JP2000251250A - Carbon film thickness measuring method and method of manufacturing magnetic recording medium - Google Patents

Carbon film thickness measuring method and method of manufacturing magnetic recording medium

Info

Publication number
JP2000251250A
JP2000251250A JP11048078A JP4807899A JP2000251250A JP 2000251250 A JP2000251250 A JP 2000251250A JP 11048078 A JP11048078 A JP 11048078A JP 4807899 A JP4807899 A JP 4807899A JP 2000251250 A JP2000251250 A JP 2000251250A
Authority
JP
Japan
Prior art keywords
thickness
film
wavelength
carbon
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11048078A
Other languages
Japanese (ja)
Inventor
Noboru Kawai
登 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP11048078A priority Critical patent/JP2000251250A/en
Publication of JP2000251250A publication Critical patent/JP2000251250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable high precision, simplified and low cost measurement of film thickness by measuring reflectivity of light beam in the wavelength in the particular range for the film surface of carbon formed on a metal magnetic film, and then measuring a carbon film thickness from the liner relative correlation of the wavelength of light beam where the reflectivity becomes minimum and the carbon film thickness. SOLUTION: In the section of wavelength of light beam of 300 to 500 nm, as the film thickness of DLC protection film increases, the wavelength of optical beam that provides the minimum reflectivity becomes larger. From the figure indicating the relationship between the thickness of DLC protection film and the wavelength of light beam providing the minimum reflectivity measured in the range of wavelength of 300 to 550 m, it can be understood that the linear relationship exists between the thickness of DLC protection film and wavelength of light beam that provides the minimum reflectivity. In comparison with the figure indicating the relationship between the wavelength of light beam that provides the minimum reflectivity of the DLC protection having unknown thickness and the wavelength of the beam that provides the minimum thickness of the DLC protection film and reflectivity, the unknown DLC protection film thickness can be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁気テープなど
の磁気記録媒体の保護膜等に用いられるカーボン膜の膜
厚測定方法、及び磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the thickness of a carbon film used as a protective film for a magnetic recording medium such as a magnetic tape, and a method for manufacturing a magnetic recording medium.

【0002】[0002]

【従来の技術】従来より磁気記録媒体としては、磁性粉
末を樹脂等からなる結合剤に分散させた磁性塗料を非磁
性支持体上に塗布、乾燥して作製されるいわゆる塗布型
磁気記録媒体が広く使用されている。
2. Description of the Related Art Conventionally, as a magnetic recording medium, a so-called coating type magnetic recording medium produced by applying a magnetic paint in which a magnetic powder is dispersed in a binder made of a resin or the like on a non-magnetic support and drying it. Widely used.

【0003】磁気記録媒体は高密度化の要求に伴い、磁
性膜が金属薄膜で形成される金属薄膜型磁気記録媒体が
使用されるようになり、8ミリビデオデッキ用磁気テー
プではCo−Ni−O(コバルトとニッケルの酸化物)
金属蒸着薄膜が、DVフォーマット磁気テープではCo
−O(コバルト酸化物)金属蒸着薄膜が磁性体として、
使用されている。
With the demand for higher density of the magnetic recording medium, a metal thin film type magnetic recording medium in which a magnetic film is formed of a metal thin film has been used. O (oxide of cobalt and nickel)
The metal deposited thin film is Co in DV format magnetic tape.
-O (cobalt oxide) metal deposited thin film as a magnetic material,
It is used.

【0004】そして、記録密度の高密度化に伴い、磁気
ヘッドと磁気記録媒体の相対速度が大きくなる傾向にあ
る。磁気ヘッドと磁気記録媒体の相対速度が大きくなる
と、摺動速度が大きくなり、磁気記録媒体の耐摩耗性が
問題となってくる。その解決策として、保護膜の使用が
提案、実用化され、特にカーボン保護膜が実用化されて
いる。
As the recording density increases, the relative speed between the magnetic head and the magnetic recording medium tends to increase. When the relative speed between the magnetic head and the magnetic recording medium increases, the sliding speed increases, and the wear resistance of the magnetic recording medium becomes a problem. As a solution, use of a protective film has been proposed and put into practical use, and in particular, a carbon protective film has been put into practical use.

【0005】8ミリビデオデッキ用蒸着磁気テープで
は、磁気ヘッドと磁気記録媒体の摺動速度が大きくない
ため、カーボン保護膜は必要ではなかったが、DVフォ
ーマット蒸着磁気テープでは、ダイアモンド性を付与し
たダイアモンド状カーボン(Diamond Like Carbon:以
下DLCと称する)膜を保護膜として使用している。
[0005] In the case of a vapor-deposited magnetic tape for an 8 mm video deck, a carbon protective film was not required because the sliding speed between the magnetic head and the magnetic recording medium was not high. A diamond-like carbon (hereinafter referred to as DLC) film is used as a protective film.

