピックアップに
おいて、 前記受光素子基板は、前記第1〜第4受光領域の各中心
と前記情報記録媒体からの反射光の収束点とが前記ホロ
グラム素子の中心から全て光学的に略等距離になる位置
に配置されると共に、前記光軸を挾んで対向配置される
前記第1受光領域と第2受光領域、及び、第3受光領域
と第4受光領域がそれぞれの中心を結ぶ方向を境界方向
とし、この境界方向に沿って中央分割領域とこれの両外
側の端部分割領域とにそれぞれ3分割されたことを特徴
とする光ピックアップ。
2. The optical pickup according to claim 1, wherein the light receiving element substrate is configured such that each of the centers of the first to fourth light receiving areas and the convergence point of the reflected light from the information recording medium are the hologram element. The first light receiving area and the second light receiving area, and the third light receiving area and the fourth light receiving area, which are arranged at optically substantially equal distances from the center of the light receiving area and are opposed to each other with the optical axis interposed therebetween. An optical pickup characterized in that a direction connecting the centers of the regions is defined as a boundary direction, and the region is divided into three parts along the boundary direction into a central divided region and both outer end divided regions.
【請求項3】 光を情報記録媒体に照射し、この情報記
録媒体からの反射光を用いて情報を読み取る光ディスク
装置において、 前記反射光の光路上に配置され、前記反射光のほぼ光軸
を通り前記情報記録媒体のトラックにほぼ平行な方向と
これのほぼ直交方向との2直線で少なくとも4領域に分
割され、この4領域のそれぞれ対角に配置される領域同
士を、同一のホログラム曲線群の二部分を組合せた第1
ホログラム対領域と、これと異なり、かつ同一のホログ
ラム曲線群の二部分を組合せた第2ホログラム対領域と
して構成し、この第1ホログラム対領域と第2ホログラ
ム対領域とが前記反射光の各回折光を互いに異なる方向
に回折させ、且つ、各回折光に対してそれぞれ収束、若
しくは発散のレンズ作用を付加するように構成されたホ
ログラム素子と、 このホログラム素子の前記第1ホログラム対領域からの
±1次回折光をそれぞれ受光する第1及び第2受光領域
と、前記第2ホログラム対領域からの±1次回折光をそ
れぞれ受光する第3及び第4受光領域とを同一平面に有
し、前記第1〜第4受光領域の各中心と前記情報記録媒
体からの反射光の収束点とが前記ホログラム素子の中心
から全て光学的に略等距離になる位置に配置されると共
に、前記光軸を挾んで対向配置される前記第1受光領域
と前記第2受光領域、及び、前記第3受光領域と前記第
4受光領域がそれぞれの中心を結ぶ方向を境界方向と
し、この境界方向に沿って中央分割領域とこれの両外側
の端部分割領域とにそれぞれ3分割された受光素子基板
と、 この受光素子基板の前記第1〜第4受光領域の前記中央
分割領域からの光電変換信号と両外側の端部受光領域か
らの光電変換信号の加算値との差レベルを取り、これに
基づいていわゆるスポットサイズ法のフォーカスエラー
信号を得ると共に、前記第1受光領域と前記第2受光領
域からの全ての光電変換信号を加算し、及び、前記第3
受光領域と前記第4受光領域からの全ての光電変換信号
を加算し、これら2系統の出力からいわゆる2素子位相
差法のトラッキングエラー信号を同時に得るエラー信号
検出手段とを備えたことを特徴とする光ディスク装置。
3. An optical disc apparatus for irradiating light onto an information recording medium and reading information using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, and substantially aligns an optical axis of the reflected light. Are divided into at least four areas by two straight lines, a direction substantially parallel to the track of the information recording medium and a direction substantially orthogonal to the track, and areas arranged diagonally of the four areas are defined as the same hologram curve group. The first combining the two parts of
A hologram pair region and a second hologram pair region in which two different hologram curve groups different from each other are combined are configured as a second hologram pair region, and the first hologram pair region and the second hologram pair region are each diffracted by the reflected light. A hologram element configured to diffract light in directions different from each other and to add a convergent or divergent lens action to each of the diffracted lights, and a hologram element from the first hologram pair region of the hologram element. The first and second light receiving areas for receiving first-order diffracted light, and the third and fourth light-receiving areas for receiving ± first-order diffracted light from the second hologram pair area, respectively, are on the same plane. When the respective centers of the fourth light receiving area and the convergence point of the reflected light from the information recording medium are all located at optically substantially equal distances from the center of the hologram element, A direction connecting the centers of the first light receiving region and the second light receiving region and the third light receiving region and the fourth light receiving region which are opposed to each other with the optical axis interposed therebetween is defined as a boundary direction. A light receiving element substrate divided into three parts along a direction into a central divided area and end divided areas on both outer sides thereof; and a photoelectric signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate. The difference level between the conversion signal and the sum of the photoelectric conversion signals from both outer end light receiving regions is obtained, and based on this, a focus error signal of a so-called spot size method is obtained, and the first light receiving region and the second light receiving region are obtained. Adding all the photoelectric conversion signals from the light receiving area, and
