JP3518457B2 - Optical device - Google Patents

Optical device

Info

Publication number
JP3518457B2
JP3518457B2 JP35806999A JP35806999A JP3518457B2 JP 3518457 B2 JP3518457 B2 JP 3518457B2 JP 35806999 A JP35806999 A JP 35806999A JP 35806999 A JP35806999 A JP 35806999A JP 3518457 B2 JP3518457 B2 JP 3518457B2
Authority
JP
Japan
Prior art keywords
light
wavelength
light receiving
receiving element
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35806999A
Other languages
Japanese (ja)
Other versions
JP2001176119A (en
Inventor
実 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP35806999A priority Critical patent/JP3518457B2/en
Priority to US09/736,176 priority patent/US6512608B2/en
Priority to DE60039403T priority patent/DE60039403D1/en
Priority to EP00127242A priority patent/EP1109163B1/en
Publication of JP2001176119A publication Critical patent/JP2001176119A/en
Priority to US10/315,067 priority patent/US6891675B2/en
Application granted granted Critical
Publication of JP3518457B2 publication Critical patent/JP3518457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスク等の光
情報記録媒体の読み取り装置に用いられる光ピックアッ
プに関するものであり、とくにDVD(Digital Versat
ile Disc)とCD−R(Compact Disc−write once)の
互換再生システムに好適で、かつ小型化可能な光デバイ
ス及びこれを用いた光ピックアップに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pickup used in a reading device for an optical information recording medium such as an optical disc, and more particularly to a DVD (Digital Versat).
The present invention relates to an optical device suitable for a compatible reproduction system of ile disc) and CD-R (Compact Disc-write once) and capable of being downsized, and an optical pickup using the same.

【0002】[0002]

【従来の技術】既に一般に普及している民生用光ディス
クシステムであるCDに対し、近年、より高密度なDV
Dシステムが提案・商品化され、普及が始まっている。
この再生装置であるDVDプレーヤにおいては、装置の
重複や使用上の煩雑さを避けるため、CDの互換再生が
必須となっている。また、CDプレーヤで再生可能とさ
れているCD−R(Compact Disc−write once)につい
ても、同様に互換再生機能が求められている。従って、
このような各種の規格のディスクを再生するための技術
が開発され、さらにそれを実現する構成の簡略化やコス
トダウンが課題になっている。
2. Description of the Related Art In recent years, a higher density DV has been added to a CD, which is an optical disc system for consumer use which has been popularized in general.
The D system has been proposed, commercialized, and started to spread.
In the DVD player, which is the reproducing apparatus, compatible reproduction of the CD is indispensable in order to avoid duplication of the apparatus and complexity of use. Similarly, a compatible reproduction function is also required for a CD-R (Compact Disc-write once) that can be reproduced by a CD player. Therefore,
Techniques for reproducing discs of such various standards have been developed, and further, simplification of the configuration for realizing the technique and cost reduction have become problems.

【0003】とりわけ、前述のCD−Rにおいては、記
録媒体の反射率が大きな波長依存性を持つ事から、DV
D用の650nm帯とは異なる780nm帯のレーザ光
源が必須であり、この2波長の光源を内蔵したピックア
ップ光学系が必要となっている。
Particularly, in the above-mentioned CD-R, since the reflectance of the recording medium has a large wavelength dependency, the DV
A laser light source of 780 nm band different from the 650 nm band for D is indispensable, and a pickup optical system incorporating this light source of two wavelengths is required.

【0004】このため、従来、独立した2つのピックア
ップを機械的に結合したもの、或いは、受発光集積素子
を各波長独立に取付け、ダイクロイックプリズムで同一
光軸に合成し、対物レンズなど一部の光学系を共用した
ものなどが開発されている。また、2個の波長の異なる
半導体レーザチップを同一パッケージに搭載し、他の部
品は独立であるものの光軸は共通化したものが提案され
ている。
For this reason, conventionally, two independent pickups are mechanically coupled, or a light emitting and receiving integrated element is attached independently for each wavelength, and they are combined on the same optical axis by a dichroic prism, and a part of an objective lens or the like is combined. Those that share an optical system are being developed. Further, it is proposed that two semiconductor laser chips having different wavelengths are mounted in the same package, and the other parts are independent but the optical axis is made common.

【0005】一方、コストダウンや小型化といった要求
に合わせて、光ピックアップ光学系の集積化の試みも進
展している。例えば、半導体レーザ(LD)及びフォト
ディテクタ(PD)及びホログラム素子(HOE:Holo
graphic Optical Element)を一体化したデバイスが開
発され、CDを始め、DVD用途にも応用されつつあ
る。又、学会では、2波長でさらに集積化したものも提
案されている(例えばISOM'98 Technical Digest p
p22〜、Tu−D−01)。
On the other hand, in response to demands for cost reduction and miniaturization, attempts have been made to integrate optical pickup optical systems. For example, a semiconductor laser (LD), a photo detector (PD), and a hologram element (HOE: Holo)
A device in which a graphic optical element) is integrated has been developed and is being applied to a DVD as well as a CD. Further, the academic societies have proposed a structure in which two wavelengths are further integrated (for example, ISOM'98 Technical Digest p.
p22-, Tu-D-01).

【0006】当該文献にもあるように、半導体レーザや
フォトディテクタを直近に配置できる集積デバイスにお
いては、ホログラム素子による回折光の受光部と半導体
レーザの発光点を略共役な位置に配置することが容易に
可能である。従って、ホログラム素子による±1次回折
光を共に利用した、コンプリメンタリ(相補的)なスポ
ットサイズ法(「SSD法」:Spot Size Detection)
によるフォーカス誤差検出が実現できる。この方式は、
他に実用化されている「ナイフエッジ法」と比較し、1
ホログラム素子の厳密な位置調整が必ずしも必要でな
い、2±1次回折光の一方を捨てる必要がなく高効率で
ある、といった利点を持っている。
As in the document, in an integrated device in which a semiconductor laser and a photodetector can be arranged in the immediate vicinity, it is easy to arrange the light receiving portion of the diffracted light by the hologram element and the light emitting point of the semiconductor laser at a substantially conjugate position. Is possible. Therefore, a complementary (complementary) spot size method (“SSD method”: Spot Size Detection) that uses both ± 1st order diffracted light from the hologram element
Focus error detection can be realized by. This method
Compared with other practically used "knife edge method", 1
It has an advantage that it is not necessary to strictly adjust the position of the hologram element, and it is not necessary to discard one of the 2 ± 1st order diffracted lights and the efficiency is high.

【0007】図13は、前記スポットサイズ法(「SS
D法」:Spot Size Detection)によるフォーカス誤差
検出を説明する説明図である(特開平5―10141
7)。より詳細には図13(a)は、前記フォーカス誤
差検出を行う装置の概略側面図であり、図13(b)
は、前記装置において回折光を検出するフォトダイオー
ド等の概略平面図である。
FIG. 13 shows the spot size method ("SS
FIG. 5 is an explanatory diagram illustrating focus error detection by “D method”: Spot Size Detection (Japanese Patent Laid-Open No. 5-10141).
7). More specifically, FIG. 13A is a schematic side view of the device for performing the focus error detection, and FIG.
FIG. 3 is a schematic plan view of a photodiode or the like for detecting diffracted light in the device.

【0008】図13(a)に示すように、このフォーカ
ス誤差検出装置においては、光ディスク357により反
射された反射光は、対物レンズ356を経てホログラム
素子355により一対の共役光b1,b1´に分離され
る。ここに、前記ホログラム素子355は、前記共役光
b1が前記受光素子基板350の上方に焦点を結び、共
役光b1´が前記基板350の下方に焦点を結ぶように
構成されている。
As shown in FIG. 13A, in this focus error detecting device, the reflected light reflected by the optical disk 357 is separated into a pair of conjugate lights b1, b1 'by the hologram element 355 through the objective lens 356. To be done. Here, the hologram element 355 is configured such that the conjugate light b1 is focused above the light receiving element substrate 350 and the conjugate light b1 ′ is focused below the substrate 350.

【0009】そして図13(b)に示すように前記共役
光b1,b1´の各々は、受光素子基板350に設けた
光検出ダイオード352及び353で受光される。この
光検出ダイオード352及び353は、前記共役光b1
及びb1´が分光されるY方向と直交するX方向におい
てそれぞれ、領域352a,352b,352c及び3
53a,353b,353cに3分割されている。
Then, as shown in FIG. 13B, each of the conjugate lights b1 and b1 'is received by the photo-detecting diodes 352 and 353 provided on the light-receiving element substrate 350. The photodetection diodes 352 and 353 are connected to the conjugate light b1.
And regions 352a, 352b, 352c and 3 in the X direction orthogonal to the Y direction in which b1 'and b1' are separated, respectively.
It is divided into three parts 53a, 353b, 353c.

【0010】このように構成することにより前記光ディ
スク357に対するレーザ光のフォーカス誤差信号FE
は、前記受光領域352a,352b,352cの出力
をそれぞれw1,w2,w3とし、受光領域353a,
353b,353cの出力をそれぞれw4,w5,w6
とする時、 FE=(w1+w3+w5)−(w2+w4+w6) …(1) により与えられる。
With this structure, the focus error signal FE of the laser beam for the optical disk 357 is obtained.
Represents the outputs of the light receiving areas 352a, 352b, 352c as w1, w2, w3, respectively, and
The outputs of 353b and 353c are respectively w4, w5 and w6.
Then, FE = (w1 + w3 + w5)-(w2 + w4 + w6) (1)

【0011】すなわち、レーザ光源351から出射され
立ち上げミラー354により立ち上げられたレーザ光が
対物レンズ356を介して光ディスク357へ入射され
る際に、当該ディスク357に対してレーザ光の焦点が
合っていれば、前記光検出ダイオード352上のスポッ
トS1及び光検出ダイオード353上のスポットS2の
大きさは同じとなり、式(1)のフォーカス誤差信号F
Eは零となる。これに対して前記光ディスク357に対
するレーザ光の焦点がずれている場合には、前記検出ダ
イオード352上のスポットS1と検出ダイオード35
3上のスポットS2の大きさが異なり、式(1)のフォ
ーカス誤差信号FEは零と異なる正又は負の値を有す
る。従って前記フォーカス誤差信号FEは、合焦点の前
後での極性が反転する。よって、前記フォーカス誤差信
号FEを検出することにより前記光ディスク357に対
するレーザ光の焦点合わせを行うことができる。
That is, when the laser light emitted from the laser light source 351 and raised by the raising mirror 354 enters the optical disc 357 through the objective lens 356, the laser light is focused on the disc 357. If so, the size of the spot S1 on the photodetection diode 352 and the size of the spot S2 on the photodetection diode 353 are the same, and the focus error signal F of the formula (1) is calculated.
E becomes zero. On the other hand, when the focus of the laser light on the optical disk 357 is deviated, the spot S1 on the detection diode 352 and the detection diode 35 are detected.
The sizes of the spots S2 on 3 are different, and the focus error signal FE of the formula (1) has a positive or negative value different from zero. Therefore, the polarity of the focus error signal FE is inverted before and after focusing. Therefore, the laser beam can be focused on the optical disc 357 by detecting the focus error signal FE.

【0012】[0012]

【発明が解決しようとする課題】ところで、前記スポッ
トサイズ法によるフォーカス誤差検出と前記2波長光学
系を両立させようとすると、ホログラム素子による回折
角の波長依存性が問題となる。
By the way, if the focus error detection by the spot size method and the two-wavelength optical system are made compatible, the wavelength dependence of the diffraction angle by the hologram element becomes a problem.

【0013】すなわち、回折格子においては、その周期
構造と光の波長の数学的関係によって回折角等の特性が
決まり、それゆえに異なる波長に対しては回折角が大き
く変化する。より詳細には、前記ホログラム素子を用い
た集積デバイスに適したフォーカス誤差検出法である前
記「スポットサイズ法」では、半導体レーザ発光点の共
役点の極く近傍にホログラム素子回折光を検出するフォ
トディテクタ受光面を配置することが必須である。しか
し、同一ホログラム素子へ異なる波長の光を入射させる
と、前記の特性変化によって最適なフォトディテクタ受
光面位置が大きく異なることとなる。従って、同一フォ
トディテクタ基板上に半導体レーザ及びフォトディテク
タを集積することは困難であった。また、ホログラム素
子のレンズ作用を最適化するための収差補正等について
も、両立する解の導出は困難であった。
That is, in the diffraction grating, the characteristics such as the diffraction angle are determined by the mathematical relationship between the periodic structure and the wavelength of light, and therefore the diffraction angle greatly changes for different wavelengths. More specifically, in the “spot size method”, which is a focus error detection method suitable for an integrated device using the hologram element, a photodetector that detects hologram element diffracted light in the immediate vicinity of the conjugate point of the semiconductor laser emission point is used. It is essential to arrange the light receiving surface. However, when light beams of different wavelengths are made incident on the same hologram element, the optimum photodetector light receiving surface position greatly changes due to the above-mentioned characteristic change. Therefore, it is difficult to integrate the semiconductor laser and the photodetector on the same photodetector substrate. Further, it is difficult to derive a compatible solution for aberration correction and the like for optimizing the lens action of the hologram element.

【0014】例えば、前述の2波長集積デバイス(IS
OM'98 Technical Digest pp22〜、Tu−D−01)
では、各波長につき±1次回折光の一方のみを使用する
形となっており、前記コンプリメンタリな構成は実現さ
れていない。
For example, the two-wavelength integrated device (IS
OM'98 Technical Digest pp22-, Tu-D-01)
In the above, only one of the ± first-order diffracted lights is used for each wavelength, and the above-mentioned complementary structure has not been realized.

