JP2000249713A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JP2000249713A
JP2000249713A JP11053149A JP5314999A JP2000249713A JP 2000249713 A JP2000249713 A JP 2000249713A JP 11053149 A JP11053149 A JP 11053149A JP 5314999 A JP5314999 A JP 5314999A JP 2000249713 A JP2000249713 A JP 2000249713A
Authority
JP
Japan
Prior art keywords
probe
amplitude
measurement
sample
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11053149A
Other languages
Japanese (ja)
Other versions
JP3809893B2 (en
Inventor
Katsuhiro Tanaka
中 勝 広 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP05314999A priority Critical patent/JP3809893B2/en
Publication of JP2000249713A publication Critical patent/JP2000249713A/en
Application granted granted Critical
Publication of JP3809893B2 publication Critical patent/JP3809893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly switch an amplitude of a vibration body to an amplitude for magnetism measurement at the time of shifting from interatomic force measurement to the magnetic force measurement. SOLUTION: In this scanning probe microscope, at the time of measuring interatomic force, a switch SWA is turned on, while a switch SWB is turned off. An AC voltage applied between an electrode 11 of a piezoelectric element 3 and a cantilever 1 has a frequency nearly corresponding to a characteristic frequency of the cantilever 1, while an amplitude of the AC voltage is controlled to vibrate a probe 2 such that the probe 2 comes into an area where the interatomic force acts between the probe 2 and a sample 4. At the time of measuring magnetic force, the switch SWA is turned off, while the switch SWB is turned on. The AC voltage having the amplitude controlled for the magnetic force measurement is inverted and applied between the electrode 11 of the piezoelectric element 3 and the cantilever 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は探針を備えた振動体をそ
の固有振動数付近で振動させるように成した走査プロー
ブ顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope which vibrates a vibrating body having a probe near its natural frequency.

【0002】[0002]

【従来の技術】最近、探針付きカンチレバーと試料を対
向配置し、且つ探針と試料の距離を数ナノメートル以下
の距離にして、探針により試料表面を走査することによ
り、探針と試料間に働く原子間力或いは磁気力等を測定
し、該測定に基づいて原子間力顕微鏡像或いは磁気力顕
微鏡像等を得るように成した走査プローブ顕微鏡が注目
されている。
2. Description of the Related Art Recently, a cantilever with a probe and a sample are arranged to face each other, the distance between the probe and the sample is set to a distance of several nanometers or less, and the surface of the sample is scanned by the probe. Attention has been paid to a scanning probe microscope which measures an atomic force or a magnetic force acting between them and obtains an atomic force microscope image or a magnetic force microscope image based on the measurement.

【0003】前記原子間力或いは磁気力等を測定する方
法として、探針と試料とが接近された状態でカンチレバ
ーの固有振動数若しくはその近傍の振動数でカンチレバ
ーを振動させ、その振動数の変位に基づいて原子間力或
いは磁気力等を測定する方法がある。
[0003] As a method for measuring the atomic force or magnetic force, the cantilever is vibrated at a natural frequency of the cantilever or a frequency near the natural frequency in a state in which the probe and the sample are close to each other, and the displacement of the frequency is changed. There is a method of measuring an atomic force, a magnetic force, or the like based on the above.

【0004】図1はこの様な測定方法を利用した走査プ
ローブ顕微鏡の概略を示している。図1に示した走査プ
ローブ顕微鏡は、カンチレバーの振動の振幅を切り換え
て原子間力,磁気力を測定するものである。
FIG. 1 schematically shows a scanning probe microscope utilizing such a measuring method. The scanning probe microscope shown in FIG. 1 measures the atomic force and the magnetic force by switching the amplitude of the vibration of the cantilever.