Error signal detecting means for adding all the photoelectric conversion signals from the light receiving area and the fourth light receiving area and simultaneously obtaining a so-called two-element phase difference tracking error signal from the outputs of these two systems. Optical disk device.
【請求項4】 光を情報記録媒体に照射し、この情報記
録媒体からの反射光を用いて情報を読み取る光ディスク
装置において、 前記反射光の光路上に配置され、前記反射光のほぼ光軸
を通り前記情報記録媒体のトラックにほぼ平行な方向と
これのほぼ直交方向との2直線で少なくとも4領域に分
割され、この4領域のそれぞれ対角に配置される領域同
士を、同一のホログラム曲線群の二部分を組合せた第1
ホログラム対領域と、これと異なり、かつ同一のホログ
ラム曲線群の二部分を組合せた第2ホログラム対領域と
して構成し、この第1ホログラム対領域と第2ホログラ
ム対領域とが前記反射光の各回折光を互いに異なる方向
に回折させ、且つ、各回折光に対してそれぞれ収束、若
しくは発散のレンズ作用を付加するように構成されたホ
ログラム素子と、 このホログラム素子の前記第1ホログラム対領域からの
±1次回折光をそれぞれ受光する第1及び第2受光領域
と、前記第2ホログラム対領域からの±1次回折光をそ
れぞれ受光する第3及び第4受光領域とを同一平面に有
し、前記第1〜第4受光領域の各中心と前記情報記録媒
体からの反射光の収束点とが前記ホログラム素子の中心
から全て光学的に略等距離になる位置に配置されると共
に、前記光軸を挾んで対向配置される前記第1受光領域
と前記第2受光領域、及び、前記第3受光領域と前記第
4受光領域がそれぞれの中心を結ぶ方向を境界方向と
し、この境界方向に沿って中央分割領域とこれの両外側
の端部分割領域とにそれぞれ3分割された受光素子基板
と、 この受光素子基板の前記第1〜第4受光領域の前記中央
分割領域からの光電変換信号と両外側の端部受光領域か
らの光電変換信号の加算値との差レベルを取り、これに
基づいていわゆるスポットサイズ法のフォーカスエラー
信号を得ると共に、前記第1受光領域と前記第2受光領
域との対応する端部分割領域からの光電変換信号をそれ
ぞれ加算して2系統の出力を得、前記第3受光領域と前
記第4受光領域との対応する端部分割領域からの光電変
換信号をそれぞれ加算して2系統の出力を得て、これら
4系統の出力からいわゆる4素子位相差法のトラッキン
グエラー信号を同時に得るエラー信号検出手段とを備え
たことを特徴とする光ディスク装置。
4. An optical disc apparatus for irradiating light onto an information recording medium and reading information using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, and substantially aligns an optical axis of the reflected light. Are divided into at least four areas by two straight lines, a direction substantially parallel to the track of the information recording medium and a direction substantially orthogonal to the track, and areas arranged diagonally of the four areas are defined as the same hologram curve group. The first combining the two parts of
A hologram pair region and a second hologram pair region in which two different hologram curve groups different from each other are combined are configured as a second hologram pair region, and the first hologram pair region and the second hologram pair region are each diffracted by the reflected light. A hologram element configured to diffract light in directions different from each other and to add a convergent or divergent lens action to each of the diffracted lights, and a hologram element from the first hologram pair region of the hologram element. The first and second light receiving areas for receiving first-order diffracted light, and the third and fourth light-receiving areas for receiving ± first-order diffracted light from the second hologram pair area, respectively, are on the same plane. When the respective centers of the fourth light receiving area and the convergence point of the reflected light from the information recording medium are all located at optically substantially equal distances from the center of the hologram element, A direction connecting the centers of the first light receiving region and the second light receiving region and the third light receiving region and the fourth light receiving region which are opposed to each other with the optical axis interposed therebetween is defined as a boundary direction. A light receiving element substrate divided into three parts along a direction into a central divided area and end divided areas on both outer sides thereof; and a photoelectric signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate. The difference level between the conversion signal and the sum of the photoelectric conversion signals from both outer end light receiving regions is obtained, and based on this, a focus error signal of a so-called spot size method is obtained, and the first light receiving region and the second light receiving region are obtained. The photoelectric conversion signals from the corresponding end divided regions with the light receiving region are added to obtain outputs of two systems, and the photoelectric conversion from the corresponding end divided regions of the third light receiving region and the fourth light receiving region is performed. Each signal Adding to obtain the output of the two systems, the optical disk apparatus characterized by comprising a these 4 lines simultaneously obtain error signal detection means a tracking error signal of the so-called four-element phase difference method from the output of.
【請求項5】 光を情報記録媒体に照射し、この情報記
録媒体からの反射光を用いて情報を読み取る光ディスク
装置において、 前記反射光の光路上に配置され、前記反射光のほぼ光軸
を通り前記情報記録媒体のトラックにほぼ平行な方向と
これのほぼ直交方向との2直線で少なくとも4領域に分
割され、この4領域のそれぞれ対角に配置される領域同
士を、同一のホログラム曲線群の二部分を組合せた第1
ホログラム対領域と、これと異なり、かつ同一のホログ
ラム曲線群の二部分を組合せた第2ホログラム対領域と
して構成し、この第1ホログラム対領域と第2ホログラ
ム対領域とが前記反射光の各回折光を互いに異なる方向
に回折させ、且つ、各回折光に対してそれぞれ収束、若
しくは発散のレンズ作用を付加するように構成されたホ