【0015】従って、本願発明は、前記の如き2波長の
光を使用する光学系において、当該2波長について、コ
ンプリメンタリなフォーカス誤差検出を実現する光デバ
イスを提供することを目的とする。
Therefore, it is an object of the present invention to provide an optical device which realizes complementary focus error detection for the two wavelengths in the optical system using the two wavelengths as described above.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
の本願発明の光デバイスは、情報記録媒体から情報を読
みとる光デバイスにして、情報記録媒体から情報を読み
取る光デバイスにして、第1波長の光を出力する第1光
源と、第2波長の光を出力する第2光源と、前記第1、
第2波長の光を回折する第1回折領域及び第2回折領域
を有するホログラム素子と、前記ホログラム素子からの
回折光を受光する第1受光素子及び第2受光素子を設け
た受光素子基板と、を備え、前記第1回折領域及び第2
回折領域は、格子軸方向が相互に平行で且つ格子ピッチ
が相互に異なる格子配列を有し、前記第1、第2光源の
発光点は、前記格子軸と直交する方向において相互に所
定距離だけ離間され、かつ、前記第1回折領域及び第2
回折領域の格子ピッチは、当該第1回折領域又は第2回
折領域による、前記第1波長の回折光の前記受光素子基
板面への入射位置と、当該第1波長の0次透過光で定ま
る光軸との間の距離(L11;L12)を第1距離と
し、同一回折領域による前記第2波長の回折光の前記受
光素子基板面への入射位置と、当該第2波長の0次透過
光で定まる光軸との間の距離(L21;L22)を第2
距離とするとき、前記第1距離と第2距離との差(|L
11−L21|;|L12−22|)が、前記第1、第
2光源の発光点の間隔とほぼ等しくなり、かつ、前記第
1回折領域による、前記第1又は第2波長の回折光の前
記受光素子基板面への入射位置と、前記第2回折領域に
よる、同一波長の回折光の前記受光素子基板面への入射
位置との間隔(|L11−L12|;|L21−22
|)が前記発光点の間隔とほぼ等しくなるように定めら
れ、もって、前記第1回折領域による第1波長及び第2
波長の回折光が、前記受光素子基板上でほぼ同じ第1位
置へ収束し、且つ、前記第2回折領域による第1波長及
び第2波長の回折光が、前記受光素子基板上でほぼ同じ
第2位置へ収束するようにし、前記第1、第2位置へそ
れぞれ前記第1、第2受光素子を配置したことを特徴と
する。
An optical device of the present invention for achieving the above object is an optical device for reading information from an information recording medium and an optical device for reading information from an information recording medium, and has a first wavelength. A first light source for outputting a light of a second wavelength, a second light source for outputting a light of a second wavelength, the first,
A hologram element having a first diffraction area and a second diffraction area for diffracting light of a second wavelength; a light receiving element substrate provided with a first light receiving element and a second light receiving element for receiving diffracted light from the hologram element; The first diffraction region and the second diffraction region.
The diffractive region has a grating array in which the grating axis directions are parallel to each other and the grating pitches are different from each other, and the light emitting points of the first and second light sources are separated from each other by a predetermined distance in a direction orthogonal to the grating axis. The first diffraction region and the second diffraction region are spaced apart from each other.
The grating pitch of the diffractive region is determined by the incident position of the diffracted light of the first wavelength on the light-receiving element substrate surface by the first diffractive region or the second diffractive region and the 0th-order transmitted light of the first wavelength. The distance (L11; L12) from the axis is defined as the first distance, and the incident position of the diffracted light of the second wavelength on the light receiving element substrate surface by the same diffraction region and the 0th-order transmitted light of the second wavelength The second distance (L21; L22) from the fixed optical axis
The distance between the first distance and the second distance (| L
11-L21 |; | L12-22 |) is substantially equal to the interval between the light emitting points of the first and second light sources, and the diffracted light of the first or second wavelength is diffracted by the first diffraction region. wherein the incident position of the light receiving device substrate surface, the distance between the incident position of the by the second diffraction area, to the light receiving device substrate surface of the diffracted light of the same wavelength (| L11-L12 |; | L21-22
|) Is set to be substantially equal to the distance between the light emitting points, and thus the first wavelength and the second wavelength due to the first diffraction region
The diffracted light of the wavelength converges to substantially the same first position on the light receiving element substrate, and the diffracted light of the first wavelength and the second wavelength by the second diffraction region are substantially the same on the light receiving element substrate. so as to converge to a second position, the first, the respective to the second position the first, characterized in that the second light-receiving elements are arranged.

【0017】ここに、「ほぼ等しい(同じ)」とは「5
0μm程度以下の誤差で等しい(同じ)」と言う意味で
ある。
Here, "approximately equal (same)" means "5.
It means "equal (same) with an error of about 0 μm or less".

【0018】本願発明の光デバイスはまた、情報記録媒
体から情報を読みとる光デバイスにして、第1波長の光
を出力する第1光源と、第2波長の光を出力する第2光
源と、前記第1、第2波長の光を回折する第1回折領域
及び第2回折領域を有するホログラム素子と、前記ホロ
グラム素子からの回折光を受光する第1受光素子及び第
2受光素子を設けた受光素子基板と、を備え、前記第1
回折領域及び第2回折領域は、格子ピッチが相互に同一
であり、格子軸方向が相互に30°以内の所定角度だけ
違えられており、前記第1、第2光源の発光点は、前記
格子軸方向にほぼ直交する方向において相互に所定距離
だけ離間されており、かつ、前記第1回折領域及び第2
回折領域格子ピッチは、当該第1回折領域又は第2回折
領域による、前記第1波長の回折光の前記受光素子基板
面への入射位置と、当該第1波長の0次透過光で定まる
光軸との間の距離を第1距離とし、同一回折領域による
前記第2波長の回折光の前記受光素子基板面への入射位
置と、当該第2波長の0次透過光で定まる光軸との間の
距離を第2距離とするとき、前記第1距離と第2距離と
の差が、前記第1,第2光源の発光点の間隔とほぼ等し
くなるように定められ、前記第1回折領域及び第2回折
領域の向きは、前記第1回折領域による、第1波長及び
第2波長の光の回折光が、前記受光素子基板上でほぼ同
じ第1位置へ収束し、前記第2回折領域による、第1波
長及び第2波長の光の回折光が、前記受光素子基板上
で、前記発光点離間方向に直交する方向に於いて前記第
1位置から所定距離だけ離れたほぼ同じ第2位置へ収束
するように定め、前記第1、第2位置へそれぞれ前記第
1、第2受光素子を配置したことを特徴とする。
The optical device of the present invention is also an optical device for reading information from an information recording medium, the first light source outputting light of a first wavelength, the second light source outputting light of a second wavelength, and A hologram element having a first diffraction area and a second diffraction area for diffracting light of the first and second wavelengths, and a light receiving element provided with a first light receiving element and a second light receiving element for receiving the diffracted light from the hologram element. A substrate; and the first
The diffractive area and the second diffractive area have the same grating pitch, and the grating axis directions are different from each other by a predetermined angle within 30 °, and the light emitting points of the first and second light sources are the grating points. The first diffraction region and the second diffraction region are separated from each other by a predetermined distance in a direction substantially orthogonal to the axial direction.
The diffraction area grating pitch is an optical axis determined by the incident position of the diffracted light of the first wavelength on the light receiving element substrate surface by the first diffractive area or the second diffractive area and the 0th-order transmitted light of the first wavelength. Between the incident position of the diffracted light of the second wavelength on the light receiving element substrate surface by the same diffraction region and the optical axis determined by the 0th-order transmitted light of the second wavelength. Is defined as a second distance, the difference between the first distance and the second distance is set to be substantially equal to the distance between the light emitting points of the first and second light sources. The direction of the second diffractive area depends on the diffracted light of the first and second wavelengths diffracted by the first diffractive area and converges to substantially the same first position on the light receiving element substrate. , The diffracted light of the first wavelength and the second wavelength is separated from the light emitting point on the light receiving element substrate. The first and second light receiving elements are arranged at the first and second positions, respectively, so that they converge to substantially the same second position which is apart from the first position by a predetermined distance in a direction orthogonal to the direction. It is characterized by

【0019】ここに、「ほぼ」とは、「50μm以下の
誤差」でと言う意味である。例えば、「ほぼ等しい」或
いは「ほぼ同じ第1位置へ収束」「ほぼ同じ第2位置へ
収束」は、「50μm以下の誤差で等しい」或いは「5
0μm以下の誤差で同じ第1位置へ収束」、「50μm
以下の誤差で同じ第2位置へ収束」の意味である。
Here, "substantially" means "with an error of 50 μm or less". For example, "substantially equal" or "converging to substantially the same first position" and "converging to substantially the same second position" are "equal with an error of 50 μm or less" or "5.
Converge to the same first position with an error of 0 μm or less ”,“ 50 μm
It means "convergence to the same second position with the following error".

【0020】前記において、第1受光素子及び第2受光
素子からの信号に基づいてフォーカス誤差信号を得るこ
とが望ましい。
In the above, it is desirable to obtain the focus error signal based on the signals from the first light receiving element and the second light receiving element.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して、この発明
の実施の形態を説明する。各図に於いて、同一または類
似の要素は同一又は類似の番号で示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same or similar elements are indicated by the same or similar numbers.

【0022】図1は、この発明の光デバイスの第1実施
形態の斜視図であり、図2は、前記第1実施形態に於け
る回折光の光跡等を示す説明図である。
FIG. 1 is a perspective view of the first embodiment of the optical device of the present invention, and FIG. 2 is an explanatory view showing the light traces of diffracted light in the first embodiment.

【0023】この光デバイスの第1実施形態は、情報記
録媒体21から情報を読みとる光デバイス23にして、
第1波長の光を出力する第1光源25と、第2波長の光
を出力する第2光源27と、前記第1、第2波長の光を
回折する第1回折領域29及び第2回折領域31を有す
るホログラム素子33と、前記ホログラム素子33から
の回折光を受光する第1受光素子35及び第2受光素子
37を設けた受光素子基板39と、を備え、前記第1回
折領域29及び第2回折領域31は、格子軸方向が相互
に平行で且つ格子ピッチが相互に異なる格子配列を有
し、前記第1、第2光源25,27の発光点は、前記格
子軸方向と平行なY軸方向と直交するX軸方向において
相互に所定距離dだけ離間され、かつ、前記第1回折領
域29及び第2回折領域31の格子ピッチは、当該第1
回折領域29(又は第2回折領域31)による、前記第
1波長の回折光の前記受光素子基板39面への入射位置
と、当該第1波長の0次透過光で定まる光軸A1との間
の距離L11(L12)を第1距離とし、同一回折領域
による前記第2波長の回折光の前記受光素子基板39面
への入射位置と、当該第2波長の0次透過光で定まる光
軸A2との間の距離L21(L22)を第2距離とする
とき、前記第1距離と第2距離との差│L11―L21
│(│L12−L22│)が、前記第1,第2光源の発
光点の間隔dとほぼ等しくなり、かつ、前記第1回折領
域29による、前記第1(又は第2)波長の回折光の前
記受光素子基板39面への入射位置と、第2回折領域3
1による、同一波長の回折光の前記受光素子基板39面
への入射位置との間隔│L11―L12│(│L21−
L22│)が前記発光点の間隔dとほぼ等しく成るよう
に定められ、もって、前記第1回折領域29による第1
波長及び第2波長の回折光が、前記受光素子基板39上
でほぼ同じ第1位置へ収束し、且つ、前記第2回折領域
31による第1波長及び第2波長の回折光が、前記受光
素子基板39上でほぼ同じ第2位置へ収束するように
し、前記第1、第2位置へそれぞれ第1、第2受光素子
35,37を配置したことを特徴とする。
The first embodiment of this optical device is an optical device 23 for reading information from the information recording medium 21,
A first light source 25 that outputs light of a first wavelength, a second light source 27 that outputs light of a second wavelength, and a first diffraction region 29 and a second diffraction region that diffract the light of the first and second wavelengths. A hologram element 33 having 31 and a light receiving element substrate 39 provided with a first light receiving element 35 and a second light receiving element 37 for receiving diffracted light from the hologram element 33 are provided, and the first diffraction area 29 and the first diffraction area 29 are provided. The two-diffraction region 31 has a lattice arrangement in which the lattice axis directions are parallel to each other and the grating pitches are different from each other, and the emission points of the first and second light sources 25 and 27 are Y parallel to the lattice axis direction. In the X-axis direction orthogonal to the axial direction, they are separated from each other by a predetermined distance d, and the grating pitch of the first diffraction region 29 and the second diffraction region 31 is equal to the first pitch.
Between the incident position of the diffracted light of the first wavelength on the surface of the light receiving element substrate 39 by the diffractive region 29 (or the second diffractive region 31) and the optical axis A1 determined by the 0th-order transmitted light of the first wavelength. The distance L11 (L12) is the first distance, and the optical axis A2 is determined by the incident position of the diffracted light of the second wavelength on the surface of the light receiving element substrate 39 by the same diffraction region and the 0th-order transmitted light of the second wavelength. When a distance L21 (L22) between the first distance and the second distance is defined as a second distance | L11-L21
| (| L12-L22 |) is substantially equal to the distance d between the light emitting points of the first and second light sources, and the diffracted light of the first (or second) wavelength by the first diffraction region 29. The incident position on the surface of the light receiving element substrate 39 of the second diffraction region 3
1, the distance | L11-L12 | (| L21- between the incident position of the diffracted light of the same wavelength on the surface of the light receiving element substrate 39
L22 |) is set to be substantially equal to the distance d between the light emitting points, and thus the first diffraction region 29
The diffracted lights of the wavelengths and the second wavelengths converge to substantially the same first position on the light receiving element substrate 39, and the diffracted lights of the first and second wavelengths by the second diffraction region 31 are the light receiving elements. It is characterized in that it converges to substantially the same second position on the substrate 39, and the first and second light receiving elements 35 and 37 are arranged at the first and second positions, respectively.

【0024】より詳細には、図1、図2に示すように、
この第1実施形態の光デバイス23は、DVD或いはC
Dの如き情報記録媒体21から情報を読みとる光ピック
アップに使用されるものであり、第1波長λ1の光を出
力する第1光源25と、第2波長λ2の光を出力する第
2光源27と、を備える。ここに、前記第1波長λ1は
例えばDVD用の650nmであり、前記第2波長λ2
は例えばCD用の780nmである。
More specifically, as shown in FIGS. 1 and 2,
The optical device 23 of the first embodiment is a DVD or C
A first light source 25 for outputting light of a first wavelength λ1 and a second light source 27 for outputting light of a second wavelength λ2 are used for an optical pickup that reads information from an information recording medium 21 such as D. , Is provided. Here, the first wavelength λ1 is, for example, 650 nm for DVD, and the second wavelength λ2 is
Is, for example, 780 nm for CD.

【0025】前記第1光源25及び第2光源27は、後
述するホログラム素子の格子軸方向(Y軸方向)と直交
する方向(X軸方向)において相互に所定距離dだけ離
間されている。尚、図2では、前記光源25,27の発
光点の共役点C1,C2が示されている。この共役点C
1,C2は、図1に示す反射ミラー41による前記第
1、第2光源25、27の発光点の像位置を示す。
The first light source 25 and the second light source 27 are separated from each other by a predetermined distance d in the direction (X-axis direction) orthogonal to the lattice axis direction (Y-axis direction) of the hologram element described later. In FIG. 2, conjugate points C1 and C2 of the light emitting points of the light sources 25 and 27 are shown. This conjugate point C
Reference numerals 1 and C2 represent image positions of the light emitting points of the first and second light sources 25 and 27 by the reflection mirror 41 shown in FIG.

【0026】この光デバイス23はさらに、前記情報記
録媒体21で反射された前記第1、第2波長の光を回折
する第1回折領域29及び第2回折領域31を有するホ
ログラム素子33を備える。
The optical device 23 further comprises a hologram element 33 having a first diffraction area 29 and a second diffraction area 31 for diffracting the light of the first and second wavelengths reflected by the information recording medium 21.