【0005】図中1は先端に探針2が取り付けられたカ
ンチレバーで、圧電体3により支持されている。4は前
記探針2に対向して配置された試料で、 圧電素子から
成るスキャナー5上に載置されている。該スキャナー
は、Z移動素子6とXY移動素子7とから成り、ベース
(図示せず)上に載置されている。前記XY移動素子7
は走査信号発生手段8からの走査信号によりXY方向に
移動し、Z移動素子6はZ移動素子制御手段9からの移
動信号に基づいてZ方向に移動するように成されてい
る。
[0005] In the figure, reference numeral 1 denotes a cantilever having a probe 2 attached to the tip, which is supported by a piezoelectric body 3. Reference numeral 4 denotes a sample arranged opposite to the probe 2, which is mounted on a scanner 5 composed of a piezoelectric element. The scanner comprises a Z moving element 6 and an XY moving element 7, and is mounted on a base (not shown). The XY moving element 7
Is moved in the X and Y directions by the scanning signal from the scanning signal generating means 8, and the Z moving element 6 is moved in the Z direction based on the moving signal from the Z moving element control means 9.

【0006】10は発振系手段で、前記圧電素子3の電
極11とカンチレバー1間に、前記圧電素子3が前記カ
ンチレバー1の固有振動数で共振するような交流電圧を
印加すると共に、前記圧電素子3の振動数を検出する様
に成されている。尚、この発振系手段は振幅制御回路を
内蔵している。
An oscillation system means 10 applies an AC voltage between the electrode 11 of the piezoelectric element 3 and the cantilever 1 so that the piezoelectric element 3 resonates at the natural frequency of the cantilever 1 and the piezoelectric element 3 The third frequency is detected. This oscillation system has a built-in amplitude control circuit.

【0007】この発振系手段10が検出した振動数に基
づく周波数信号は、周波数−電圧変換手段12で電圧に
変換されて比較制御手段13に送られる。該比較制御手
段の出力信号は、この装置のフィードバック系回路を安
定に動作させるフィルター14を介して前記Z移動素子
制御手段9に送られる。
The frequency signal based on the frequency detected by the oscillation system means 10 is converted into a voltage by the frequency-voltage conversion means 12 and sent to the comparison control means 13. An output signal of the comparison control means is sent to the Z moving element control means 9 via a filter 14 for stably operating a feedback system circuit of the apparatus.

【0008】前記フィルター14の出力信号は、CPU
の如き制御装置15にも送られる。該制御装置はこの走
査プローブ顕微鏡の中央制御系を成しており、前記走査
信号発生手段8に走査指令を送ったり、陰極線管の如き
表示手段16に前記フィルター14の出力に基づいた原
子間力顕微鏡像或いは磁気力顕微鏡像を表示させたり、
前記発振系手段10に制御指令を送ったりするものであ
る。
The output signal of the filter 14 is supplied to a CPU
Is sent to the control device 15 as well. The controller constitutes a central control system of the scanning probe microscope, and sends a scanning command to the scanning signal generating means 8 and displays an atomic force based on an output of the filter 14 on a display means 16 such as a cathode ray tube. To display a microscope image or a magnetic force microscope image,
It sends a control command to the oscillating means 10.

【0009】この様な走査プローブ顕微鏡では、試料2
がスキャナー5に上に載置固定された後、Z移動素子制
御手段9からのZ軸(図1で上下方向軸)の高さ調整信
号によりスキャナ5のZ移動素子6が駆動されて、探針
2と試料4の間の距離が初期設定距離に設定される。
In such a scanning probe microscope, the sample 2
Is mounted on the scanner 5, and the Z-movement element 6 of the scanner 5 is driven by a height adjustment signal of the Z-axis (vertical axis in FIG. 1) from the Z-movement element control means 9 to search. The distance between the needle 2 and the sample 4 is set to the initially set distance.

【0010】この状態において、走査信号発生手段8か
らの走査信号により、スキャナ5のXY移動素子7がそ
れぞれ駆動されて、試料4がX方向(図1の左右方向)
及びY軸方向(図1で紙面に直交する方向)にそれぞれ
移動される。この様な移動により、探針2が試料表面上
の所定の範囲を走査することになるが、この走査はデジ
タル的に行われ、該デジタル的走査における各走査ポイ
ントにおいて、試料と探針間の原子間力の測定と磁気力
測定がペアで次の様に行われる。
In this state, the XY moving elements 7 of the scanner 5 are respectively driven by the scanning signal from the scanning signal generating means 8, and the sample 4 is moved in the X direction (the horizontal direction in FIG. 1).
And in the Y-axis direction (the direction orthogonal to the plane of FIG. 1). By such a movement, the probe 2 scans a predetermined area on the sample surface. This scan is performed digitally, and at each scanning point in the digital scan, the distance between the sample and the probe is changed. Atomic force measurement and magnetic force measurement are performed in pairs as follows.