【0006】保護膜であるカーボン膜の膜厚は、薄すぎ
ると摺動耐久性が低くなり、厚すぎると磁性膜と磁気ヘ
ッドの距離が大きくなるため、スペーシング損失が大き
くなり、再生出力が低下する。そのため、カーボン保護
膜の膜厚は、摺動耐久性を高くとれる範囲内で、再生出
力を高くするため、できるだけ薄くする必要があり、厳
密に管理されなければならない。DVフォーマット蒸着
磁気テープでは、DLC保護膜の膜厚は±1nmに管理
される必要がある。
If the thickness of the carbon film, which is the protective film, is too small, the sliding durability decreases. If the thickness is too large, the distance between the magnetic film and the magnetic head increases, so that the spacing loss increases and the reproduction output decreases. descend. Therefore, the thickness of the carbon protective film must be as thin as possible in order to increase the reproduction output within a range in which the sliding durability can be increased, and must be strictly controlled. In a DV-format deposited magnetic tape, the thickness of the DLC protective film must be controlled to ± 1 nm.

【0007】カーボン保護膜の膜厚を管理するためのカ
ーボン保護膜の膜厚測定方法としては、次の方法が従来
より提案されている。磁気テープの断面を透過型電子顕
微鏡観察(断面TEM法)することにより、カーボン保
護膜の膜厚を測定する方法、X線電子分光法によりカー
ボン膜厚を測定する方法(特開平9−14947号)、
光の透過の度合によりカーボン保護膜の膜厚を測定する
方法(特開平6−150309号)が提案されている。
また、特開平6−150309号には、光の透過の度合
により保護膜の膜厚測定を行いながら保護膜を成膜する
磁気テープ製造方法が開示されている。
As a method for measuring the thickness of the carbon protective film for controlling the thickness of the carbon protective film, the following method has been conventionally proposed. A method of measuring the thickness of the carbon protective film by observing the cross section of the magnetic tape with a transmission electron microscope (cross-sectional TEM method), and a method of measuring the carbon film thickness by X-ray electron spectroscopy (Japanese Patent Application Laid-Open No. 9-14947) ),
A method of measuring the thickness of a carbon protective film based on the degree of light transmission (Japanese Patent Laid-Open No. 6-150309) has been proposed.
Japanese Patent Application Laid-Open No. 6-150309 discloses a method for manufacturing a magnetic tape in which a protective film is formed while measuring the thickness of the protective film according to the degree of light transmission.

【0008】[0008]

【発明が解決しようとする課題】前述したように、磁気
記録媒体のカーボン保護膜の膜厚は、前述のように摺動
耐久性を高くとれる範囲内で、再生出力を高くするた
め、できるだけ薄くする必要がある。従って、カーボン
保護膜の膜厚は、厳密に管理されなければならず、その
ためにはカーボン保護膜の正確な膜厚測定方法が必要で
ある。
As described above, the thickness of the carbon protective film of the magnetic recording medium is as thin as possible in order to increase the reproduction output within the range where the sliding durability can be increased as described above. There is a need to. Therefore, the thickness of the carbon protective film must be strictly controlled, and for that, an accurate method for measuring the thickness of the carbon protective film is required.

【0009】断面TEM法は、磁気テープの断面の超薄
切片を作製し、その切片を透過型電子顕微鏡の拡大能力
の限界に近い50万倍程度に拡大して観察し、観察され
た拡大写真から、カーボン保護膜の膜厚を算出する方法
である。DVフォーマット蒸着磁気テープでは、カーボ
ン保護膜の膜厚はおおよそ10nmであり、断面TEM
法により50万倍に拡大されても、カーボン保護膜厚は
5mmにしか観察されない。そして、カーボン保護膜の
厚み方向の境界線は、50万倍となるとかなり曖昧にな
り、管理されなければならない±1nmの厚み管理幅と
比較して、断面TEM法ではかなり大きな測定誤差が生
じていた。
In the cross-sectional TEM method, an ultra-thin section of a section of a magnetic tape is prepared, and the section is magnified to about 500,000 times, which is close to the limit of the magnifying ability of a transmission electron microscope, and observed. This is a method of calculating the thickness of the carbon protective film from the following equation. In a DV format evaporated magnetic tape, the thickness of the carbon protective film is approximately 10 nm, and the cross-sectional TEM
Even if it is magnified 500,000 times by the method, the carbon protective film thickness is observed only at 5 mm. Then, the boundary line in the thickness direction of the carbon protective film becomes considerably vague at 500,000 times, and a considerably large measurement error occurs in the cross-sectional TEM method as compared with the thickness control width of ± 1 nm which must be controlled. Was.