【0027】図3に示すように、前記ホログラム素子3
3の第1回折領域29及び第2回折領域31は、当該ホ
ログラム素子33の基板(図示せず)上の円形の領域を
X軸方向に延びる直線aとY軸方向に延びる直線bで分
割した場合の一対の対角方向に存在する位置及び他の一
対の対角方向に存在する位置にそれぞれ形成される。ま
た、前記第1回折領域29の格子ピッチΛ1は、前記第
2回折領域31の格子ピッチΛ2よりも大きく設定され
る。従って、1つの波長の光が入射された場合に、第1
回折領域29による回折光の回折角は、第2回折領域3
1による(同一次数の)回折光の回折角より小さくな
る。
As shown in FIG. 3, the hologram element 3
The first diffraction region 29 and the second diffraction region 31 of No. 3 are obtained by dividing a circular region on the substrate (not shown) of the hologram element 33 by a straight line a extending in the X-axis direction and a straight line b extending in the Y-axis direction. In this case, they are formed at a pair of diagonally existing positions and at another pair of diagonally existing positions, respectively. The grating pitch Λ1 of the first diffraction area 29 is set to be larger than the grating pitch Λ2 of the second diffraction area 31. Therefore, when light of one wavelength is incident, the first
The diffraction angle of the diffracted light by the diffraction area 29 is determined by the second diffraction area 3
It becomes smaller than the diffraction angle of the diffracted light (of the same order) by 1.

【0028】再び図2を参照するに、前記第1、第2波
長λ1,λ2の光の0次透過光で定まる光軸A1,A2
は、前記共役点C1,C2を通り、そのX座標、Y座標
は、前記共役点C1,C2のX座標、Y座標を表す。
Referring again to FIG. 2, optical axes A1 and A2 determined by the 0th-order transmitted light of the first and second wavelengths λ1 and λ2.
Passes through the conjugate points C1 and C2, and the X and Y coordinates thereof represent the X and Y coordinates of the conjugate points C1 and C2.

【0029】ところで、前記第1光源25及び第2光源
27の発光点の間の間隔dが与えられた場合、前記第1
回折領域29及び第2回折領域31の格子ピッチΛ1,
Λ2は、次の2つの条件を満たすように定められる。
By the way, when the distance d between the light emitting points of the first light source 25 and the second light source 27 is given,
The grating pitch Λ1, of the diffraction area 29 and the second diffraction area 31
Λ2 is determined so as to satisfy the following two conditions.

【0030】1.前記第1回折領域29(又は第2回折
領域31)による、前記第1波長λ1の+1次回折光r
11(r12)の前記受光素子基板39面への入射位置
P1(P2)と、当該第1波長λ1の0次透過光で定ま
る光軸A1との間の距離L11(L12)を第1距離と
し、同一回折領域29(31)による前記第2波長λ2
の回折光r21(r22)の前記受光素子基板39面へ
の入射位置P1(P2)と、当該第2波長λ2の0次透
過光で定まる光軸A2との間の距離L21(L22)を
第2距離とするとき、前記第1距離と第2距離との差│
L11―L21│(│L12−L22│)が、前記第
1,第2光源の発光点の間隔dとほぼ等しくなる。
1. + 1st order diffracted light r of the first wavelength λ1 by the first diffraction region 29 (or the second diffraction region 31)
The distance L11 (L12) between the incident position P1 (P2) of 11 (r12) on the surface of the light receiving element substrate 39 and the optical axis A1 determined by the 0th-order transmitted light of the first wavelength λ1 is defined as the first distance. , The second wavelength λ2 by the same diffraction region 29 (31)
The distance L21 (L22) between the incident position P1 (P2) of the diffracted light r21 (r22) on the surface of the light receiving element substrate 39 and the optical axis A2 determined by the 0th-order transmitted light of the second wavelength λ2 is represented by When the distance is two, the difference between the first distance and the second distance |
L11-L21 | (| L12-L22 |) is substantially equal to the distance d between the light emitting points of the first and second light sources.

【0031】2. 前記第1回折領域29による、前記
第1波長λ1(又は第2の波長λ2)の回折光r11
(r21)の前記受光素子基板39面への入射位置P1
と、第2回折領域31による、同一波長λ1(λ2)の
回折光r12(r22)の前記受光素子基板面への入射
位置P2との間隔│L11―L12│(│L21−L2
2│)が前記発光点dの間隔とほぼ等しく成る。
2. Diffracted light r11 of the first wavelength λ1 (or the second wavelength λ2) by the first diffraction region 29.
Incident position P1 of (r21) on the surface of the light receiving element substrate 39
And an interval | L11-L12 | (| L21-L2 between the incident position P2 of the diffracted light r12 (r22) of the same wavelength λ1 (λ2) on the light receiving element substrate surface by the second diffraction region 31.
2│) becomes almost equal to the interval of the light emitting points d.

【0032】ここに「ほぼ等しい(同じ)」とは、「5
0μm以下の誤差で等しい(同じ)」で有るのが望まし
く、「20μm以下の誤差で等しい(同じ)」で有れば
さらに望ましく、「1μm程度の誤差で等しい(同
じ)」で有ればさらに望ましい。
Here, "substantially equal (same)" means "5.
It is desirable that “equal (same) with an error of 0 μm or less” is more preferable, and “equal with same (same) with an error of 20 μm or less” is more desirable, and further “equal with same error (same) with an error of about 1 μm”. desirable.

【0033】より詳細には、前記受光素子基板39とホ
ログラム素子33の間の間隔hを例えば3000μmと
する場合、前記間隔dが例えば約100μmに定められ
る時、前記Λ1,Λ2はそれぞれ例えば約4μm、約
3.3μmに定められる。
More specifically, when the distance h between the light receiving element substrate 39 and the hologram element 33 is, for example, 3000 μm, when the distance d is set to, for example, about 100 μm, each of Λ1 and Λ2 is, for example, about 4 μm. , About 3.3 μm.

【0034】図2に示すように、上記構成により、前記
第1光源25からの第1波長λ1を有する光は、情報記
録媒体21で反射されたあと、前記第1、第2回折領域
29、31で回折され第1、第2回折光r11、r12
を生ずる。そして、前記回折光r11は、前記受光素子
基板39上の前記第1位置P1へ収束し、回折光r12
は、前記受光素子基板39上の第2位置P2へ収束す
る。このとき、前記第1位置P1及び第2位置P2の間
の距離は、約100μmとなる。
As shown in FIG. 2, with the above configuration, the light having the first wavelength λ1 from the first light source 25 is reflected by the information recording medium 21, and then the first and second diffractive regions 29, The first and second diffracted lights r11 and r12 diffracted by 31.
Cause Then, the diffracted light r11 converges on the first position P1 on the light receiving element substrate 39, and diffracted light r12
Converges to the second position P2 on the light receiving element substrate 39. At this time, the distance between the first position P1 and the second position P2 is about 100 μm.

【0035】また、前記第2光源27からの第2波長λ
2を有する光は、情報記録媒体21で反射されたあと、
前記第1、第2回折領域29、31で回折され第1、第
2回折光r21、r22を生ずる。そして、前記第1回
折光r21は、約10μm程度の誤差の範囲で、前記受
光素子基板39上の前記第1位置P1へ収束し、第2回
折光r22は、約10μm程度の誤差の範囲で、前記受
光素子基板39上の第2位置P2へ収束する。
The second wavelength λ from the second light source 27
The light having 2 is reflected by the information recording medium 21,
The first and second diffracted regions 29 and 31 are diffracted to generate first and second diffracted lights r21 and r22. Then, the first diffracted light r21 converges to the first position P1 on the light receiving element substrate 39 within an error range of about 10 μm, and the second diffracted light r22 falls within an error range of about 10 μm. , To the second position P2 on the light receiving element substrate 39.

【0036】前記第1位置P1及び第2位置P2に、そ
れぞれX軸方向において100μm程度の幅を有する第
1受光素子35及び第2受光素子37が配置してある。
従って、前記回折光r11,r21は、いずれも前記第
1受光素子35の上に収束し、回折光r12,r22は
いずれも第2受光素子37の上に収束する。
A first light receiving element 35 and a second light receiving element 37 having a width of about 100 μm in the X-axis direction are arranged at the first position P1 and the second position P2, respectively.
Therefore, the diffracted lights r11 and r21 both converge on the first light receiving element 35, and the diffracted lights r12 and r22 both converge on the second light receiving element 37.

【0037】なお、前記第1回折領域29及び第2回折
領域31にレンズパワーを付与する際、前記回折光r1
1,r21には凹レンズとして作用し、回折光r12,
r22に対しては凸レンズとして作用するようにレンズ
パワーが付与される。従って、前記第1受光素子35及
び第2受光素子37からの出力に基づいてコンプリメン
タリー(相補的なスポットサイズ法)によるフォーカス
誤差信号を得ることができる。
When the lens power is applied to the first diffraction area 29 and the second diffraction area 31, the diffracted light r1
1, r21 acts as a concave lens, diffracted light r12,
Lens power is applied to r22 so as to act as a convex lens. Therefore, a focus error signal by complementary (complementary spot size method) can be obtained based on the outputs from the first light receiving element 35 and the second light receiving element 37.

【0038】また上記の如く第1、第2光源の間隔dを
設定し、格子ピッチΛ1,Λ2を設定することにより、
前記第1、第2回折領域29、31による前記第1、第
2波長の−1次回折光r11´,r12´,r21´,
r22´は、前記受光素子基板39上においてそれぞ
れ、相互に約100μm離間した第3位置P3、第4位
置P4、第5位置P5、第6位置P6へ収束する(図
2)。
Further, by setting the distance d between the first and second light sources and setting the grating pitches Λ1 and Λ2 as described above,
The −1st order diffracted lights r11 ′, r12 ′, r21 ′ of the first and second wavelengths by the first and second diffraction regions 29 and 31.
The r22 ′ converges on the light receiving element substrate 39 to a third position P3, a fourth position P4, a fifth position P5, and a sixth position P6, which are separated from each other by about 100 μm (FIG. 2).

【0039】そして、前記第3位置P3、第4位置P
4、第5位置P5、第6位置P6に、それぞれX軸方向
において約100μm程度の幅を有する第3受光素子4
3、第4受光素子45、第5受光素子47、第6受光素
子49が配置してある。
Then, the third position P3 and the fourth position P
A third light receiving element 4 having a width of about 100 μm in the X-axis direction at each of the fourth, fifth position P5 and sixth position P6.
The third, fourth light receiving element 45, fifth light receiving element 47, and sixth light receiving element 49 are arranged.

【0040】従って、前記第1、第2波長の−1次回折
光r11´,r12´,r21´,r22´は、それぞ
れ前記第3受光素子43、第4受光素子45、第5受光
素子47、第6受光素子49上へ収束する。
Therefore, the −1st-order diffracted lights r11 ′, r12 ′, r21 ′, r22 ′ of the first and second wavelengths are respectively the third light receiving element 43, the fourth light receiving element 45, the fifth light receiving element 47, It converges on the sixth light receiving element 49.

【0041】従って、後述するように、前記第3、第4
受光素子43、45からの出力信号に基づいて第1波長
λ1を有するDVD用光束のトラッキング誤差信号を得
ることができる。
Therefore, as will be described later, the third and fourth
Based on the output signals from the light receiving elements 43 and 45, it is possible to obtain the tracking error signal of the DVD light flux having the first wavelength λ1.

【0042】また、前記第5、第6位置P5、P6に配
置した前記第5、第6受光素子47、49からの出力信
号により、CD−R用光束のトラッキング誤差信号を得
ることができる。
Further, the tracking error signal of the CD-R light flux can be obtained from the output signals from the fifth and sixth light receiving elements 47 and 49 arranged at the fifth and sixth positions P5 and P6.

【0043】また、図示しないが、この光デバイスの第
1実施形態には、CD用光束(第2波長λ2)のトラッ
キング誤差を3ビーム法で検出するために、前記第2光
源27と前記情報記録媒体21の間に3ビーム生成用回
折格子(図示せず)が設けてある。この3ビーム生成用
回折格子(図示せず)は、例えば、前記ホログラム素子
31を設けた回折素子基板(図示せず)に於いて前記ホ
ログラム素子31を設けた面の反対側の面に設けること
ができる。
Although not shown, in the first embodiment of the optical device, the second light source 27 and the information are used in order to detect the tracking error of the light flux for CD (second wavelength λ2) by the three-beam method. A three-beam generation diffraction grating (not shown) is provided between the recording media 21. The three-beam generating diffraction grating (not shown) is provided, for example, on the surface of the diffraction element substrate (not shown) provided with the hologram element 31 on the opposite side to the surface provided with the hologram element 31. You can

【0044】また、前記3ビーム法トラッキング誤差検
出のために、前記第1、第2受光素子35,37の両側
に、第7受光素子51及び第8受光素子53が設けてあ
る。また、前記第5、第6受光素子47、49の両側
に、第9、第10受光素子55、57がそれぞれ設けて
ある。
Further, a seventh light receiving element 51 and an eighth light receiving element 53 are provided on both sides of the first and second light receiving elements 35 and 37 in order to detect the tracking error by the three-beam method. Further, ninth and tenth light receiving elements 55 and 57 are provided on both sides of the fifth and sixth light receiving elements 47 and 49, respectively.

【0045】上記構成により、前記第2光源27から射
出された前記CD用光束は、3ビーム生成用回折格子
(図示せず)により前記情報記録媒体21のタンジェン
シャル方向(Y軸方向)に並ぶ3本の光束へ分岐され
る。この際、格子の深さを適宜設定(例えば650nmで2
nπの位相変調に相当)することで、CD用光束の波長
でのみ、回折作用を発生させるようにするとより好都合
である。
With the above structure, the light flux for CD emitted from the second light source 27 is arranged in the tangential direction (Y-axis direction) of the information recording medium 21 by the three-beam generating diffraction grating (not shown). It is split into three light beams. At this time, the depth of the grating is appropriately set (for example, 2 at 650 nm).
It is more convenient to generate the diffractive action only at the wavelength of the light flux for CD by performing the phase modulation of nπ).

【0046】この3本の光束は、それぞれ前記情報記録
媒体21で反射された後、前記第1、第2回折領域2
9,31で回折され、前記回折光r21、r22、r2
1´、r22´と同じ回折角で回折され、前記受光素子
基板39上においてY軸方向に配置した前記受光素子5
5,47(49),57あるいは受光素子51,35
(37),53上へ収束する。従って、前記受光素子5
1,53、55、57からの出力に基づいて、前記3ビ
ーム法によるCD用光束のトラッキング誤差信号を得る
ことが出来る。
The three light beams are reflected by the information recording medium 21 and then are reflected by the first and second diffraction regions 2 respectively.
The diffracted light r21, r22, r2 is diffracted by 9, 31
The light receiving element 5 diffracted at the same diffraction angle as 1 ', r22' and arranged in the Y-axis direction on the light receiving element substrate 39.
5, 47 (49), 57 or light receiving elements 51, 35
(37), converges on 53. Therefore, the light receiving element 5
Based on the outputs from 1, 53, 55 and 57, it is possible to obtain the tracking error signal of the light flux for CD by the three-beam method.