【0011】先ず、圧電素子3の電極11、カンチレバ
ー1間に、発振系手段10の発生する交流電圧が印加さ
れる。この交流電圧は、前記した様に、カンチレバー1
の固有振動数にほぼ対応した振動数を有し、且つ、探針
2と試料4間に原子間力が働く領域(仮に、原子間力測
定用振幅と称す)内に前記探針2が入るように該探針を
振動させる振幅にコントロールされている。この振幅の
制御は前記制御装置15の指令に基づいて作動する発振
系手段10内に設けられた振幅制御回路(図示せず)に
よって行われる。図3の(a)は前記圧電素子3の電極
11、カンチレバー1間に印加される交流電圧の波形を
示す。
First, an AC voltage generated by the oscillation means 10 is applied between the electrode 11 of the piezoelectric element 3 and the cantilever 1. This AC voltage is applied to the cantilever 1 as described above.
The probe 2 has a frequency substantially corresponding to the natural frequency of the probe 2 and enters an area where an atomic force acts between the probe 2 and the sample 4 (tentatively referred to as an atomic force measurement amplitude). In this manner, the amplitude is controlled to vibrate the probe. The control of the amplitude is performed by an amplitude control circuit (not shown) provided in the oscillation system means 10 that operates based on a command from the control device 15. FIG. 3A shows a waveform of an AC voltage applied between the electrode 11 of the piezoelectric element 3 and the cantilever 1.

【0012】この際、試料表面の凹凸によって試料4と
探針2間の距離が変化すると、試料4と探針2間に働く
原子間力は変化し、該原子間力が伝わる圧電素子3の振
動数が変化する。
At this time, when the distance between the sample 4 and the probe 2 changes due to the unevenness of the sample surface, the atomic force acting between the sample 4 and the probe 2 changes, and the piezoelectric element 3 to which the atomic force is transmitted. The frequency changes.

【0013】この圧電素子3の振動数は前記発振系手段
10で検出されており、該発振系手段は検出した周波数
信号を周波数−電圧変換手段12に送る。該周波数−電
圧変換手段12は送られて来る周波数信号を対応する電
圧信号に変換して比較制御手段13に送る。
The frequency of the piezoelectric element 3 is detected by the oscillating system means 10, which sends the detected frequency signal to the frequency-voltage converting means 12. The frequency-voltage conversion means 12 converts the transmitted frequency signal into a corresponding voltage signal and sends it to the comparison control means 13.

【0014】該比較制御手段は送られて来る電圧信号と
予め与えられている参照信号とを比較し、その差が0に
なるように制御信号、即ち、前記圧電素子3を前記カン
チレバー1の固有振動数で振動させるための制御信号を
前記フィルター14を介して前記Z移動素子制御手段1
9に送る。該Z移動素子制御手段19は送られて来た制
御信号に基づいてZ移動素子6をZ方向に移動させる。
The comparison control means compares the transmitted voltage signal with a reference signal given in advance, and controls the control signal, that is, the piezoelectric element 3 so that the difference becomes zero. A control signal for oscillating at a frequency is transmitted through the filter 14 to the Z moving element control means 1.
Send to 9. The Z moving element control means 19 moves the Z moving element 6 in the Z direction based on the control signal sent.

【0015】同時に、前記制御信号は制御装置15のメ
モリ(図示せず)に記憶される。
At the same time, the control signal is stored in a memory (not shown) of the control device 15.