【0010】また、超薄切片の作製にはかなりの熟練を
要し、断面試料の作製、及び透過型電子顕微鏡による観
察にも非常に時間がかかる状況であった。さらに、透過
電子顕微鏡は非常に高価な装置であり、大きさも大きい
ため、この透過電子顕微鏡をカーボン保護膜成膜装置に
設置することは不可能であった。
[0010] In addition, the preparation of ultrathin sections requires considerable skill, and the preparation of cross-sectional samples and the observation with a transmission electron microscope have taken a very long time. Further, since the transmission electron microscope is a very expensive device and large in size, it has not been possible to install this transmission electron microscope in a carbon protective film forming apparatus.

【0011】X線電子分光法によるカーボン膜厚測定方
法は、精度はかなり良いことが特開平9−14947号
に開示されているが、X線電子分光法は真空中で測定す
るため、測定に時間がかなり必要である。また、X線電
子分光測定器はかなり高価であり、大きさも大きいた
め、カーボン保護膜成膜装置には設置が不可能であっ
た。
The method of measuring the carbon film thickness by X-ray electron spectroscopy is disclosed in Japanese Unexamined Patent Application Publication No. 9-14947, which has a considerably high accuracy. It takes a lot of time. Further, since the X-ray electron spectrometer is considerably expensive and large in size, it cannot be installed in a carbon protective film forming apparatus.

【0012】光の透過の度合によりカーボン保護膜の膜
厚を測定する方法は、簡便であり、装置価格も安価で、
カーボン保護膜成膜装置にその測定装置を設置すること
も可能であるため、良い方法であると考え、測定を行っ
た。しかし、DLC膜は測定できないこと、及び測定精
度に問題があることが判明した。DVフォーマット蒸着
磁気テープの場合、ベースフィルムにCo−O蒸着磁性
膜を形成した段階での910nmの光の透過率は約2.
5%(磁性膜成膜前との比)で、この磁性膜上にDLC
膜を10nm成膜しても透過率が変化しない状況であっ
た。DLC膜は、スパッタカーボン膜と違い、光の透過
性が高く、そのため透過率が変化しないと推定される。
光の透過性が悪いスパッタカーボン膜を10nm成膜
し、透過率を測定した。その結果、約0.5%の透過率
変化があったが、繰り返しの測定再現性が悪く、±1n
mの膜厚管理には測定精度に問題があることが判明し
た。
The method of measuring the thickness of the carbon protective film based on the degree of light transmission is simple and the apparatus is inexpensive.
Since it is possible to install the measuring device in the carbon protective film forming device, it was considered to be a good method and the measurement was performed. However, it was found that the DLC film could not be measured and that there was a problem in the measurement accuracy. In the case of a DV format vapor-deposited magnetic tape, the transmittance of light at 910 nm at the stage when a Co—O vapor-deposited magnetic film is formed on a base film is about 2.
5% (the ratio before the magnetic film was formed)
Even when a film was formed to a thickness of 10 nm, the transmittance did not change. It is presumed that the DLC film has a high light transmittance unlike the sputtered carbon film, so that the transmittance does not change.
A sputtered carbon film having poor light transmittance was formed to a thickness of 10 nm, and the transmittance was measured. As a result, there was a transmittance change of about 0.5%, but the reproducibility of repeated measurement was poor, and ± 1 n
It has been found that there is a problem in the measurement accuracy in controlling the film thickness of m.

【0013】そこで、上記問題点に鑑み、本発明は、磁
気記録媒体におけるカーボン膜の膜厚を、高い測定精度
で、しかも簡便で安価に測定できる方法を提供すること
目的とする。さらに、本発明はカーボン膜成膜装置にお
いてカーボン膜の膜厚を測定、管理できる磁気記録媒体
の製造方法を提供することを目的とする。
[0013] In view of the above problems, an object of the present invention is to provide a method capable of measuring the thickness of a carbon film on a magnetic recording medium with high measurement accuracy, easily and inexpensively. Still another object of the present invention is to provide a method of manufacturing a magnetic recording medium capable of measuring and managing the thickness of a carbon film in a carbon film forming apparatus.