【0047】図4は、前記第1受光素子35及び第2受
光素子37及び、前記第3受光素子乃至第10受光素子
43〜57のより詳細な構成及びその作用を示す。
FIG. 4 shows a more detailed structure of the first light receiving element 35, the second light receiving element 37, and the third to tenth light receiving elements 43 to 57 and their operation.

【0048】ここに、図4(a)は、前記第1受光素子
乃至第10受光素子35,37,43〜57へ第1波長
λ1を有する回折光r11,r12,r11´,r12
´が入射する場合の前記各受光素子と、各回折光のスポ
ットとの関係を表わし、図4(b)は、前記各受光素子
へ、前記第2波長λ2を有する回折光r21,r22,
r21´,r22´が入射する場合の前記各受光素子と
各回折光のスポットとの関係を表わす。
Here, FIG. 4A shows the diffracted light r11, r12, r11 ', r12 having the first wavelength λ1 to the first to tenth light receiving elements 35, 37, 43 to 57.
4B shows the relationship between each light receiving element and the spot of each diffracted light when ′ is incident, and FIG. 4B shows the diffracted light r21, r22, having the second wavelength λ2, to each light receiving element.
The relationship between the light receiving elements and the spots of the diffracted light when r21 'and r22' are incident is shown.

【0049】図4(a)に示されるように、前記第1受
光素子35及び第2受光素子37は、それぞれY軸方向
において3個の受光領域35a,35b,35cに分割
され、前記第2受光素子37は、同様に受光領域37
a,37b,37cに分割されている。
As shown in FIG. 4A, the first light receiving element 35 and the second light receiving element 37 are divided into three light receiving regions 35a, 35b, 35c in the Y-axis direction, respectively. Similarly, the light receiving element 37 has a light receiving area 37.
It is divided into a, 37b, and 37c.

【0050】又、前記第3受光素子43は、Y軸方向に
おいて受光領域43a,43bに分割され、前記第4受
光素子45及び第5受光素子47も、同様にそれぞれ受
光領域45a,45b及び受光領域47a,47bに分
割されている。
Further, the third light receiving element 43 is divided into light receiving areas 43a and 43b in the Y-axis direction, and the fourth light receiving element 45 and the fifth light receiving element 47 similarly receive light receiving areas 45a and 45b and light receiving areas, respectively. It is divided into areas 47a and 47b.

【0051】次に、上記構成を有する各受光素子からの
出力に基づいて、前記第1波長及び第2波長の光の、フ
ォーカス誤差信号・トラッキング誤差信号・記録信号を
得る方法を説明する。
Next, a method for obtaining the focus error signal, the tracking error signal, and the recording signal of the light of the first wavelength and the second wavelength based on the output from each light receiving element having the above configuration will be described.

【0052】まず図4(a)を参照して、前記第1波長
(λ1=650nm)を有するDVD用光束のフォーカ
ス誤差信号・トラッキング誤差信号・記録信号を得る方
法を説明する。
First, with reference to FIG. 4A, a method of obtaining a focus error signal, a tracking error signal, and a recording signal of the DVD light flux having the first wavelength (λ1 = 650 nm) will be described.

【0053】図4(a)において、前記受光素子上のク
ロスハッチマーク59は、前記第1回折領域29による
回折光r11,r11´のスポットを表わす。また、ハ
ッチマーク61は、前記第2回折領域31による回折光
r12,r12´のスポットを表わす。
In FIG. 4A, cross hatch marks 59 on the light receiving element represent spots of diffracted light r11 and r11 'by the first diffraction region 29. The hatch mark 61 represents the spot of the diffracted lights r12 and r12 ′ by the second diffraction area 31.

【0054】ところで、既に述べたように、前記第1回
折領域29及び第2回折領域31にレンズパワーを与え
る際、前記第1回折領域29からの+1次回折光r11
には凹レンズパワーが与えられ、第2回折領域31から
の+1次回折光r12には凸レンズパワーが与えられ
る。従って、クロスハッチマーク59は凹レンズパワー
の光のスポットを表し、ハッチマーク61は凸レンズパ
ワーの光のスポットを表す。よって、前記受光素子35
の受光領域35a〜35cからの出力及び前記受光素子
37の受光領域37a〜37cからの出力に基づいて、
前記第1波長を有するDVD用光束のフォーカス誤差信
号を得ることができる。
By the way, as described above, when the lens power is applied to the first diffraction area 29 and the second diffraction area 31, the + 1st order diffracted light r11 from the first diffraction area 29 is given.
Is given a concave lens power, and the + 1st order diffracted light r12 from the second diffraction region 31 is given a convex lens power. Therefore, the cross hatch mark 59 represents a spot of light having a concave lens power, and the hatch mark 61 represents a spot of light having a convex lens power. Therefore, the light receiving element 35
Based on the outputs from the light receiving regions 35a to 35c and the outputs from the light receiving regions 37a to 37c of the light receiving element 37,
A focus error signal of the DVD light flux having the first wavelength can be obtained.

【0055】より詳細には、前記受光領域35b、37
a,37cからの出力の和をS1とし、前記受光領域3
5a,35c,37bからの出力信号の和をS2とする
とき、前記フォーカス誤差信号FEは、FE=S1−S
2により与えられる。
More specifically, the light receiving regions 35b, 37
Let S1 be the sum of the outputs from a and 37c, and
When the sum of the output signals from 5a, 35c and 37b is S2, the focus error signal FE is FE = S1-S
Given by 2.

【0056】一方、前記第1波長のDVD用光束の情報
記録媒体21に対するトラッキング誤差信号は、前記回
折光r11´、r12´のスポットマーク59,61を
有する前記受光領域43a,43b,45a,45bか
らの検出信号に基づいて演算検出することができる。よ
り詳細には、前記受光領域43a,45a,43b,4
5bの出力をD1,D2,D3,D4とすると、これら
の出力が、差分検出法(DPD)によるトラッキング誤
差検出信号となる。
On the other hand, the tracking error signal of the DVD light flux of the first wavelength with respect to the information recording medium 21 is the light receiving areas 43a, 43b, 45a, 45b having the spot marks 59, 61 of the diffracted lights r11 ', r12'. It is possible to perform arithmetic detection based on the detection signal from. More specifically, the light receiving areas 43a, 45a, 43b, 4
When the output of 5b is D1, D2, D3, D4, these outputs become tracking error detection signals by the difference detection method (DPD).

【0057】尚、前記情報記録媒体21の記録信号RF
は、前記第1受光素子35、第2受光素子37、第3受
光素子43、第4受光素子45からの出力の和で与えら
れる。すなわち、記録信号RFはRF=S1+S2+D
1+D2+D3+D4で与えられる。
The recording signal RF of the information recording medium 21
Is given by the sum of the outputs from the first light receiving element 35, the second light receiving element 37, the third light receiving element 43, and the fourth light receiving element 45. That is, the recording signal RF is RF = S1 + S2 + D
It is given by 1 + D2 + D3 + D4.

【0058】次に、図4(b)を参照して、前記第2波
長(λ2=780nm)を有するCD用光束のフォーカ
ス誤差信号・トラッキング誤差信号・記録信号を得る方
法を説明する。
Next, with reference to FIG. 4B, a method of obtaining the focus error signal, tracking error signal, and recording signal of the CD light flux having the second wavelength (λ2 = 780 nm) will be described.

【0059】図4(b)において、クロスハッチマーク
59は、前記回折光r21、r21´のスポットを表わ
し、ハッチマーク61は、前記回折光r22,r22´
のスポットを表わす。
In FIG. 4B, cross hatch marks 59 represent spots of the diffracted lights r21 and r21 ', and hatch marks 61 are diffracted lights r22 and r22'.
Represents the spot.

【0060】前記第2波長を有するCD用光束のフォー
カス誤差信号FEは、前記第1波長λ1の光の場合と同
様に、前記第1受光素子35の受光領域35a〜35c
及び第2受光素子37の受光領域37a〜37cからの
出力信号に基づいて演算検出することができる。より詳
細には、前記第2波長λ2を有するCD用の光のフォー
カス誤差信号FEは、受光領域35b、37a,37c
からの出力の和をS1とし、前記受光領域35a,35
c,37bからの出力信号の和をS2とするとき、FE
=S1−S2で与えられる。
The focus error signal FE of the CD light flux having the second wavelength is received by the light receiving regions 35a to 35c of the first light receiving element 35, as in the case of the light having the first wavelength λ1.
Also, calculation and detection can be performed based on the output signals from the light receiving regions 37a to 37c of the second light receiving element 37. More specifically, the focus error signal FE of the CD light having the second wavelength λ2 is the light receiving areas 35b, 37a, 37c.
Let S1 be the sum of the outputs from the light receiving areas 35a, 35
When the sum of the output signals from c and 37b is S2, FE
= S1-S2.

【0061】一方、前記CD用光束のトラッキング誤差
信号TEは、前記3ビーム法による3ビームにより検出
される。より詳細には、前記第8、第10受光素子5
3、57からの出力の和をEとし、前記第7、第9受光
素子51、55からの出力の和をFとするとき、前記3
ビームトラッキング誤差信号TEは、 TE=E−F で与えられる。
On the other hand, the tracking error signal TE of the light flux for CD is detected by three beams by the three beam method. More specifically, the eighth and tenth light receiving elements 5
When the sum of the outputs from 3, 57 is E and the sum of the outputs from the seventh and ninth light receiving elements 51, 55 is F,
The beam tracking error signal TE is given by TE = EF.

【0062】また前記CD用光束の場合、情報記録媒体
21の記録信号RFは、前記受光領域35b及び受光領
域37a,37cの出力の和をS1とし、前記受光領域
37b及び受光領域35a,35cの出力の和をS2と
し、第5受光素子47の受光領域47a及び第6受光素
子49の受光領域49aの出力の和をR1とし、第5受
光素子47の受光領域47b及び第6受光素子49の受
光領域49bの出力の和をR2するとき、 RF=S1+S2+R1+R2 で与えられる。
In the case of the light flux for CD, the recording signal RF of the information recording medium 21 has the sum of the outputs of the light receiving area 35b and the light receiving areas 37a and 37c as S1, and the light receiving area 37b and the light receiving areas 35a and 35c. The sum of outputs is S2, the sum of outputs of the light receiving area 47a of the fifth light receiving element 47 and the light receiving area 49a of the sixth light receiving element 49 is R1, and the light receiving area 47b of the fifth light receiving element 47 and the sixth light receiving element 49 are When the sum of the outputs of the light receiving region 49b is R2, it is given by RF = S1 + S2 + R1 + R2.

【0063】なお、CD−Rの場合、トッラキング誤差
信号は、前記受光領域47a,49aの出力の和をR1
とし、受光領域47b、49bの受光領域の出力の和を
R2とするとき、 TE(pp/CD−R)= R1−R2 により得ることも出来る。
In the case of CD-R, the tracking error signal is the sum of the outputs of the light receiving regions 47a and 49a, which is R1.
Then, when the sum of the outputs of the light receiving regions 47b and 49b is R2, TE (pp / CD-R) = R1-R2 can also be obtained.

【0064】従って、この第1実施形態によれば、前記
第1受光素子35の受光領域35a,35b,35c及
び前記第2受光素子37の受光領域37a,37b,3
7cの出力は、前記第1波長及び第2波長のいずれの光
についても、フォーカス誤差信号FE(及び記録信号R
F)の検出のために用いられる。
Therefore, according to the first embodiment, the light receiving areas 35a, 35b, 35c of the first light receiving element 35 and the light receiving areas 37a, 37b, 3 of the second light receiving element 37 are formed.
The output of 7c is the focus error signal FE (and the recording signal R for both the first wavelength light and the second wavelength light).
Used for detection of F).

【0065】又、前記第3受光素子43、第4受光素子
45の出力は、もっぱら前記DVD用光束のトラッキン
グ誤差信号(及び前記記録信号RF)の演算のために用
いられる。
The outputs of the third light receiving element 43 and the fourth light receiving element 45 are used exclusively for calculating the tracking error signal (and the recording signal RF) of the light flux for DVD.

【0066】又、前記第7受光素子51、第8受光素子
53、第9受光素子55、第10受光素子57からの出
力は、前記CD用光束の3ビーム・トラッキング誤差信
号TEの演算のためにのみ用いられる。
The outputs from the seventh light receiving element 51, the eighth light receiving element 53, the ninth light receiving element 55, and the tenth light receiving element 57 are for calculating the three-beam tracking error signal TE of the CD light flux. Used only for.

【0067】従って、この第1実施形態は、以下の利点
を有する。
Therefore, this first embodiment has the following advantages.

【0068】(1)フォーカス誤差信号の検出について
は、DVD用光束及びCD用光束について信号系を共用
する事ができる。
(1) Regarding the detection of the focus error signal, the signal system can be shared by the DVD light flux and the CD light flux.

【0069】(2)フォーカス誤差信号の検出処理のた
めの信号系と、トラッキング誤差信号の検出処理のため
の信号系とを完全に分離する事ができ、もって信号処理
システムの構造を簡単化することができる。
(2) It is possible to completely separate the signal system for the focus error signal detection processing and the signal system for the tracking error signal detection processing, thus simplifying the structure of the signal processing system. be able to.

【0070】(3)トラッキング誤差信号の検出処理自
体についても、DVD用光束及びCD用光束について信
号系を完全分離することができ、もって信号処理システ
ムを簡単化することができる。
(3) With respect to the tracking error signal detection processing itself, the signal system can be completely separated for the DVD light flux and the CD light flux, and thus the signal processing system can be simplified.

【0071】図5及び図6は、前記条件1及び条件2が
充足される場合、前記第1回折領域29による第1波長
及び第2波長の回折光r11,r21が、前記受光素子
基板39上でほぼ同じ第1位置P1へ収束し、且つ、前
記第2回折領域31による第1波長及び第2波長の回折
光r12,r22が、前記受光素子基板39上でほぼ同
じ第2位置P2へ収束する理由を示す。
FIGS. 5 and 6 show that when the conditions 1 and 2 are satisfied, the diffracted lights r11 and r21 of the first wavelength and the second wavelength by the first diffraction region 29 are on the light receiving element substrate 39. At substantially the same first position P1 and the diffracted lights r12 and r22 having the first wavelength and the second wavelength by the second diffraction region 31 converge at substantially the same second position P2 on the light receiving element substrate 39. Here's why.

【0072】図5(a)は、格子ピッチΛ1を有する第
1回折領域29により回折された前記第1波長を有する
+1次回折光r11及び−1次回折光r11´を示す。
図5(b)は、前記第1回折領域29により回折された
前記第2波長を有する+1次回折光r21と−1次回折
光r21´を示す。
FIG. 5A shows the + 1st-order diffracted light r11 and the -1st-order diffracted light r11 'having the first wavelength, which are diffracted by the first diffraction region 29 having the grating pitch Λ1.
FIG. 5B shows + 1st-order diffracted light r21 and −1st-order diffracted light r21 ′ having the second wavelength, which are diffracted by the first diffraction region 29.