【0016】次に、圧電素子3の電極11、カンチレバ
ー1間に印加される交流電圧の振幅を、探針2と試料4
間に原子間力が及ばず、磁気力だけが働く領域内に前記
探針2が入るように該探針を振動させる(試料と探針間
の距離が原子間力測定時より大きくなるように振幅を小
さくする)振幅(仮に、磁気力測定用振幅と称す)にコ
ントロールする。図3の(b)は前記圧電素子3の電極
11、カンチレバー1間に印加される交流電圧の波形を
示す。この状態で前記原子間力の測定の時と同じように
して試料と探針間の磁気力が測定される。
Next, the amplitude of the AC voltage applied between the electrode 11 of the piezoelectric element 3 and the cantilever 1 is measured by the probe 2 and the sample 4.
The probe is vibrated so that the probe 2 enters the region where only the magnetic force acts without the interatomic force between them (so that the distance between the sample and the probe becomes larger than that at the time of the atomic force measurement). The amplitude is controlled to an amplitude (temporarily referred to as a magnetic force measurement amplitude). FIG. 3B shows a waveform of an AC voltage applied between the electrode 11 of the piezoelectric element 3 and the cantilever 1. In this state, the magnetic force between the sample and the probe is measured in the same manner as in the measurement of the interatomic force.

【0017】そして、次のポイントにおいても、同じよ
うに、原子間力の測定と磁気力測定が行われる。
At the next point, the measurement of the atomic force and the measurement of the magnetic force are similarly performed.

【0018】この様にして、所定の試料領域の各走査ポ
イントにおいて、原子間力の測定と磁気力測定を行う。
これらの測定したデータは全て制御装置15のメモリ
(図示せず)に記憶される。そして、制御装置15の指
令により、メモリ(図示せず)から読み出した信号に基
づいて、表示装置16に原子間力顕微鏡像若しくは磁気
力顕微鏡像が表示される。
In this manner, at each scanning point of a predetermined sample area, the measurement of the atomic force and the measurement of the magnetic force are performed.
All of these measured data are stored in the memory (not shown) of the control device 15. Then, an atomic force microscope image or a magnetic force microscope image is displayed on the display device 16 based on a signal read from a memory (not shown) according to a command from the control device 15.

【0019】[0019]

【発明が解決しようとする課題】さて、前記走査プロー
ブ顕微鏡において、原子間力測定から磁気力測定に移る
時、前記した様に、圧電素子3を挟んでいる電極11,
カンチレバー1間に印加される交流電圧の振幅を、磁気
力測定用振幅にコントロールする。この様な原子間力測
定用振幅から磁気力測定用振幅への振幅の切り換えは、
各走査ポイント毎に原子間力測定と磁気力測定を行なわ
ねばならないので、通常、数μsec〜数10msec
の極めて単時間に行う必要がある。
In the scanning probe microscope, when moving from atomic force measurement to magnetic force measurement, as described above, the electrodes 11 sandwiching the piezoelectric element 3 are used.
The amplitude of the AC voltage applied between the cantilevers 1 is controlled to the magnetic force measurement amplitude. The switching of the amplitude from the atomic force measurement amplitude to the magnetic force measurement amplitude is as follows.
Since atomic force measurement and magnetic force measurement have to be performed for each scanning point, usually several μsec to several tens msec.
Need to be done in a very short time.

【0020】しかし、圧電素子3の電極11、カンチレ
バー1間に印加される交流電圧の振幅を変化させても、
カンチレバー1の先端部(探針が取り付けられている部
分)は、慣性力により直ぐには追従出来ない。特に、固
有振動数の大きいカンチレバーを使用している場合や、
真空中でカンチレバーを使用している場合等ではその傾
向が強い。
However, even if the amplitude of the AC voltage applied between the electrode 11 of the piezoelectric element 3 and the cantilever 1 is changed,
The tip of the cantilever 1 (the part to which the probe is attached) cannot immediately follow due to inertial force. In particular, when using a cantilever with a large natural frequency,
This tendency is strong when a cantilever is used in a vacuum.

【0021】その為、前記ポイント毎の原子間力測定と
磁気力測定に支障を来していた。
Therefore, the measurement of the interatomic force and the measurement of the magnetic force at each point have been hindered.

【0022】本発明は、この様な問題を解決する新規な
走査プローブ顕微鏡を提供することを目的としたもので
ある。
An object of the present invention is to provide a novel scanning probe microscope which solves such a problem.