【0014】[0014]

【課題を解決するための手段】そこで、上記課題を解決
するために本発明は、非磁性支持体上に形成された金属
磁性膜と、その金属磁性膜上に形成されたカーボン膜と
を備えた磁気記録媒体の前記カーボン膜の膜厚測定方法
であって、前記カーボン膜面に対して、波長300〜5
50nmの光の反射率を測定し、その反射率が極小値と
なる光の波長とカーボン膜厚との直線的相関関係から、
カーボン膜厚を測定することを特徴とするカーボン膜の
膜厚測定方法、を提供すると共に、
In order to solve the above-mentioned problems, the present invention comprises a metal magnetic film formed on a nonmagnetic support and a carbon film formed on the metal magnetic film. Measuring the thickness of the carbon film of the magnetic recording medium, wherein the wavelength of the carbon film is 300 to 5 with respect to the carbon film surface.
The reflectance of 50 nm light is measured, and from the linear correlation between the wavelength of light at which the reflectance is a minimum and the carbon film thickness,
A carbon film thickness measurement method characterized by measuring the carbon film thickness, and

【0015】非磁性支持体上に形成された金属磁性膜上
にカーボン膜を形成するカーボン膜成膜装置として、カ
ーボン膜面に対して波長300〜550nmの光の反射
率を測定する反射率測定器を備えたカーボン膜成膜装置
を用い、請求項1記載のカーボン膜の膜厚測定方法によ
り、カーボン膜の膜厚を測定し管理することを特徴とす
る磁気記録媒体の製造方法、を提供するものである。
As a carbon film forming apparatus for forming a carbon film on a metal magnetic film formed on a non-magnetic support, a reflectivity measurement for measuring a reflectance of light having a wavelength of 300 to 550 nm with respect to the carbon film surface. 2. A method for manufacturing a magnetic recording medium, comprising: measuring and managing the thickness of a carbon film by the method for measuring the thickness of a carbon film according to claim 1 using a carbon film forming apparatus provided with a device. Is what you do.

【0016】[0016]

【発明の実施の形態】本発明に係わるカーボン膜の膜厚
測定方法は、非磁性支持体上に金属磁性膜と未知の膜厚
を有するカーボン膜とが形成されてなる磁気記録媒体に
ついて、該カーボン膜の膜厚を測定するに際し、該カー
ボン膜面について光の波長300〜550nmの反射率
を測定し、その反射率が300〜550nmの間で極小
値となる光の波長を求め、その波長から、該カーボン膜
厚を測定するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The method for measuring the thickness of a carbon film according to the present invention relates to a magnetic recording medium comprising a metal magnetic film and a carbon film having an unknown thickness formed on a non-magnetic support. When measuring the thickness of the carbon film, the reflectance of the carbon film surface at a wavelength of light of 300 to 550 nm is measured, and the wavelength of the light at which the reflectance has a minimum value between 300 and 550 nm is determined. From this, the carbon film thickness is measured.

【0017】カーボン膜面の反射率が300〜550n
mの間で極小値となる光の波長をカーボン膜厚に換算す
る方法は、既知の膜厚を有するカーボン膜が形成された
複数の磁気記録媒体に対して、該カーボン膜面について
光の波長300〜550nmの反射率を測定し、その反
射率が300〜550nmの間で極小値となる光の波長
とカーボン膜厚の相関関係を求め、この相関関係と未知
の膜厚を有するカーボン膜の極小値となる光の波長か
ら、カーボン膜厚を換算する。
The reflectance of the carbon film surface is 300 to 550 n
The method of converting the wavelength of light having a minimum value between m and m to a carbon film thickness is a method in which, for a plurality of magnetic recording media on which a carbon film having a known film thickness is formed, the light wavelength The reflectance of 300 to 550 nm is measured, and the correlation between the wavelength of light having a minimum reflectance between 300 and 550 nm and the carbon film thickness is determined. The carbon film thickness is converted from the wavelength of the light having the minimum value.

【0018】ベースフィルム上に金属磁性膜を形成した
後、この金属磁性膜上にカーボン保護膜を形成する磁気
記録媒体の製造方法において、カーボン膜面について光
の波長300〜550nmの反射率を測定し、その反射
率が300〜550nmの間で極小値となる光の波長を
求め、その波長からカーボン膜厚を測定する場合、カー
ボン膜成膜装置の内部に光の波長300〜550nmの
反射率測定器を設置することで、該カーボン膜厚を精度
良く測定することが可能となる。
After a metal magnetic film is formed on a base film, in a method of manufacturing a magnetic recording medium in which a carbon protective film is formed on the metal magnetic film, the reflectance of the carbon film surface at a light wavelength of 300 to 550 nm is measured. Then, when the wavelength of the light whose reflectance has a minimum value between 300 and 550 nm is determined, and the carbon film thickness is measured from the wavelength, the reflectance of the light having a wavelength of 300 to 550 nm is provided inside the carbon film forming apparatus. By installing a measuring device, the carbon film thickness can be measured with high accuracy.