【0073】ここに、前記格子ピッチΛ1は前記条件1
を充足するように設定されている。従って、前記第1回
折領域29による、第1波長λ1の+1次回折光r11
の前記受光素子基板39面への入射位置P11と、当該
第1波長λ1の0次透過光で定まる光軸A1との間の距
離L11を第1距離とし、同一回折領域による前記第2
波長λ2の+1次回折光r21の前記受光素子基板39
面への入射位置P21と、当該第2波長λ2の0次透過
光で定まる光軸A2との間の距離L21を第2距離とす
るとき、前記第1距離L11と第2距離L21との差│
L11―L21│は、前記第1,第2光源の発光点の間
隔dとほぼ等しい。
Here, the lattice pitch Λ1 is the same as the condition 1
Is set to satisfy. Therefore, the + 1st order diffracted light r11 of the first wavelength λ1 by the first diffraction region 29 is generated.
The distance L11 between the incident position P11 on the surface of the light receiving element substrate 39 and the optical axis A1 determined by the 0th-order transmitted light of the first wavelength λ1 is defined as a first distance, and the second diffraction pattern is formed by the same diffraction region.
The light-receiving element substrate 39 for the + 1st-order diffracted light r21 having the wavelength λ2
When the distance L21 between the incident position P21 on the surface and the optical axis A2 defined by the 0th-order transmitted light of the second wavelength λ2 is defined as the second distance, the difference between the first distance L11 and the second distance L21. │
L11-L21 | is substantially equal to the distance d between the light emitting points of the first and second light sources.

【0074】従って、図5(a)と図5(b)を重ね合
わせた図5(c)に示すように、前記回折光r11,r
21は、前記受光基板39上でほぼ同じ第1位置P1へ
収束する。
Therefore, as shown in FIG. 5C in which FIG. 5A and FIG. 5B are superposed, the diffracted light r11, r
21 converges on substantially the same first position P1 on the light receiving substrate 39.

【0075】図6は、前記回折光r11,r21が前記
ほぼ同じ第1位置P1へ収束するのみならず、前記第2
回折領域31による回折光r12,r22も、前記受光
素子基板39上でほぼ同じ第2位置P2へ収束すること
を示す。
FIG. 6 shows that not only the diffracted lights r11 and r21 converge to the same first position P1 but also the second position P1.
It is shown that the diffracted lights r12 and r22 by the diffractive region 31 are also converged to the substantially same second position P2 on the light receiving element substrate 39.

【0076】より詳細には、図6(a)は、格子ピッチ
Λ1を有する第1回折領域29による第1波長の±1次
回折光r11,r11´及び、格子ピッチΛ2を有する
第2回折領域31による第1波長λ1の±1次回折光r
12,r12´を示す。図6(b)は、第1回折領域2
9による前記第2波長の±1次回折光r21,r21´
及び第2回折領域31による第2波長の±1次回折光r
22,r22´を示す。
More specifically, FIG. 6A shows ± first-order diffracted lights r11 and r11 'of the first wavelength by the first diffraction region 29 having the grating pitch Λ1 and the second diffraction region 31 having the grating pitch Λ2. ± first-order diffracted light r of the first wavelength λ1 due to
12, r12 'are shown. FIG. 6B shows the first diffraction region 2
The second-order ± 1st-order diffracted lights r21 and r21 ′ of the second wavelength 9
And the ± first-order diffracted light r of the second wavelength by the second diffraction region 31
22 and r22 'are shown.

【0077】そして、格子ピッチΛ1,Λ2は、前記条
件1を充足するように設定されている。従って、前記第
1回折領域29又は第2回折領域31による第1波長λ
1の+1次回折光r11,r12の前記受光素子基板3
9面への入射位置P11,P12と、当該第1波長λ1
の0次透過光で定まる光軸A1との間の距離L11、L
12を第1距離とし、同一回折領域による前記第2波長
λ2の回折光r21,r22の前記受光素子基板39面
への入射位置P21,P22と、当該第2波長λ2の0
次透過光で定まる光軸A2との間の距離L21、L22
を第2距離とするとき、前記第1距離と第2距離との差
│L11―L21│、│L12−L22│は、前記第
1,第2光源の発光点の間隔dとほぼ等しい。
The lattice pitches Λ1 and Λ2 are set so as to satisfy the above condition 1. Therefore, the first wavelength λ due to the first diffraction region 29 or the second diffraction region 31 is
The light-receiving element substrate 3 for the + 1st-order diffracted lights r11 and r12 of 1
The incident positions P11 and P12 on the 9th surface and the first wavelength λ1
Distance L11, L from the 0th-order transmitted light to the optical axis A1
12, where 12 is the first distance, the incident positions P21, P22 of the diffracted lights r21, r22 of the second wavelength λ2 by the same diffraction region on the surface of the light receiving element substrate 39, and 0 of the second wavelength λ2.
Distances L21 and L22 from the optical axis A2 determined by the next transmitted light
Is the second distance, the differences | L11-L21 | and | L12-L22 | between the first distance and the second distance are substantially equal to the distance d between the light emitting points of the first and second light sources.

【0078】従って、図6(a)と図6(b)を重ね合
わせた図6(c)に示すように、前記P11とP21と
はほぼ等しくなり、且つ、P12とP22とはほぼ等し
くなる。換言すれば、前記第1回折領域29による第1
波長及び第2波長の回折光r11,r21は、前記受光
素子基板39上でほぼ同じ第1位置P1へ収束し、且
つ、前記第2回折領域31による第1波長及び第2波長
の回折光r12,r22は、前記受光素子基板39上で
ほぼ同じ第2位置P2へ収束する。
Therefore, as shown in FIG. 6C in which FIG. 6A and FIG. 6B are overlapped, P11 and P21 are substantially equal to each other, and P12 and P22 are substantially equal to each other. . In other words, the first diffraction region 29
The diffracted lights r11 and r21 of the wavelengths and the second wavelengths converge on the same first position P1 on the light receiving element substrate 39, and the diffracted lights r12 of the first and second wavelengths by the second diffraction region 31. , R22 converge to substantially the same second position P2 on the light receiving element substrate 39.

【0079】ところで図6(a)に示す前記+1次回折
光r11,r12の入射位置P11,P12の間の間隔
s1と、図6(b)に示す前記第2波長λ2を有する+
1次回折光r21,r22の入射位置P21,P22の
間隔s2は、厳密には必ずしも一致しない。
By the way, the distance s1 between the incident positions P11 and P12 of the + 1st order diffracted lights r11 and r12 shown in FIG. 6A and the second wavelength λ2 shown in FIG.
Strictly speaking, the distance s2 between the incident positions P21 and P22 of the first-order diffracted lights r21 and r22 does not necessarily match.

【0080】従って、前記第1光源25及び第2光源2
7間の間隔dと、前記第1回折領域29及び第2回折領
域31の格子ピッチΛ1,Λ2は、前記P11とP21
及び、P12とP22とが、前記第1,第2受光素子3
5,37の大きさの程度の誤差範囲で相互に一致するよ
うに決定しなければならない。
Therefore, the first light source 25 and the second light source 2
The distance d between 7 and the grating pitches Λ1 and Λ2 of the first diffraction region 29 and the second diffraction region 31 are P11 and P21.
And P12 and P22 are the first and second light receiving elements 3
It must be determined so as to agree with each other within an error range of 5,37.

【0081】図7及び図8は、前記格子ピッチΛ1、Λ
2及び前記第1、第2光源25、27の間隔dを決定す
る方法を示す。
7 and 8 show the grating pitches Λ1 and Λ.
2 and a method of determining the distance d between the first and second light sources 25 and 27 will be described.

【0082】図7及び図8を参照するに、ステップS1
で、前記受光素子基板39とホログラム素子33との間
の間隔hを決定する。
Referring to FIGS. 7 and 8, step S1
Then, the distance h between the light receiving element substrate 39 and the hologram element 33 is determined.

【0083】また、前記光軸A1と、前記回折光r11
の入射位置P11との間隔L11を決定する。そして、
これらの値h及びL11に基づいて前記回折光r11の
回折角θ11を決定する。
The optical axis A1 and the diffracted light r11
The distance L11 from the incident position P11 is determined. And
The diffraction angle θ11 of the diffracted light r11 is determined based on these values h and L11.

【0084】ステップS2で、前記ステップS1で求め
た回折角θ11及び前記第1波長値λ1に基づき、回折
公式により前記格子ピッチΛ1を決定する。
In step S2, the grating pitch Λ1 is determined by the diffraction formula based on the diffraction angle θ11 and the first wavelength value λ1 obtained in step S1.

【0085】ステップS3で、前記第1回折領域29の
格子ピッチΛ1、及び前記第2波長値λ2に基づいて、
前記回折光r21の回折角θ21を決定する。
In step S3, based on the grating pitch Λ1 of the first diffraction region 29 and the second wavelength value λ2,
The diffraction angle θ21 of the diffracted light r21 is determined.

【0086】ステップS4で、前記ステップS3で求め
た回折角θ21及び、前記間隔hに基づいて、前記回折
光r21の入射位置P21を決定すると共に、この位置
P21と前記光軸A2との間隔L21を決定する。
In step S4, the incident position P21 of the diffracted light r21 is determined based on the diffraction angle θ21 obtained in step S3 and the distance h, and the distance L21 between the position P21 and the optical axis A2 is determined. To decide.

【0087】ステップS5で、前記回折光r12の回折
角θ12が、前記回折光r21の回折角θ21と等しく
なるように前記格子ピッチΛ2を決定する。
In step S5, the grating pitch Λ2 is determined so that the diffraction angle θ12 of the diffracted light r12 becomes equal to the diffraction angle θ21 of the diffracted light r21.

【0088】ステップS6で、前記格子ピッチΛ2及び
前記第2波長値λ2に基づいて、回折公式により、回折
光r22の回折角θ22を決定する。また、この回折角
θ22から回折光r22の入射位置であるP22を決定
すると共に、この位置P22と前記光軸A2との間隔L
22を決定する。
In step S6, the diffraction angle θ22 of the diffracted light r22 is determined by the diffraction formula based on the grating pitch Λ2 and the second wavelength value λ2. Further, P22 which is the incident position of the diffracted light r22 is determined from this diffraction angle θ22, and the distance L between this position P22 and the optical axis A2 is determined.
22 is decided.

【0089】ステップS7で、L12−L11(=s
1)及びL22−L21(s2)の中間置としてdを決
定する。
In step S7, L12-L11 (= s
1) and d is determined as the intermediate position of L22-L21 (s2).

【0090】以上の方法により決定される前記格子ピッ
チΛ1、Λ2及び前記第1、第2光源25、27の間隔
dは、例えば以下の通りである。例えば、前記受光素子
基板39とホログラム素子33との間隔hを3000μ
mとし、且つ、前記間隔L11を500μmとする時、
第1回折領域29の格子ピッチΛ1は、約4.0μmと
決定され、第2回折領域31の格子ピッチΛ2は約3.
3μmと決定され、前記光源発光点間の間隔dは、約1
20μmと決定される。
The grating pitches Λ1 and Λ2 and the distance d between the first and second light sources 25 and 27 determined by the above method are as follows, for example. For example, the distance h between the light receiving element substrate 39 and the hologram element 33 is 3000 μm.
m and the distance L11 is 500 μm,
The grating pitch Λ1 of the first diffraction area 29 is determined to be about 4.0 μm, and the grating pitch Λ2 of the second diffraction area 31 is about 3.
3 μm, the distance d between the light emitting points of the light source is about 1
It is determined to be 20 μm.

【0091】なお、上記の場合、前記入射位置P11、
P21間の間隔は約11μmとなり、前記入射位置P2
1、P22間の間隔は約12μmとなる。また、前記−
1次回折光r11´、r12´、r21´、r22´の
受光素子基板39への入射点P11´、P12´、P2
1´、P22´の間の間隔s4、s5、s6は、それぞ
れ約104μm、約120μm、約130μmと成る。
In the above case, the incident position P11,
The distance between P21 is about 11 μm, and the incident position P2
The distance between 1 and P22 is about 12 μm. Also, the above-
Incident points P11 ′, P12 ′, P2 of the first-order diffracted lights r11 ′, r12 ′, r21 ′, r22 ′ on the light receiving element substrate 39.
The intervals s4, s5, and s6 between 1'and P22 'are about 104 μm, about 120 μm, and about 130 μm, respectively.

【0092】従って上記方法によれば、第1回折領域2
9による、前記+1次回折光r11、r21は、10μ
m程度の誤差の範囲で共に、前記受光素子基板39上の
ほぼ同じ位置へ収束し、かつ、前記+1次回折光r1
2、r22も、10μm程度の誤差の範囲で受光組織板
39上のほぼ同じ位置へ収束するように、前記格子ピッ
チΛ1、Λ2及び前記第1、第2光源25、27の間隔
dが決定される。
Therefore, according to the above method, the first diffraction region 2
The + 1st order diffracted lights r11 and r21 according to
Within the error range of about m, both converge to substantially the same position on the light receiving element substrate 39, and the + first-order diffracted light r1
The distances d between the grating pitches Λ1 and Λ2 and the first and second light sources 25 and 27 are determined so that 2 and r22 also converge to substantially the same position on the light receiving tissue plate 39 within an error range of about 10 μm. It

【0093】図9乃至図11は、この発明の光デバイス
の第2実施形態を示す。
9 to 11 show a second embodiment of the optical device according to the present invention.