【0023】[0023]

【課題を解決するための手段】 発明に基づく走査プロ
ーブ顕微鏡は、探針と試料を接近させた状態で探針と試
料との相対的位置を変化させ、且つ、探針を備えた振動
体をその固有振動数付近で振動させるようにした走査プ
ローブ顕微鏡であって、前記振動体の振幅を切り換えて
少なくとも2種類の測定モードでの測定を行うように成
した走査プローブ顕微鏡において、前記振動体の振幅を
切り換える時に異なった加振信号に基づいて振動体を振
動させたことを特徴とする。
Means for Solving the Problems A scanning probe microscope according to the present invention changes a relative position between a probe and a sample in a state where the probe and the sample are close to each other, and further includes a vibrator provided with the probe. A scanning probe microscope configured to vibrate around the natural frequency, wherein the amplitude of the vibrating body is switched to perform measurement in at least two types of measurement modes, When the amplitude is switched, the vibrating body is vibrated based on different excitation signals.

【0024】本発明に基づく走査プローブ顕微鏡は、振
動体の振幅を切り換える時に反転した加振信号に基づい
て振動体を振動させたことを特徴とする。
The scanning probe microscope according to the present invention is characterized in that the vibrating body is vibrated on the basis of the inverted excitation signal when switching the amplitude of the vibrating body.

【0025】[0025]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0026】図2は本発明の走査プロープ顕微鏡の一例
を示したものである。図中前記図1で使用された番号と
同一番号の付されたものは同一構成要素を示す。
FIG. 2 shows an example of the scanning probe microscope of the present invention. In the figure, the same reference numerals as those used in FIG. 1 indicate the same components.

【0027】図2に示す様に、発振系手段10と電極1
1との間には、2つのスイッチング回路20A,20B
が設けられており、これらのスイッチング回路は制御装
置15の指令により連動してスイッチングを行う。前記
スイッチング回路20Bと発振系手段10の間には反転
回路21が設けられている。
As shown in FIG. 2, the oscillation means 10 and the electrode 1
1, two switching circuits 20A, 20B
Are provided, and these switching circuits perform switching in response to a command from the control device 15. An inverting circuit 21 is provided between the switching circuit 20B and the oscillation means 10.

【0028】この様な構成の走査プローブ顕微鏡の動作
を次に説明する。
The operation of the scanning probe microscope having such a configuration will be described below.

【0029】走査信号発生手段8からの走査信号によ
り、スキャナ5のXY移動素子7がそれぞれ駆動され
て、試料4がX方向(図1の左右方向)及びY軸方向
(図1で紙面に直交する方向)にそれぞれ移動される。
この移動により、探針2が試料4上の所定の範囲をデジ
タル的に走査することになる。
The XY moving elements 7 of the scanner 5 are driven by the scanning signals from the scanning signal generating means 8 to move the sample 4 in the X direction (left and right directions in FIG. 1) and the Y axis direction (perpendicular to the plane of FIG. 1). Direction).
With this movement, the probe 2 digitally scans a predetermined range on the sample 4.

【0030】このデジタル的走査の各走査ポイントにお
いて、探針,試料間の原子間力と磁気力が順次測定され
る。
At each scanning point of the digital scanning, the atomic force and the magnetic force between the probe and the sample are sequentially measured.

【0031】即ち、各走査ポイントにおいて、次の動作
が連続して行われる。
That is, at each scanning point, the following operation is performed continuously.

【0032】先ず、制御装置15の指令により、スイッ
チング回路20AのスイッチSWA オンの状態、スイ
ッチング回路20BのスイッチSWBがオフの状態にな
る。そして、発振系手段10からの交流電圧がスイッチ
ング回路20Aを介して圧電素子3の電極11、カンチ
レバー1間に印加される。この交流電圧は、図4の
(a)に示す様に、カンチレバー1の固有振動数にほぼ
対応した振動数を有し、且つ、原子間力測定用振幅にコ
ントロールされている。
First, a switch is issued by a command from the control device 15.
Switch SW of the switching circuit 20AA ButOn state, switch
Switch SW of switching circuit 20BBIs off
You. Then, the AC voltage from the oscillation system means 10 is switched
Electrode 11 of the piezoelectric element 3 via the switching circuit 20A,
Applied between the levers 1. This AC voltage is
As shown in (a), the natural frequency of the cantilever 1 is almost
It has the corresponding frequency and the amplitude for atomic force measurement
Has been controlled.