【0019】反射率の測定には、例えば分光光度計を用
いる。分光光度計等の反射率測定器は、透過型電子顕微
鏡及びX線電子分光測定器よりはるかに安価、小型で、
測定も簡単であり、測定時間も短時間で済む。反射率測
定器は測定精度も十分に高い。
For the measurement of the reflectance, for example, a spectrophotometer is used. Reflectance measuring instruments such as spectrophotometers are much cheaper and smaller than transmission electron microscopes and X-ray electron spectrometers.
The measurement is simple and the measurement time is short. The reflectometer has a sufficiently high measurement accuracy.

【0020】反射率の低い金属酸化物磁性膜において
も、カーボン膜面について光の波長300〜550nm
の反射率を測定し、その反射率が300〜550nmの
間で極小値となる光の波長を求め、その波長によるカー
ボン膜厚測定は可能で、特にCo−O(コバルト酸化
物)である場合は、カーボン膜厚の測定が精度良く測定
できる。
Even in a metal oxide magnetic film having a low reflectance, the wavelength of light is 300 to 550 nm on the carbon film surface.
Is measured, and the wavelength of light at which the reflectance has a minimum value in the range of 300 to 550 nm is obtained, and the carbon film thickness can be measured based on the wavelength, particularly when Co-O (cobalt oxide) is used. Can accurately measure the carbon film thickness.

【0021】そして、カーボン保護膜が光の透過性の高
いDLC膜であっても、カーボン膜厚の測定が可能とな
る。
[0021] Even if the carbon protective film is a DLC film having high light transmittance, the carbon film thickness can be measured.

【0022】カーボン膜は、下地である金属磁性膜との
光の干渉により、波長300〜550nmの光に対し
て、その反射率が極小値となる光の波長が、カーボン膜
厚が大きくなるに従って大きくなる。この極小値となる
光の波長の変化を利用して、カーボン膜の膜厚が測定で
きる。
The wavelength of light having a minimum reflectance with respect to light having a wavelength of 300 to 550 nm due to interference of light with a metal magnetic film as an underlayer increases as the carbon film thickness increases. growing. The thickness of the carbon film can be measured using the change in the wavelength of the light having the minimum value.

【0023】本発明の実施例を図面と共に説明する。図
1は、本発明の製造方法により製造した磁気記録媒体の
一例である蒸着磁気テープの構造を示す図である。この
蒸着磁気テープにおいて、6.3μm厚のポリエチレン
テレフタレート(以下PETと称する)ベースフィルム
1上にCo−O磁性層2が200nm蒸着されており、
その上にDLC保護膜3が成膜されている。さらにその
上には、液体潤滑膜4が1〜3nm塗布されている。ま
た、PETベースフィルム1の逆側の面には、バックコ
ート層5が0.5μm形成されている。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a structure of a vapor-deposited magnetic tape which is an example of a magnetic recording medium manufactured by the manufacturing method of the present invention. In this vapor-deposited magnetic tape, a Co-O magnetic layer 2 is vapor-deposited on a 6.3 μm-thick polyethylene terephthalate (hereinafter referred to as PET) base film 1 in a thickness of 200 nm.
A DLC protective film 3 is formed thereon. Further thereon, a liquid lubricating film 4 is applied in a thickness of 1 to 3 nm. On the opposite side of the PET base film 1, a back coat layer 5 is formed to a thickness of 0.5 μm.

【0024】次に、本発明のカーボン膜の膜厚測定方法
の実施例について説明する。実施例の測定方法において
は、DLC保護膜3の膜厚を、分光光度計より求めた光
の波長300〜550nmの反射率を測定し、その反射
率が300〜550nmの間で極小値となる光の波長に
より測定するため、図2に示すように、PETベースフ
ィルム1、Co−O磁性層2、DLC保護膜3までの構
造の磁気記録媒体を測定サンプルとした。
Next, an embodiment of the carbon film thickness measuring method of the present invention will be described. In the measuring method of the embodiment, the thickness of the DLC protective film 3 is measured by measuring the reflectance of light having a wavelength of 300 to 550 nm obtained by a spectrophotometer, and the reflectance becomes a minimum value between 300 and 550 nm. As shown in FIG. 2, a magnetic recording medium having a structure including a PET base film 1, a Co—O magnetic layer 2, and a DLC protective film 3 was used as a measurement sample for measurement by light wavelength.

【0025】Co−O磁性層2が成膜されたフィルム上
に、DLC保護膜3は連続巻き取り式プラズマCVD
(Chemical Vapor Depositio
n)装置により成膜される。その際、フィルム送り速度
を変化させることにより、DLC保護膜3の膜厚を種々
異ならせたサンプルを作製した。
On the film on which the Co—O magnetic layer 2 is formed, a DLC protective film 3 is formed by a continuous winding type plasma CVD.
(Chemical Vapor Deposition
n) The film is formed by the apparatus. At that time, samples in which the film thickness of the DLC protective film 3 was variously changed by changing the film feeding speed were produced.