【0094】図9乃至図11に示すように、この第2実
施形態の光デバイスは、情報記録媒体から情報を読みと
る光デバイスにして、第1波長の光を出力する第1光源
25と、第2波長の光を出力する第2光源27と、前記
第1、第2波長の光を回折する第1回折領域129及び
第2回折領域131を有するホログラム素子133と、
前記ホログラム素子133からの回折光を受光する第1
受光素子35及び第2受光素子37を設けた受光素子基
板39と、を備え、前記第1回折領域129及び第2回
折領域131は、格子ピッチが相互に同一であり、各格
子軸の方向u,vが相互に30°以内の所定角度だけ違
えられており、前記第1、第2光源25,27の発光点
は、前記各格子軸方向u,vにほぼ直交するX軸方向に
おいて相互に所定距離dだけ離間されており、且つ、前
記第1回折領域129及び第2回折領域131の格子ピ
ッチは、前記第1回折領域129(又は第2回折領域1
31)による、前記第1波長の+1次回折光r11(r
12)の、前記受光素子基板39面への入射位置P1
(P2)と、当該第1波長の0次透過光で定まる光軸A
1に対する距離L11(L12)を第1距離とし、同一
回折領域129(131)による前記第2波長の+1次
回折光r21(r22)の、前記受光素子基板39面へ
の入射位置P1(P2)と、当該第2波長の0次透過光
で定まる光軸A2に対する距離L21(L22)を第2
距離とするとき、前記第1距離L11(L12)と第2
距離L21(L22)との差│L11−L21│(│L
12―L22│)が前記第1光源25(第2光源27)
の発光点の間隔dとほぼ等しくなるように定められ、前
記第1回折領域及び第2回折領域129,131の向き
は、前記第1回折領域129による、第1波長及び第2
波長の回折光が、前記受光素子基板上でほぼ同じ第1位
置P1へ収束し、前記第2回折領域131による、第1
波長及び第2波長の回折光が、前記受光素子基板39上
で、Y軸方向に於いて前記第1位置P1から所定距離だ
け離れたほぼ同じ第2位置P2へ収束するように定め、
前記第1、第2位置P1,P2にそれぞれ第1、第2受
光素子35、37を配置したことを特徴とする。
As shown in FIGS. 9 to 11, the optical device according to the second embodiment is an optical device for reading information from an information recording medium, and includes a first light source 25 for outputting light of a first wavelength and a first light source 25. A second light source 27 that outputs light of two wavelengths, and a hologram element 133 that has a first diffraction region 129 and a second diffraction region 131 that diffracts the light of the first and second wavelengths,
First for receiving the diffracted light from the hologram element 133
A light receiving element substrate 39 provided with a light receiving element 35 and a second light receiving element 37, and the first diffraction region 129 and the second diffraction region 131 have the same grating pitch, and the direction u of each grating axis. , V are different from each other by a predetermined angle within 30 °, and the light emitting points of the first and second light sources 25 and 27 are mutually different in the X axis direction substantially orthogonal to the lattice axis directions u and v. The grating pitches of the first diffraction area 129 and the second diffraction area 131 are separated by a predetermined distance d, and the first diffraction area 129 (or the second diffraction area 1).
31), the + 1st-order diffracted light r11 (r
12) incident position P1 on the surface of the light receiving element substrate 39
(P2) and the optical axis A determined by the 0th order transmitted light of the first wavelength
The distance L11 (L12) with respect to 1 is defined as the first distance, and the incident position P1 (P2) of the + 1st-order diffracted light r21 (r22) of the second wavelength by the same diffraction region 129 (131) on the surface of the light receiving element substrate 39 is set. , The second distance L21 (L22) with respect to the optical axis A2 determined by the 0th-order transmitted light of the second wavelength
When the distance is defined as the first distance L11 (L12) and the second distance
Difference with distance L21 (L22) | L11-L21 | (| L
12-L22 |) is the first light source 25 (second light source 27)
Is set to be substantially equal to the distance d between the light emitting points of the first diffraction region 129 and the first diffraction region 129, 131.
The diffracted light of the wavelength converges on the first position P1 which is substantially the same on the light receiving element substrate,
The diffracted light having the wavelength and the second wavelength are determined so as to converge on the light receiving element substrate 39 to substantially the same second position P2 which is apart from the first position P1 by a predetermined distance in the Y-axis direction,
The first and second light receiving elements 35 and 37 are arranged at the first and second positions P1 and P2, respectively.

【0095】図11に最も良く示されるように、前記第
1,第3受光素子35,37は、X軸方向に於いてほぼ
同じ位置に於いて、光軸A1,A2を結ぶ軸wの両側に
位置する。
As best shown in FIG. 11, the first and third light receiving elements 35 and 37 are located at substantially the same position in the X-axis direction and both sides of the axis w connecting the optical axes A1 and A2. Located in.

【0096】前記受光素子基板39の所定位置にはま
た、第3乃至第6受光素子43〜49及び第9,第10
受光素子55,57が設けてある。ここに、第3,第4
受光素子43,45は、前記回折領域129,131か
らの第1波長を有する−1次回折光r11´、r12´
を受光するためのものである。また、第5、第6受光素
子47、49は、前記回折領域129,131からの、
第2波長を有する−1次回折光r21´r22´を受光
するためのものである。又第9,第10受光素子55,
57は、CD用3ビームを受光するためのものである。
The third to sixth light receiving elements 43 to 49 and the ninth and tenth light receiving elements are provided at predetermined positions on the light receiving element substrate 39.
Light receiving elements 55 and 57 are provided. Here, the 3rd and 4th
The light receiving elements 43 and 45 have −1st order diffracted lights r11 ′ and r12 ′ having the first wavelength from the diffraction areas 129 and 131.
For receiving light. In addition, the fifth and sixth light receiving elements 47 and 49 are provided from the diffraction areas 129 and 131, respectively.
It is for receiving the −1st order diffracted light r21′r22 ′ having the second wavelength. The ninth and tenth light receiving elements 55,
57 is for receiving the three beams for CD.

【0097】これら55,57の受光素子のY軸方向寸
法は、入射光束径(例えば80μm程度)をカバーする寸
法に定められ(例えば90μm程度)、かつX軸近傍で相
互に重複しないように、その傾斜角が定められる。ここ
で、この傾斜角はホログラムの回折軸の傾斜角α、βに
よって定め、受光素子についても等しい角度とすればよ
く、実際には例えばα=β=10°程度で設計が可能であ
る。
The dimensions of the light receiving elements 55 and 57 in the Y-axis direction are determined to cover the incident light beam diameter (for example, about 80 μm) (for example, about 90 μm) and do not overlap each other in the vicinity of the X-axis. The tilt angle is determined. Here, this tilt angle may be determined by tilt angles α and β of the diffraction axis of the hologram, and the light receiving elements may have the same angle. In practice, for example, α = β = 10 ° can be designed.

【0098】前記第3,第4受光素子43,45は、X
軸方向に於けるほぼ同じ位置に於いてY軸方向に相互に
所定距離だけ離れて、前記軸wの両側に配置される。ま
た前記第5,第6受光素子47、49も、X軸方向に於
けるほぼ同じ位置に於いてY軸方向に相互に所定距離だ
け離れて、前記軸wの両側に配置される。但し前記第
5,第6受光素子47,49の間の間隔は、前記第3,
第4受光素子43、45の間の間隔より大きい。また、
第9,第10受光素子55,57は、前記第5,第6受
光素子47,49のそれぞれ両側に配置される。すなわ
ち、第9,第10受光素子55,57は、受光素子4
7,49とY軸方向に並んで配置される。
The third and fourth light receiving elements 43 and 45 have X
They are arranged on both sides of the axis w at substantially the same position in the axial direction and are separated from each other by a predetermined distance in the Y-axis direction. Further, the fifth and sixth light receiving elements 47 , 49 are also arranged on both sides of the axis w at substantially the same position in the X axis direction and separated from each other by a predetermined distance in the Y axis direction. However, the distance between the fifth and sixth light receiving elements 47, 49 is equal to the third,
It is larger than the distance between the fourth light receiving elements 43 and 45. Also,
The ninth and tenth light receiving elements 55 and 57 are arranged on both sides of the fifth and sixth light receiving elements 47 and 49, respectively. That is, the ninth and tenth light receiving elements 55 and 57 are the same as the light receiving element 4
7, 49 are arranged side by side in the Y-axis direction.

【0099】前記受光素子43,45と受光素子47,
49はX軸方向に於いて離れて配置され、その間隔は例
えば210μm程度である。
The light receiving elements 43 and 45 and the light receiving element 47,
49 are spaced apart in the X-axis direction, and the distance between them is, for example, about 210 μm.

【0100】より詳細には、この光デバイスの第2実施
形態は、以下の構成を有する。
More specifically, the second embodiment of this optical device has the following configuration.

【0101】すなわち、この光デバイスは、図9乃至図
11に示すように、第1波長λ1の光を出力する第1光
源25と、第2波長λ2の光を出力する第2光源27
と、を有する。ここに、前記第1波長λ1は例えばDV
D用の650nmであり、前記第2波長λ2は例えばC
D用の780nmである。前記光源25、27の発光点
の間の間隔dは例えば約104μmに設定される。
That is, in this optical device, as shown in FIGS. 9 to 11, the first light source 25 that outputs the light of the first wavelength λ1 and the second light source 27 that outputs the light of the second wavelength λ2.
And. Here, the first wavelength λ1 is, for example, DV
650 nm for D, and the second wavelength λ2 is, for example, C
It is 780 nm for D. The distance d between the light emitting points of the light sources 25 and 27 is set to about 104 μm, for example.

【0102】また、各回折領域129、131の格子軸
u,vの方向はY軸に対してそれぞれ角度α、βを有す
る。この角度α、βは、例えば約8.6度程度の値に設
定される。この場合、前記回折領域129、131の格
子軸u,vは相互に約17.2度の角度を有する。また
前記ホログラム素子133の第1回折領域129及び第
2回折領域131の格子ピッチΛは共に約4.0μmに
設定される。
The directions of the grating axes u and v of the diffraction areas 129 and 131 have angles α and β with respect to the Y axis, respectively. The angles α and β are set to a value of about 8.6 degrees, for example. In this case, the grating axes u and v of the diffraction areas 129 and 131 have an angle of about 17.2 degrees with each other. The grating pitch Λ of the first diffraction area 129 and the second diffraction area 131 of the hologram element 133 are both set to about 4.0 μm.

【0103】なお、前記受光素子基板39とホログラム
素子133の間の間隔は前記第1実施形態の場合と同様
例えば3000μmに設定される上記構成により、前記
第1光源25から射出された第1波長を有するDVD用
光束は、情報記録媒体(図示せず)で反射された後、前
記第1回折領域129及び第2回折領域131で回折さ
れ±1次回折光r11、r12、r11´、r12´を
生ずる。そして、前記第1回折領域129による+1次
回折光r11は前記第1受光素子35へ収束し、前記第
2回折領域による+1次回折光r12は前記第2受光素
子37へ収束する。一方、前記第1回折領域129及び
第2回折領域131による−1次回折光r11´、r1
2´は、それぞれ前記第3受光素子43及び第4受光素
子45へ収束する。
The distance between the light receiving element substrate 39 and the hologram element 133 is set to, for example, 3000 μm as in the case of the first embodiment. With the above configuration, the first wavelength emitted from the first light source 25 is emitted. After being reflected by an information recording medium (not shown), the light flux for DVD having is diffracted by the first diffractive region 129 and the second diffractive region 131 to generate ± first-order diffracted light r11, r12, r11 ′, r12 ′. Occurs. Then, the + 1st-order diffracted light r11 by the first diffraction area 129 is converged on the first light receiving element 35, and the + 1st-order diffracted light r12 by the second diffraction area is converged on the second light receiving element 37. On the other hand, the −1st order diffracted lights r11 ′ and r1 by the first diffraction region 129 and the second diffraction region 131.
2 ′ converges on the third light receiving element 43 and the fourth light receiving element 45, respectively.

【0104】また、前記第2光源27からの第2波長を
有するCD用光束は、情報記録媒体(図示せず)で反射
されたあと、前記第1、第2回折領域129、131で
回折され、±1次回折光r21、r22、r21´、r
22´を生ずる。そして、前記第1回折領域129によ
る+1次回折光r21は前記第1受光素子35へ収束
し、前記第2回折領域131による+1次回折光r22
は前記第2受光素子37へ収束する。一方、前記第1回
折領域129及び第2回折領域131による−1次回折
光r21´、r22´は、それぞれ前記第5受光素子4
7及び第6受光素子49へ収束する。
The light flux for CD having the second wavelength from the second light source 27 is reflected by an information recording medium (not shown) and then diffracted by the first and second diffraction areas 129 and 131. , ± 1st-order diffracted light r21, r22, r21 ′, r
22 '. Then, the + 1st-order diffracted light r21 by the first diffraction area 129 is converged on the first light receiving element 35, and the + 1st-order diffracted light r22 by the second diffraction area 131.
Converges on the second light receiving element 37. On the other hand, the −first-order diffracted lights r21 ′ and r22 ′ by the first diffraction region 129 and the second diffraction region 131 are respectively received by the fifth light receiving element 4.
The light is converged on the seventh and sixth light receiving elements 49.

【0105】前記第1回折領域129及び第2回折領域
131にレンズパワーを付与する際、前記回折光r1
1、r21には凹レンズ作用が付与され、回折光r1
2、r22に対して凸レンズ作用が付与されるように設
計される。従って、前記第1実施形態の場合と同様、前
記第1受光素子35及び第2受光素子37からの出力に
基づいてコンプリメンタリーなスポットサイズ法による
フォーカス誤差信号を得ることができる。
When the lens power is applied to the first diffraction area 129 and the second diffraction area 131, the diffracted light r1
1 and r21 are given a concave lens action, and diffracted light r1
It is designed so that a convex lens action is given to 2, r22. Therefore, as in the case of the first embodiment, it is possible to obtain the focus error signal by the complementary spot size method based on the outputs from the first light receiving element 35 and the second light receiving element 37.

【0106】また後述するように、前記第1実施形態の
場合と同様に、前記第3受光素子43及び第4受光素子
45からの出力に基づいて、前記第1波長を有するDV
D用光束のトラッキング誤差信号を得ることができる。
As will be described later, similar to the case of the first embodiment, the DV having the first wavelength is based on the outputs from the third light receiving element 43 and the fourth light receiving element 45.
A tracking error signal of the D light flux can be obtained.

【0107】また、前記第5、第6受光素子47、49
からの出力信号に基づいて、第2波長を有するCD―R
用光束のトラッキング誤差信号を得ることが出来る。
Further, the fifth and sixth light receiving elements 47, 49
CD-R having a second wavelength based on the output signal from the
It is possible to obtain a tracking error signal of the luminous flux for use.

【0108】図示しないが、この光デバイスの第2実施
形態にも、CD用光束(第2波長λ2)のトラッキング
誤差を3ビーム法により検出するために、前記第2光源
27と情報記録媒体の間に3ビーム生成用回折格子(図
示せず)が設けてある。この3ビーム生成用回折格子
(図示せず)は、例えば、前記ホログラム素子131を
設けた回折素子基板(図示せず)に於いて前記ホログラ
ム素子131を設けた面の反対側の面に形成される。
Although not shown, also in the second embodiment of this optical device, in order to detect the tracking error of the light flux for CD (second wavelength λ2) by the three-beam method, the second light source 27 and the information recording medium are combined. A diffraction grating (not shown) for generating three beams is provided between them. The three-beam generating diffraction grating (not shown) is formed, for example, on the surface of the diffraction element substrate (not shown) provided with the hologram element 131, which is opposite to the surface provided with the hologram element 131. It

【0109】また、前記3ビーム法トラッキング誤差検
出のために、前記第5、第6受光素子47、49の両側
に、それぞれ第9、第10受光素子57、59が設けて
ある。
Further, in order to detect the tracking error by the three-beam method, ninth and tenth light receiving elements 57 and 59 are provided on both sides of the fifth and sixth light receiving elements 47 and 49, respectively.