ログラム素子と、 このホログラム素子の前記第1ホログラム対領域からの
±1次回折光をそれぞれ受光する第1及び第2受光領域
と、前記第2ホログラム対領域からの±1次回折光をそ
れぞれ受光する第3及び第4受光領域とを同一平面に有
し、前記第1〜第4受光領域の各中心と前記情報記録媒
体からの反射光の収束点とが前記ホログラム素子の中心
から全て光学的に略等距離になる位置に配置されると共
に、前記光軸を挾んで対向配置される前記第1受光領域
と前記第2受光領域、及び、前記第3受光領域と前記第
4受光領域がそれぞれの中心を結ぶ方向を境界方向と
し、この境界方向に沿って中央分割領域とこれの両外側
の端部分割領域とにそれぞれ3分割された受光素子基板
と、 この受光素子基板の前記第1〜第4受光領域の前記中央
分割領域からの光電変換信号と両外側の端部受光領域か
らの光電変換信号の加算値との差レベルを取り、これに
基づいていわゆるスポットサイズ法のフォーカスエラー
信号を得ると共に、前記第1受光領域と前記第2受光領
域との対応する端部分割領域からの光電変換信号をそれ
ぞれ加算し、且つ、この各加算値に前記第1受光領域と
前記第2受光領域との各中央分割領域からの光電変換信
号をさらに加算して2系統の出力を得、前記第3受光領
域と前記第4受光領域との対応する端部分割領域からの
光電変換信号をそれぞれ加算し、且つ、この各加算値に
前記第3受光領域と前記第4受光領域との中央分割領域
からの各光電変換信号をさらに加算して2系統の出力を
得て、これら4系統の出力からいわゆる4素子位相差法
のトラッキングエラー信号を同時に得るエラー信号検出
手段とを備えたことを特徴とする光ディスク装置。
5. An optical disc device for irradiating light onto an information recording medium and reading information using reflected light from the information recording medium, wherein the optical disc apparatus is disposed on an optical path of the reflected light, and substantially aligns the optical axis of the reflected light. Are divided into at least four areas by two straight lines, a direction substantially parallel to the track of the information recording medium and a direction substantially orthogonal to the track, and areas arranged diagonally of the four areas are defined as the same hologram curve group. The first combining the two parts of
A hologram pair region and a second hologram pair region in which two different hologram curve groups different from each other are combined are configured as a second hologram pair region, and the first hologram pair region and the second hologram pair region are each diffracted by the reflected light. A hologram element configured to diffract light in directions different from each other and to add a convergent or divergent lens action to each of the diffracted lights, and a hologram element from the first hologram pair region of the hologram element. The first and second light receiving areas for receiving first-order diffracted light, and the third and fourth light-receiving areas for receiving ± first-order diffracted light from the second hologram pair area, respectively, are on the same plane. When the respective centers of the fourth light receiving area and the convergence point of the reflected light from the information recording medium are all located at optically substantially equal distances from the center of the hologram element, A direction connecting the centers of the first light receiving region and the second light receiving region and the third light receiving region and the fourth light receiving region which are opposed to each other with the optical axis interposed therebetween is defined as a boundary direction. A light receiving element substrate divided into three parts along a direction into a central divided area and end divided areas on both outer sides thereof; and a photoelectric signal from the central divided area of the first to fourth light receiving areas of the light receiving element substrate. The difference level between the conversion signal and the sum of the photoelectric conversion signals from both outer end light receiving regions is obtained, and based on this, a focus error signal of a so-called spot size method is obtained, and the first light receiving region and the second light receiving region are obtained. The photoelectric conversion signals from the end divided regions corresponding to the light receiving region are added, and the photoelectric conversion signals from the central divided regions of the first light receiving region and the second light receiving region are added to the respective added values. Add more To obtain the outputs of two systems, add the photoelectric conversion signals from the corresponding end divided regions of the third light receiving region and the fourth light receiving region, and add the third light receiving region to each of the added values. An error signal that further adds each photoelectric conversion signal from the central divided area with the fourth light receiving area to obtain two outputs, and simultaneously obtains a so-called four-element phase difference tracking error signal from these four outputs. An optical disk device comprising: a detection unit.
JP11054612A 1999-03-02 1999-03-02 Optical pickup and optical disk device Pending JP2000251305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11054612A JP2000251305A (en) 1999-03-02 1999-03-02 Optical pickup and optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11054612A JP2000251305A (en) 1999-03-02 1999-03-02 Optical pickup and optical disk device