【0026】そのフィルムサンプルについて、それぞれ
7X20mmの大きさに切り出し、ベースフィルム面側
がガラス面と接すように無色透明スライドガラスに貼り
付け、積分球および試料室付き分光光度計((株)島津
製作所製UV−3101PC)にセット後、300〜8
00nmの波長についてDLC保護膜面の反射率を測定
した。スライドガラスへの貼り付けは、少量の水をサン
プルフィルムとスライドガラスとの間に入れ、その水を
綿棒により薄く均一にのばし、サンプルフィルムにシワ
が入らないようにして、貼り付けた。その測定結果が図
3である。なお、反射率の測定は極めて簡便かつ短時間
である。
Each of the film samples was cut out to a size of 7 × 20 mm and attached to a colorless and transparent slide glass such that the base film surface was in contact with the glass surface. 300-8 after setting in UV-3101PC
The reflectance of the surface of the DLC protective film was measured at a wavelength of 00 nm. For attachment to the slide glass, a small amount of water was put between the sample film and the slide glass, and the water was thinly and evenly spread with a cotton swab so that wrinkles did not enter the sample film. FIG. 3 shows the measurement results. The measurement of the reflectance is extremely simple and short.

【0027】図3に反射率の測定結果を示した各サンプ
ルについては、断面TEM法によりDLC保護膜3の膜
厚を測定した。断面TEM法は、前述のように測定精度
があまり良くないので、3回の測定の平均値を測定結果
とし、DLC保護膜3の膜厚とした。
For each sample whose reflectance was measured in FIG. 3, the thickness of the DLC protective film 3 was measured by a cross-sectional TEM method. As described above, the cross-sectional TEM method does not have very good measurement accuracy, and therefore, the average value of three measurements was taken as the measurement result, and the thickness of the DLC protective film 3 was used.

【0028】図3から分かるように、光の波長300〜
550nmの区間において、DLC保護膜3の膜厚が大
きくなるのに従い、反射率が極小値となる光の波長が大
きくなっている。DLC保護膜の膜厚と、光の波長30
0〜550nmの反射率を測定し、その反射率が300
〜550nmの間で極小値となる光の波長の関係を示し
たのが図4である。図4からは、極めて明瞭に、DLC
保護膜の膜厚と反射率が極小値となる光の波長との間に
直線の相関があることが分かる。
As can be seen from FIG.
In the section of 550 nm, as the thickness of the DLC protective film 3 increases, the wavelength of light at which the reflectance has a minimum value increases. DLC protective film thickness and light wavelength 30
The reflectance at 0 to 550 nm is measured and the reflectance is 300
FIG. 4 shows the relationship between the wavelengths of light having a minimum value between 550 nm and 550 nm. From FIG. 4, very clearly, DLC
It can be seen that there is a linear correlation between the thickness of the protective film and the wavelength of light at which the reflectance has a minimum value.

【0029】このように、DLC保護膜の膜厚と反射率
が極小値となる光の波長との間に直線の相関があること
から、未知の膜厚のDLC保護膜の反射率が極小値とな
る光の波長と図4とを比較することにより、未知のDL
C保護膜厚を測定できる。
As described above, since there is a linear correlation between the thickness of the DLC protective film and the wavelength of the light at which the reflectance has the minimum value, the reflectance of the DLC protective film having an unknown film thickness has the minimum value. By comparing the wavelength of light to be obtained with FIG.
The C protective film thickness can be measured.

【0030】上述したように、本実施例の測定方法は、
安価で小型な測定装置により、磁気記録媒体におけるカ
ーボン膜の膜厚を、高い測定精度で、しかも簡便かつ短
時間に測定することを可能とする。
As described above, the measuring method of this embodiment is as follows.
An inexpensive and small measuring device makes it possible to measure the thickness of a carbon film on a magnetic recording medium with high measurement accuracy, easily and in a short time.