【0110】上記構成により、前記第2光源27から射
出された前記CD用光束は、3ビーム生成用回折格子
(図示せず)により情報記録媒体のタンジェンシャル方
向(Y軸方向)に並ぶ3本の光束へ分解される。この3
本の光束は、それぞれ情報記録媒体で反射された後、前
記第1、第2回折領域129,131で回折され、前記
回折光r21´、r22´と同じ回折角で回折され、前
記受光素子基板39上においてY軸方向に並んで配置し
た前記受光素子55,47,57あるいは受光素子
5、49、57上へ収束する。従って例えば、前記受光
素子55、57からの出力に基づいて、前記3ビーム法
によるCD用光束のトラッキング誤差信号を得ることが
出来る。
With the above structure, the three CD light beams emitted from the second light source 27 are aligned in the tangential direction (Y-axis direction) of the information recording medium by the three-beam generating diffraction grating (not shown). Is decomposed into the luminous flux of. This 3
The light flux of the book is reflected by the information recording medium, diffracted by the first and second diffractive regions 129 and 131, and diffracted at the same diffraction angle as the diffracted lights r21 ′ and r22 ′, and the light receiving element substrate. The light receiving elements 55, 47, 57 or the light receiving elements 5 arranged side by side in the Y-axis direction on 39.
5, 49, 57 converge upwards . Therefore, for example, based on the outputs from the light receiving elements 55 and 57, it is possible to obtain the tracking error signal of the CD light flux by the three-beam method.

【0111】図12は、前記第1乃至第6受光素子3
5、37、43,45,47,49及び第9,第10受
光素子55,57のより詳細な構成を示す。より詳細に
は、図12(a)は、前記受光素子へDVD用光束が入
射した場合を表し、ハッチマーク201は、当該受光素
子上のDVD用光束のスポットを表す。又図12(b)
は、前記受光素子へCD用光束が入射した場合を表し、
ハッチマーク203は、当該受光素子上のCD用光束の
スポットを表す。
FIG. 12 shows the first to sixth light receiving elements 3
5, 37, 43, 45, 47, 49 and the ninth and tenth light receiving elements 55, 57 are shown in more detail. More specifically, FIG. 12A shows a case where a DVD light beam is incident on the light receiving element, and a hatch mark 201 represents a spot of the DVD light beam on the light receiving element. Also, FIG. 12 (b)
Represents the case where a light flux for CD enters the light receiving element,
The hatch mark 203 represents the spot of the CD light flux on the light receiving element.

【0112】図12(a)、(b)に示すように、前記
第1実施形態の場合と同様に、前記第1受光素子35及
び第2受光素子37は、それぞれ、ほぼY軸方向に沿っ
て3つの受光領域35a、35b、35c及び受光領域
37a、37b、37cに分割されている。
As shown in FIGS. 12 (a) and 12 (b), as in the case of the first embodiment, the first light receiving element 35 and the second light receiving element 37 are substantially along the Y-axis direction. Are divided into three light receiving areas 35a, 35b, 35c and light receiving areas 37a, 37b, 37c.

【0113】また、前記第3,第4,第5,第6受光素
子43,45,47,49は、それぞれ、ほぼY軸方向
に沿って2つの受光領域43a、43b;45a、45
b;47a、47b;49a、49bに分割されてい
る。
The third, fourth, fifth and sixth light receiving elements 43, 45, 47 and 49 respectively have two light receiving regions 43a, 43b; 45a and 45 substantially along the Y-axis direction.
b; 47a, 47b; 49a, 49b.

【0114】上記構成により、前記受光領域35a、3
5b、35cからの出力及び、受光領域37a、37
b、37cからの出力に基づいて、前記第1波長λ1の
DVD用光束及び、第2波長λ2のCD用光束のフォー
カス誤差信号を得ることができる。
With the above arrangement, the light receiving regions 35a, 3
The outputs from 5b and 35c and the light receiving regions 37a and 37
The focus error signals of the DVD light flux of the first wavelength λ1 and the CD light flux of the second wavelength λ2 can be obtained based on the outputs from b and 37c.

【0115】より詳細には、前記受光領域35b、37
a、37cからの出力の和をS1とし、受光領域35
a、35c、37bからの出力の和をS2とする時、前
記フォーカス誤差信号FEは、 FE=S1−S2 で与えられる。
More specifically, the light receiving regions 35b and 37 are formed.
The sum of the outputs from a and 37c is S1, and the light receiving area 35
When the sum of the outputs from a, 35c and 37b is S2, the focus error signal FE is given by FE = S1-S2.

【0116】また前記DVD用光束のトラッキング誤差
信号は、第1実施形態と同様に、前記第3受光素子43
の受光領域43a、43bからの出力D1、D3及び前
記第4受光素子45の受光領域45a、45bからの出
力、D2、D4により与えられる。
The tracking error signal of the light flux for DVD is similar to that of the first embodiment, and the third light receiving element 43 is used.
The outputs D1 and D3 from the light receiving areas 43a and 43b and the outputs D2 and D4 from the light receiving areas 45a and 45b of the fourth light receiving element 45, respectively.

【0117】また、CD用光束のトラッキング誤差信号
TEは、前記第9受光素子55の出力をEとし、第10
受光素子57の出力をFとする時、 TE=E−F で与えられる。
The tracking error signal TE of the light flux for CD has the output of the ninth light receiving element 55 as E and the tenth
When the output of the light receiving element 57 is F, it is given by TE = EF.

【0118】なお、CD−Rの場合、トッラキング誤差
信号は、前記受光領域47a,49aの出力の和をR1
とし、受光領域47b、49bの受光領域の出力の和を
R2とするとき、TE(pp/CD−R)= R1−R
2により得られる。
In the case of CD-R, the tracking error signal is the sum of outputs of the light receiving regions 47a and 49a, which is R1.
And when the sum of the outputs of the light receiving regions 47b and 49b is R2, TE (pp / CD-R) = R1-R
Obtained by 2.

【0119】さらに、DVD用光束についての記録信号
RFは、 RF=S1+S2+D1+D2+D3+D4 と表わされる。
Further, the recording signal RF for the DVD light flux is expressed as RF = S1 + S2 + D1 + D2 + D3 + D4.

【0120】また、CD用光束についての記録信号RF
は、前記第5受光素子47の受光領域47a及び第6受
光素子49の受光領域49aの出力の和をR1とし、前
記第5受光素子47の受光領域47b及び第6受光素子
49の受光領域49bの出力の和をR2とするとき、 RF=S1+S2+R1+R2 と表わされる。
Also, the recording signal RF for the light flux for CD is used.
R1 is the sum of the outputs of the light receiving area 47a of the fifth light receiving element 47 and the light receiving area 49a of the sixth light receiving element 49, and the light receiving area 47b of the fifth light receiving element 47 and the light receiving area 49b of the sixth light receiving element 49 are When the sum of the outputs of R2 is R2, it is expressed as RF = S1 + S2 + R1 + R2.

【0121】従って、この第2実施形態は、上記第1実
施形態と同様に、以下の利点を有する。
Therefore, the second embodiment has the following advantages as in the first embodiment.

【0122】(1)フォーカス誤差信号の検出について
は、DVD用光束及びCD用光束について信号系を共用
する事ができる。
(1) For the detection of the focus error signal, the signal system can be shared by the DVD light flux and the CD light flux.

【0123】(2)フォーカス誤差信号の検出処理のた
めの信号系と、トラッキング誤差信号の検出処理のため
の信号系とを完全に分離する事ができ、もって信号処理
システムの構造を簡単化することができる。
(2) The signal system for the focus error signal detection processing and the signal system for the tracking error signal detection processing can be completely separated, thereby simplifying the structure of the signal processing system. be able to.

【0124】(3)トラッキング誤差信号の検出処理自
体についても、DVD用光束及びCD用光束について信
号系を完全分離することができ、もって信号処理システ
ムを簡単化することができる。
(3) With respect to the tracking error signal detection processing itself, the signal system can be completely separated for the DVD light flux and the CD light flux, and thus the signal processing system can be simplified.

【0125】前記第2実施形態の光デバイスにおいて、
前記第1光源25・第2光源27の配置位置及び、前記
第1,第2回折領域129,131の格子軸方向u,v
及び、前記第1,第2受光素子35,37の位置は、例
えば次の様に決定される。
In the optical device of the second embodiment,
Arrangement positions of the first light source 25 and the second light source 27, and lattice axis directions u and v of the first and second diffraction regions 129 and 131.
The positions of the first and second light receiving elements 35 and 37 are determined as follows, for example.

【0126】図11に示すように、まず、前記光軸A1
から射出された第1波長λ1を有するDVD用光束が、
前記第1、第2回折領域と同じ格子ピッチを有し且つ任
意の向きを向く仮想的回折格子により回折された場合の
仮想的回折光が前記受光素子基板39上で描く円(以
下、回折円という。)をq1とする。同様に、前記光軸
A2から射出された第2波長λ2を有するCD用光束
が、前記第1、第2回折領域と同じ格子ピッチを有し且
つ任意の向きを向く仮想的回折格子により回折された場
合の仮想的回折光が前記受光素子基板39上で描く回折
円をq2とする。
As shown in FIG. 11, first, the optical axis A1
The light flux for DVD having the first wavelength λ1 emitted from
A virtual diffracted light, which is diffracted by a virtual diffraction grating having the same grating pitch as the first and second diffraction regions and oriented in an arbitrary direction, is drawn on the light receiving element substrate 39 (hereinafter referred to as a diffraction circle). Is defined as q1. Similarly, the CD light flux having the second wavelength λ2 emitted from the optical axis A2 is diffracted by a virtual diffraction grating having the same grating pitch as the first and second diffraction regions and oriented in an arbitrary direction. In this case, the diffraction circle drawn by the virtual diffracted light on the light receiving element substrate 39 is q2.

【0127】そして、前記回折円q1が回折円q2と接
するように前記光軸A1,A2の間の間隔dを決定す
る。
Then, the distance d between the optical axes A1 and A2 is determined so that the diffraction circle q1 contacts the diffraction circle q2.

【0128】そして図11に示すように、前記回折円q
1とq2が相互に接する近傍の位置P1,P2を前記第
1受光素子35及び第2受光素子37の配置位置とす
る。なお、当該受光素子35,37の位置P1,P2
は、前記回折円q1とq2との間隔が50μm以下(好
ましくは20μm以下)である位置であれば、いずれの
位置でも良い。
As shown in FIG. 11, the diffraction circle q
The positions P1 and P2 in the vicinity of where 1 and q2 are in contact with each other are the positions where the first light receiving element 35 and the second light receiving element 37 are arranged. The positions P1 and P2 of the light receiving elements 35 and 37 are
May be at any position as long as the distance between the diffraction circles q1 and q2 is 50 μm or less (preferably 20 μm or less).

【0129】次に、第1,第2回折領域129,131
の格子軸方向u,vは、当該回折領域129,131に
よる前記第1,第2波長の回折光r11,r21,r1
2,r22が前記受光素子35,37上へ収束するよう
に決定する。
Next, the first and second diffraction areas 129 and 131
Of the grating axes u and v of the diffracted regions 129 and 131 are diffracted lights r11, r21 and r1 of the first and second wavelengths.
2 and r22 are determined so as to converge on the light receiving elements 35 and 37.

【0130】以上の通り、前記第1、第2光源25,2
7の配置位置及び、前記第1,第2受光素子35,37
の位置及び、前記第1,第2回折領域129,131の
格子軸方向u,vを決定することにより、前記第1回折
領域129による、前記第1波長及び第2波長の+1次
回折光r11,r21をともに前記受光素子35上へ収
束せしめ、前記第2回折領域131による、前記第1波
長及び第2波長の+1次回折光r12,r22をともに
前記受光素子37上へ収束せしめることができる。
As described above, the first and second light sources 25, 2
7 and the first and second light receiving elements 35 and 37.
And the lattice axis directions u and v of the first and second diffractive regions 129 and 131 are determined, the + 1st-order diffracted light r11 of the first wavelength and the second wavelength by the first diffractive region 129, Both r21 can be made to converge on the light receiving element 35, and the + 1st order diffracted lights r12 and r22 of the first wavelength and the second wavelength by the second diffraction region 131 can both be made to converge on the light receiving element 37.

【0131】[0131]

【発明の効果】以上説明したように、本発明によれば、
2波長の光学系で、当該2波長についてコンプリメンタ
リなフォーカス誤差検出を実現することができる。
As described above, according to the present invention,
With a two-wavelength optical system, complementary focus error detection for the two wavelengths can be realized.

【0132】従ってまた、DVD及びCD−R互換ピッ
クアップ或いは再生装置において、小型化・簡素化・低
コスト化・高効率化を実現することができる。
Therefore, it is possible to realize miniaturization, simplification, cost reduction and high efficiency in a DVD and CD-R compatible pickup or reproducing device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の光デバイスの第1実施形態の概略斜
視図である。
FIG. 1 is a schematic perspective view of a first embodiment of an optical device according to the present invention.

【図2】前記第1実施形態に於ける回折光の光跡等を示
す説明図である
FIG. 2 is an explanatory diagram showing a light trace of diffracted light in the first embodiment.

【図3】前記第1実施形態におけるホログラム素子の概
略図である。
FIG. 3 is a schematic diagram of a hologram element in the first embodiment.

【図4】前記第1実施形態における第1受光素子乃至第
10受光素子の構成及びその作用を示す平面説明図であ
る。
FIG. 4 is an explanatory plan view showing configurations and actions of the first to tenth light receiving elements in the first embodiment.

【図5】前記第1実施形態の製作方法を説明する説明図
である。
FIG. 5 is an explanatory diagram illustrating a manufacturing method of the first embodiment.

【図6】前記第1実施形態の製作方法を説明する説明図
である。
FIG. 6 is an explanatory diagram illustrating the manufacturing method of the first embodiment.

【図7】前記第1実施形態の製作方法を説明する説明図
である。
FIG. 7 is an explanatory diagram illustrating the manufacturing method of the first embodiment.

【図8】前記第1実施形態の製作方法を説明する説明図
である。
FIG. 8 is an explanatory diagram illustrating the manufacturing method of the first embodiment.

【図9】この発明の光デバイスの第2実施形態の概略斜
視図である。
FIG. 9 is a schematic perspective view of a second embodiment of the optical device of the present invention.

【図10】前記第2実施形態におけるホログラム素子の
概略図である。
FIG. 10 is a schematic diagram of a hologram element in the second embodiment.

【図11】前記第2実施形態における2光源及び受光素
子の位置を示す平面説明図である。
FIG. 11 is an explanatory plan view showing the positions of two light sources and a light receiving element in the second embodiment.

【図12】前記第2実施形態における第1受光素子乃至
第10受光素子の構成を示す平面説明図である。
FIG. 12 is an explanatory plan view showing a configuration of first to tenth light receiving elements in the second embodiment.

【図13】スポットサイズ法によるフォーカス誤差検出
を説明する説明図である
FIG. 13 is an explanatory diagram illustrating focus error detection by the spot size method.