Publications (1)

Publication Number Publication Date
JP2000251305A true JP2000251305A (en) 2000-09-14

Family

ID=12975575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11054612A Pending JP2000251305A (en) 1999-03-02 1999-03-02 Optical pickup and optical disk device

Country Status (1)

Country Link
JP (1) JP2000251305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403622B1 (en) * 2001-04-12 2003-10-30 삼성전자주식회사 Optical pickup apparatus and method for focusing light spot optimally
US7196981B2 (en) 2002-03-20 2007-03-27 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus
KR100717856B1 (en) 2005-07-11 2007-05-14 엘지전자 주식회사 Pick-up of Optical Disc System without Angle Controlling for Sub Beam
JP2015011057A (en) * 2013-06-26 2015-01-19 オムロン株式会社 Light deflection plate, surface light source device, and illumination switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403622B1 (en) * 2001-04-12 2003-10-30 삼성전자주식회사 Optical pickup apparatus and method for focusing light spot optimally
US7196981B2 (en) 2002-03-20 2007-03-27 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus
KR100717856B1 (en) 2005-07-11 2007-05-14 엘지전자 주식회사 Pick-up of Optical Disc System without Angle Controlling for Sub Beam
JP2015011057A (en) * 2013-06-26 2015-01-19 オムロン株式会社 Light deflection plate, surface light source device, and illumination switch

Similar Documents

Publication Publication Date Title
JP4151313B2 (en) Optical regenerator
US6512608B2 (en) Optical device
JP3459777B2 (en) Optical pickup device
WO2007043663A1 (en) Optical head
JP2000048386A (en) Wavelength photosensitive beam combiner having aberration compensation
JP3933374B2 (en) Optical pickup device capable of detecting stable error signals
JP2007052905A (en) Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer
JP3521738B2 (en) Optical pickup device, error detection device and its detection method
JP3518457B2 (en) Optical device
JP2000251305A (en) Optical pickup and optical disk device
JP2000123376A (en) Optical pickup and device
JP2003162831A (en) Optical pickup
JP2012174290A (en) Optical pickup and optical disk unit
JP3536805B2 (en) Optical pickup
TW200809832A (en) Optical pickup device
JP2002109759A (en) Optical pickup, optical disc device, and information processing device
JPH0529969B2 (en)
JP3032635B2 (en) Optical information reproducing device
JP2001307362A (en) Optical pickup device
JPH10269588A (en) Optical pickup device and optical disk recording/ reproducing device
JP2002288854A (en) Optical pickup device
JP2000235716A (en) Optical device
JP2915597B2 (en) Optical pickup device
JP4537628B2 (en) Optical pickup device and optical disk device
KR100464419B1 (en) Compatible optical pickup for recording and/or reproducing