【0031】次に、本発明の磁気記録媒体の製造方法の
一実施例を説明する。PETベースフィルム1上にCo
−O磁性層2を200nm蒸着により形成した後、この
Co−O磁性層2上にDLC保護膜3を連続巻き取り式
プラズマCVD装置で形成する。この連続巻き取り式プ
ラズマCVD装置内部のDLC形成部とフィルム巻き取
り部との間に、波長300〜550nmの光の反射率測
定用の分光光度計を設置しておき、DLC保護膜面の反
射率を測定する。そして、その反射率が極小値となる光
の波長から、上記のカーボン膜の膜厚測定方法によりD
LC膜厚を測定し、連続巻き取り式プラズマCVD装置
におけるDLC保護膜の成膜厚を管理する。
Next, an embodiment of the method for manufacturing a magnetic recording medium according to the present invention will be described. Co on PET base film 1
After the -O magnetic layer 2 is formed by vapor deposition with a thickness of 200 nm, the DLC protective film 3 is formed on the Co-O magnetic layer 2 by a continuous winding type plasma CVD apparatus. A spectrophotometer for measuring the reflectance of light having a wavelength of 300 to 550 nm is installed between the DLC forming section and the film winding section inside the continuous winding type plasma CVD apparatus, and the reflection on the DLC protective film surface is measured. Measure the rate. From the wavelength of the light at which the reflectance becomes a minimum value, D is determined by the above-described carbon film thickness measuring method.
The thickness of the LC film is measured, and the thickness of the DLC protective film in the continuous winding type plasma CVD apparatus is controlled.

【0032】DLC保護膜3の上には、液体潤滑膜4を
1〜3nm厚に塗布する。また、PETベースフィルム
1の逆側の面には、バックコート層5を0.5μm厚に
形成する。
On the DLC protective film 3, a liquid lubricating film 4 is applied to a thickness of 1 to 3 nm. On the opposite side of the PET base film 1, a back coat layer 5 is formed to a thickness of 0.5 μm.

【0033】このように、本実施例の製造方法によれ
ば、DLC保護膜の成膜装置において、DLC保護膜の
膜厚測定が高い測定精度で、しかも簡便かつ短時間に行
え、DLC保護膜の膜厚が精度良く管理された磁気テー
プが製造できる。
As described above, according to the manufacturing method of this embodiment, in the DLC protective film forming apparatus, the thickness of the DLC protective film can be measured with high measurement accuracy, easily and in a short time. A magnetic tape whose film thickness is accurately controlled can be manufactured.

【0034】[0034]

【発明の効果】以上の通り、本発明のカーボン膜の膜厚
測定方法は、安価で小型な測定装置により、磁気記録媒
体におけるカーボン膜の膜厚を、高い測定精度で、しか
も簡便かつ短時間に測定することを可能とする。
As described above, the method for measuring the thickness of a carbon film of the present invention can measure the thickness of a carbon film on a magnetic recording medium with high measurement accuracy, easily and in a short time using an inexpensive and small measuring device. Measurement.

【0035】また、本発明の磁気記録媒体の製造方法
は、カーボン膜成膜装置において、カーボン膜の膜厚測
定が高い測定精度で、しかも簡便かつ短時間に行え、カ
ーボン膜の膜厚が精度良く管理された磁気記録媒体の製
造を可能とする。
Further, the method of manufacturing a magnetic recording medium of the present invention can measure the thickness of a carbon film in a carbon film forming apparatus with high measurement accuracy, easily and in a short time, It enables the manufacture of well-managed magnetic recording media.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の製造方法により製造し
た磁気記録媒体の一例を示す図である。
FIG. 1 is a diagram showing an example of a magnetic recording medium manufactured by a method for manufacturing a magnetic recording medium according to the present invention.

【図2】本発明のカーボン膜の膜厚測定方法に用いた磁
気記録媒体の一例を示す図である。
FIG. 2 is a diagram showing an example of a magnetic recording medium used in the carbon film thickness measuring method of the present invention.

【図3】光の各波長におけるDLC保護膜の反射率を示
すグラフである。
FIG. 3 is a graph showing the reflectance of a DLC protective film at each wavelength of light.

【図4】カーボン膜の膜厚測定方法の一実施例に用い
た、DLC保護膜の膜厚と反射率が極小値となる光の波
長との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the thickness of a DLC protective film and the wavelength of light at which the reflectance has a minimum value, which is used in one embodiment of the method of measuring the thickness of a carbon film.

【符号の説明】[Explanation of symbols]