【符号の説明】[Explanation of symbols]

25:第1光源 27:第2光源 29、129:第1回折領域 31、131:第2回折領域 133:ホログラム素子と、 35:第1受光素子 37:第2受光素子 39:受光素子基板と 43,45,47,49,51,53,55,57:第
3受光素子乃至第10受光素子
25: first light source 27: second light source 29, 129: first diffraction area 31, 131: second diffraction area 133: hologram element, 35: first light receiving element 37: second light receiving element 39: light receiving element substrate 43, 45, 47, 49, 51, 53, 55, 57: third to tenth light receiving elements

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G11B 7/135 G11B 7/125 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) G11B 7/135 G11B 7/125

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】情報記録媒体から情報を読み取る光デバイ
スにして、 第1波長の光を出力する第1光源と、 第2波長の光を出力する第2光源と、 前記第1、第2波長の光を回折する第1回折領域及び第
2回折領域を有するホログラム素子と、 前記ホログラム素子からの回折光を受光する第1受光素
子及び第2受光素子を設けた受光素子基板と、 を備え、 前記第1回折領域及び第2回折領域は、格子軸方向が相
互に平行で且つ格子ピッチが相互に異なる格子配列を有
し、前記第1、第2光源の発光点は、前記格子軸と直交
する方向において相互に所定距離だけ離間され、かつ、 前記第1回折領域及び第2回折領域の格子ピッチは、 当該第1回折領域又は第2回折領域による、前記第1波
長の回折光の前記受光素子基板面への入射位置と、当該
第1波長の0次透過光で定まる光軸との間の距離(L1
1;L12)を第1距離とし、同一回折領域による前記
第2波長の回折光の前記受光素子基板面への入射位置
と、当該第2波長の0次透過光で定まる光軸との間の距
離(L21;L22)を第2距離とするとき、前記第1
距離と第2距離との差(|L11−L21|;|L12
−22|)が、前記第1、第2光源の発光点の間隔とほ
ぼ等しくなり、かつ、 前記第1回折領域による、前記第1又は第2波長の回折
光の前記受光素子基板面への入射位置と、前記第2回折
領域による、同一波長の回折光の前記受光素子基板面へ
の入射位置との間隔(|L11−L12|;|L21−
22|)が前記発光点の間隔とほぼ等しくなるように定
められ、 もって、前記第1回折領域による第1波長及び第2波長
の回折光が、前記受光素子基板上でほぼ同じ第1位置へ
収束し、且つ、前記第2回折領域による第1波長及び第
2波長の回折光が、前記受光素子基板上でほぼ同じ第2
位置へ収束するようにし、 前記第1、第2位置へそれぞれ前記第1、第2受光素子
を配置したことを特徴とする光デバイス。
1. An optical device for reading information from an information recording medium, comprising a first light source for outputting light of a first wavelength, a second light source for outputting light of a second wavelength, and the first and second wavelengths. A hologram element having a first diffraction area and a second diffraction area for diffracting the light, and a light receiving element substrate provided with a first light receiving element and a second light receiving element for receiving the diffracted light from the hologram element, The first diffractive area and the second diffractive area have a grating array in which the grating axis directions are parallel to each other and the grating pitches are different from each other, and the light emitting points of the first and second light sources are orthogonal to the grating axis. The grating pitches of the first diffraction region and the second diffraction region are separated from each other by a predetermined distance in the direction in which the diffracted light of the first wavelength is received by the first diffraction region or the second diffraction region. The incident position on the element substrate surface The distance between the optical axis determined by the zero-order transmitted light of the first wavelength (L1
1; L12) as the first distance, and between the incident position of the diffracted light of the second wavelength on the light receiving element substrate surface by the same diffraction region and the optical axis determined by the 0th-order transmitted light of the second wavelength. When the distance (L21; L22) is the second distance, the first distance
Difference between the distance and the second distance (| L11-L21 |; | L12
−22 |) is substantially equal to the distance between the light emitting points of the first and second light sources, and the diffracted light of the first or second wavelength on the surface of the light receiving element substrate is diffracted by the first diffraction region. and the incident position, the distance between the incident position of the by the second diffraction area, to the light receiving device substrate surface of the diffracted light of the same wavelength (| L11-L12 |; | L21-
22 |) is set to be substantially equal to the interval between the light emitting points, so that the diffracted lights of the first wavelength and the second wavelength by the first diffraction region are moved to substantially the same first position on the light receiving element substrate. The diffracted lights of the first wavelength and the second wavelength which are converged and which are caused by the second diffraction region are substantially the same on the light receiving element substrate.
So as to converge to the position, the first, the respective to the second position the first optical device, characterized in that the second light-receiving elements are arranged.
【請求項2】前記第1、第2位置への回折光は、何れも
前記第1回折領域及び第2回折領域による+1次回折光
であり、前記第1回折領域及び第2回折領域による前記
第1波長及び第2波長の−1次回折光が、前記受光素子
基板上において相互に領域の重複しない独立した受光領
域で受光可能な所定間隔で相互に離間した第3、第4、
第5、第6位置へ収束するように、前記第1、第2光源
の発光点の間隔及び、前記第1回折領域及び第2回折領
域の格子ピッチが設定されていることを特徴とする請求
項1に記載の光デバイス。
2. The diffracted light to the first and second positions is the + 1st order diffracted light by the first and second diffractive areas, and the diffracted light by the first and second diffractive areas. Third-fourth-first-order diffracted lights of the first wavelength and the second wavelength, which are separated from each other at a predetermined interval so that they can be received by independent light-receiving regions that do not overlap each other on the light-receiving element substrate.
The distance between the light emitting points of the first and second light sources and the grating pitch of the first diffraction region and the second diffraction region are set so as to converge to the fifth and sixth positions. Item 2. The optical device according to Item 1.
【請求項3】前記第1回折領域及び第2回折領域による
前記第1波長の−1次回折光は、前記第3、第4位置へ
収束し、前記第1回折領域及び第2回折領域による前記
第2波長の−1次回折光が、前記第5、第6位置へ収束
し、前記第3及び第4位置に配置した受光素子からの検
出信号に基づいて、前記第1波長用のトラッキング誤差
信号を得、前記第5若しくは第6位置又はこれらの位置
と格子軸方向にほぼ直交する直線で複数領域に分割した
受光素子からの信号に基づいて前記第2波長用のトラッ
キング誤差信号を得ることを特徴とする請求項2に記載
の光デバイス。
3. The −1st-order diffracted light of the first wavelength by the first diffraction region and the second diffraction region converges on the third and fourth positions, and the first diffraction region and the second diffraction region generate the first-order diffracted light. The -1st-order diffracted light of the second wavelength converges on the fifth and sixth positions, and based on the detection signals from the light receiving elements arranged at the third and fourth positions , the tracking error signal for the first wavelength. And obtaining a tracking error signal for the second wavelength based on a signal from the light receiving element divided into a plurality of regions by the fifth or sixth position or a straight line substantially orthogonal to these positions in the grating axis direction. The optical device according to claim 2, wherein the optical device is a device.
【請求項4】情報記録媒体から情報を読み取る光デバイ
スにして、 第1波長の光を出力する第1光源と、 第2波長の光を出力する第2光源と、 前記第1、第2波長の光を回折する第1回折領域及び第
2回折領域を有するホログラム素子と、 前記ホログラム素子からの回折光を受光する第1受光素
子及び第2受光素子を設けた受光素子基板と、 を備え、 前記第1回折領域及び第2回折領域は、格子ピッチが相
互に同一であり、格子軸方向が相互に30°以内の所定
角度だけ違えられており、前記第1、第2光源の発光点
は、前記格子軸方向にほぼ直交する方向において相互に
所定距離だけ離間されており、 かつ、前記第1回折領域及び第2回折領域の格子ピッチ
は、 当該第1回折領域又は第2回折領域による、前記第1波
長の回折光の前記受光素子基板面への入射位置と、当該
第1波長の0次透過光で定まる光軸との間の距離を第1
距離とし、同一回折領域による前記第2波長の回折光の
前記受光素子基板面への入射位置と、当該第2波長の0
次透過光で定まる光軸との間の距離を第2距離とすると
き、前記第1距離と第2距離との差が、前記第1、第2
光源の発光点の間隔とほぼ等しくなるように定められ、 前記第1回折領域及び第2回折領域の向きは、 前記第1回折領域による、前記第1波長及び第2波長の
光の回折光が、前記受光素子基板上でほぼ同じ第1位置
へ収束し、 前記第2回折領域による、第1波長及び第2波長の光の
回折光が、前記受光素子基板上で、前記発光点離間方向
に直交する方向において前記第1位置から所定距離だけ
離れたほぼ同じ第2位置へ収束するように定め、 前記第1、第2位置へそれぞれ前記第1、第2受光素子
を配置したことを特徴とする光デバイス。
4. An optical device for reading information from an information recording medium, a first light source for outputting light of a first wavelength, a second light source for outputting light of a second wavelength, and the first and second wavelengths. A hologram element having a first diffraction area and a second diffraction area for diffracting the light, and a light receiving element substrate provided with a first light receiving element and a second light receiving element for receiving the diffracted light from the hologram element, The first diffractive region and the second diffractive region have the same grating pitch, and the grating axis directions are different from each other by a predetermined angle within 30 °, and the light emitting points of the first and second light sources are different from each other. , The grating pitches of the first diffraction area and the second diffraction area are separated from each other by a predetermined distance in a direction substantially orthogonal to the grating axis direction, and the grating pitch of the first diffraction area or the second diffraction area is The diffracted light of the first wavelength The distance between the incident position on the substrate surface of the light receiving element and the optical axis defined by the 0th-order transmitted light of the first wavelength is the first
The distance is defined as the incident position of the diffracted light of the second wavelength on the surface of the light receiving element substrate by the same diffraction region, and 0 of the second wavelength.
When the distance from the optical axis determined by the next transmitted light is the second distance, the difference between the first distance and the second distance is the first and second distances.
The distance between the light emitting points of the light source is set to be substantially equal to each other, and the orientations of the first diffraction region and the second diffraction region are such that the diffracted light of the first wavelength and the second wavelength by the first diffraction region is , Converges to substantially the same first position on the light receiving element substrate, and diffracted light of the first wavelength and the second wavelength by the second diffraction region is on the light receiving element substrate in the light emitting point separation direction. in orthogonal directions determined so as to converge to substantially the same second position a predetermined distance from said first position, said first, said respective to the second position first, and characterized in that the second light-receiving elements are arranged Optical device.
【請求項5】前記第1受光素子及び第2受光素子からの
信号に基づいてフォーカス誤差信号を得ることを特徴と
する請求項1又は4に記載の光デバイス。
5. The optical device according to claim 1, wherein a focus error signal is obtained based on signals from the first light receiving element and the second light receiving element.
【請求項6】前記第1、第2位置への回折光は、いずれ
も前記第1回折領域及び第2回折領域による+1次回折
光であり、前記第1回折領域及び第2回折領域による前
記第1波長の−1次回折光が、前記受光基板上において
収束する第3、第4位置へ配置した受光素子からの信号
に基づいて、前記第1波長の光のトラッキング誤差信号
を得、且つ、前記第1回折領域又は第2回折領域による
前記第2波長の−1次回折光が、前記受光基板上におい
て収束する第5位置若しくは第6位置又はこれらの位置
と格子軸方向に直交する直線で複数領域に分割した受光
素子からの信号に基づいて前記第2波長の光のトラッキ
ング誤差信号を得ることを特徴とする請求項4に記載の
光デバイス。
6. The diffracted light to the first and second positions is + 1st order diffracted light by the first and second diffractive regions, and the diffracted light by the first and second diffractive regions. A -1st-order diffracted light of one wavelength is obtained on the basis of a signal from a light-receiving element arranged at the third and fourth positions on the light-receiving substrate, and a tracking error signal of the light of the first wavelength is obtained, and Fifth position or sixth position where the −1st-order diffracted light of the second wavelength by the first diffraction region or the second diffraction region converges on the light receiving substrate, or a plurality of regions in a straight line orthogonal to these positions in the lattice axis direction. The optical device according to claim 4, wherein a tracking error signal of the light of the second wavelength is obtained based on a signal from the light receiving element divided into two.
JP35806999A 1999-12-16 1999-12-16 Optical device Expired - Lifetime JP3518457B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35806999A JP3518457B2 (en) 1999-12-16 1999-12-16 Optical device
US09/736,176 US6512608B2 (en) 1999-12-16 2000-12-15 Optical device
DE60039403T DE60039403D1 (en) 1999-12-16 2000-12-15 Optical device
EP00127242A EP1109163B1 (en) 1999-12-16 2000-12-15 Optical device
US10/315,067 US6891675B2 (en) 1999-12-16 2002-12-10 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35806999A JP3518457B2 (en) 1999-12-16 1999-12-16 Optical device

Publications (2)

Publication Number Publication Date
JP2001176119A JP2001176119A (en) 2001-06-29
JP3518457B2 true JP3518457B2 (en) 2004-04-12

Family

ID=18457383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35806999A Expired - Lifetime JP3518457B2 (en) 1999-12-16 1999-12-16 Optical device

Country Status (1)

Country Link
JP (1) JP3518457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830773B2 (en) 2004-11-16 2010-11-09 Panasonic Corporation Optical pickup for recording and reproducing information with a plurality of types of optical information recording mediums

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103134A (en) 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Optical pickup device
JP4229924B2 (en) 2005-04-25 2009-02-25 パナソニック株式会社 Optical pickup device
JP4449912B2 (en) 2006-01-27 2010-04-14 日本ビクター株式会社 Optical pickup
JP4523574B2 (en) 2006-08-25 2010-08-11 パナソニック株式会社 Optical pickup device
JP2008146741A (en) 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Optical pickup device
JP2010009682A (en) 2008-06-27 2010-01-14 Panasonic Corp Optical head device, optical information processing device, and signal detection method
CN112985297B (en) * 2021-02-07 2023-06-23 新余学院 Dual-wavelength common-path digital holographic microscopic device based on reflection measurement and measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830773B2 (en) 2004-11-16 2010-11-09 Panasonic Corporation Optical pickup for recording and reproducing information with a plurality of types of optical information recording mediums

Also Published As

Publication number Publication date
JP2001176119A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
EP1109163B1 (en) Optical device
US6084843A (en) Optical recording and reproducing apparatus and method
JP3459777B2 (en) Optical pickup device
KR100403622B1 (en) Optical pickup apparatus and method for focusing light spot optimally
JPH0440634A (en) Optical pickup head device
JP3933374B2 (en) Optical pickup device capable of detecting stable error signals
US6404709B1 (en) Optical pickup device
JP3518457B2 (en) Optical device
KR20060115922A (en) Optical device and optical pickup device
US8045443B2 (en) Optical pickup apparatus
JP4549583B2 (en) Optical pickup, optical disc apparatus, and information processing apparatus
KR100792659B1 (en) Optical device and optical pickup device
US7313061B2 (en) Optical pickup having a plurality of photodetectors divided into four regions used to obtain both focus and tracking error signals
JP2004253111A (en) Optical pickup device
JP3536805B2 (en) Optical pickup
KR100464419B1 (en) Compatible optical pickup for recording and/or reproducing
JP3389416B2 (en) Optical pickup device
JP4190267B2 (en) Optical information recording / reproducing head device
JP2002260251A (en) Optical pickup device
JPH0863778A (en) Optical pickup
JP2001084609A (en) Optical device
KR20000025093A (en) Interchangeable optical pickup apparatus
KR100211819B1 (en) An optical pick up device
JP4022820B2 (en) Optical pickup device
JP4742159B2 (en) Optical information reproduction method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

R151 Written notification of patent or utility model registration

Ref document number: 3518457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term