1 PETベースフィルム 2 CoO磁性層 3 DLC保護膜 4 液体潤滑膜 5 バックコート層 Reference Signs List 1 PET base film 2 CoO magnetic layer 3 DLC protective film 4 Liquid lubricating film 5 Back coat layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体上に形成された金属磁性膜
と、その金属磁性膜上に形成されたカーボン膜とを備え
た磁気記録媒体の前記カーボン膜の膜厚測定方法であっ
て、前記カーボン膜面に対して、波長300〜550n
mの光の反射率を測定し、 その反射率が極小値となる光の波長とカーボン膜厚との
直線的相関関係から、カーボン膜厚を測定することを特
徴とするカーボン膜の膜厚測定方法。
1. A method for measuring the thickness of a carbon film of a magnetic recording medium comprising a metal magnetic film formed on a non-magnetic support and a carbon film formed on the metal magnetic film, Wavelength of 300 to 550 n with respect to the carbon film surface
m is measured by measuring the reflectance of light having a minimum value of m, and measuring the carbon thickness from a linear correlation between the wavelength of the light at which the reflectance becomes a minimum value and the carbon thickness. Method.
【請求項2】非磁性支持体上に形成された金属磁性膜上
にカーボン膜を形成するカーボン膜成膜装置として、カ
ーボン膜面に対して波長300〜550nmの光の反射
率を測定する反射率測定器を備えたカーボン膜成膜装置
を用い、請求項1記載のカーボン膜の膜厚測定方法によ
り、カーボン膜の膜厚を測定し管理することを特徴とす
る磁気記録媒体の製造方法。
2. A carbon film forming apparatus for forming a carbon film on a metal magnetic film formed on a non-magnetic support, a reflection measuring device for measuring the reflectance of light having a wavelength of 300 to 550 nm with respect to the carbon film surface. A method for manufacturing a magnetic recording medium, comprising: measuring and managing the thickness of a carbon film by the method for measuring the thickness of a carbon film according to claim 1 using a carbon film deposition apparatus provided with a rate measuring device.
JP11048078A 1999-02-25 1999-02-25 Carbon film thickness measuring method and method of manufacturing magnetic recording medium Pending JP2000251250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11048078A JP2000251250A (en) 1999-02-25 1999-02-25 Carbon film thickness measuring method and method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11048078A JP2000251250A (en) 1999-02-25 1999-02-25 Carbon film thickness measuring method and method of manufacturing magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2000251250A true JP2000251250A (en) 2000-09-14

Family

ID=12793313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11048078A Pending JP2000251250A (en) 1999-02-25 1999-02-25 Carbon film thickness measuring method and method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2000251250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846498A (en) * 2009-03-27 2010-09-29 Hoya株式会社 Method for determining film thickness and method for manufacturing glass optical element
JP2012132876A (en) * 2010-12-24 2012-07-12 Ihi Corp Thickness evaluation method and apparatus for carbon thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846498A (en) * 2009-03-27 2010-09-29 Hoya株式会社 Method for determining film thickness and method for manufacturing glass optical element
CN101846498B (en) * 2009-03-27 2013-01-30 Hoya株式会社 Method for determining film thickness and method for manufacturing glass optical element
JP2012132876A (en) * 2010-12-24 2012-07-12 Ihi Corp Thickness evaluation method and apparatus for carbon thin film

Similar Documents

Publication Publication Date Title
US6091485A (en) Method and apparatus for optically determining physical parameters of underlayers
Craig et al. Mirror coating solution for the cryogenic Einstein telescope
JP4525490B2 (en) Wear gauge and method of using the same
RU2354930C2 (en) Method for measurement of optical disc thickness
Mate et al. New methodologies for measuring film thickness, coverage, and topography
IE45575L (en) Scale for calibrating electron beam instruments
US6518572B1 (en) Infrared microscopic spectrum analysis apparatus and method for analysis of recording media using the same
Nguyen et al. 3D nanoimprint for NIR Fabry-Pérot filter arrays: fabrication, characterization and comparison of different cavity designs
JP4224028B2 (en) Film thickness measuring apparatus and method using improved high-speed Fourier transform
US5781299A (en) Determining the complex refractive index phase offset in interferometric flying height testing
JP2000251250A (en) Carbon film thickness measuring method and method of manufacturing magnetic recording medium
KR100426045B1 (en) Method for determining the thickness of a multi-thin-layer structure
US5534385A (en) Overcoat for optical tape having SbInSn recording layer
JP2000161925A (en) Method for controlling carbon protection film thickness and device for controlling carbon protective film thickness
Bruns et al. Recent developments in precision optical coatings prepared by cylindrical magnetron sputtering
US7808652B2 (en) Interferometric measurement of DLC layer on magnetic head
JPH10153543A (en) Carbon film quality evaluation method for magnetic recording medium, and magnetic recording medium
JP2000207736A (en) Method for measuring thickness of carbon protective film
Dorka et al. Investigation of SiO2 layers by glow discharge optical emission spectroscopy including layer thickness determination by an optical interference effect
Dai et al. Tribological issues in perpendicular recording media
JP2003057010A (en) Raman photometric apparatus, film thickness measuring instrument, methods therefor, film forming apparatus and method therefor
JP2988158B2 (en) Inspection method for carbon film and method for manufacturing magnetic recording medium
KR100285916B1 (en) Hard disk drive slider and flying height decision method using therefor
Rogers et al. Statistical analysis of Auger electron spectroscopy data for thin film growth modes
US6780513B2 (en) Magnetic recording medium