【0033】この際、この圧電素子3の振動数が前記発
振系手段10で検出され、周波数信号を周波数−電圧変
換手段12に送られる。該周波数−電圧変換手段12は
送られて来た周波数信号を対応する電圧信号に変換して
比較制御手段13に送る。
At this time, the frequency of the piezoelectric element 3 is detected by the oscillation system means 10, and a frequency signal is sent to the frequency-voltage conversion means 12. The frequency-voltage conversion means 12 converts the transmitted frequency signal into a corresponding voltage signal and sends it to the comparison control means 13.

【0034】該比較制御手段は送られて来た電圧信号と
予め与えられている参照信号とを比較し、その差が0に
なるように制御信号、即ち、前記圧電素子3を前記カン
チレバー1の固有振動数で振動させるための制御信号を
前記フィルター14を介して前記Z移動素子制御手段1
9に送る。該Z移動素子制御手段19は送られて来た制
御信号に基づいてZ移動素子6をZ方向に移動させる。
同時に、前記制御信号は制御装置15のメモリ(図示せ
ず)に記憶される。
The comparison control means compares the transmitted voltage signal with a reference signal given in advance, and controls the control signal, that is, the piezoelectric element 3 so that the difference becomes zero. A control signal for oscillating at a natural frequency is transmitted through the filter 14 to the Z moving element control means 1.
Send to 9. The Z moving element control means 19 moves the Z moving element 6 in the Z direction based on the control signal sent.
At the same time, the control signal is stored in a memory (not shown) of the control device 15.

【0035】次に、制御装置15の指令により、スイッ
チング回路20AのスイッチSWA オフの状態にな
り、スイッチング回路20BのスイッチSWBがオンの
状態になる。そして、発振系手段10からの交流電圧が
反転回路21とスイッチング回路20Aを介して圧電素
子3の電極11、カンチレバー1間に印加される。前記
発信系手段からの交流電圧は、カンチレバー1の固有振
動数にほぼ対応した振動数を有し、且つ、磁気力測定用
振幅にコントロールされている。この様な交流電圧が前
記反転回路21で反転されるので、図4の(b)に示す
如き波形の交流電圧が圧電素子3の電極11、カンチレ
バー1間に印加されることになる。従って、前記原子間
力測定時に、図4の(a)に示す様な交流電圧に基づい
て振動していたカンチレバー1は極めて単時間に振幅減
衰して、所定の振幅(図4の(b)に示す交流電圧の振
幅に対応した振幅)になる。
Next, according to a command from the control device 15, the switch is operated.
Switch SW of the switching circuit 20AA ButIn the off state
Switch SW of the switching circuit 20B.BIs on
State. Then, the AC voltage from the oscillation means 10 is
Piezoelectric element via the inverting circuit 21 and the switching circuit 20A
The voltage is applied between the electrode 11 of the child 3 and the cantilever 1. Said
The AC voltage from the transmission system means the characteristic vibration of the cantilever 1.
Has a frequency almost corresponding to the number of rotations, and for measuring magnetic force
Controlled by amplitude. Before such an AC voltage
Since the data is inverted by the inversion circuit 21, it is shown in FIG.
An AC voltage having a waveform as shown in FIG.
It will be applied between bars 1. Therefore, between the atoms
At the time of force measurement, based on the AC voltage as shown in FIG.
The amplitude of the cantilever 1 that was vibrating was reduced in a very short time.
And a predetermined amplitude (the amplitude of the AC voltage shown in FIG.
Amplitude corresponding to the width).

【0036】この状態で前記原子間力の測定の時と同じ
ようにして試料と探針間の磁気力が測定される。即ち、
この際の圧電素子3の振動数が前記発振系手段10で検
出され、周波数信号を周波数−電圧変換手段12に送ら
れる。該周波数−電圧変換手段12は送られて来た周波
数信号を対応する電圧信号に変換して比較制御手段13
に送る。
In this state, the magnetic force between the sample and the probe is measured in the same manner as in the measurement of the atomic force. That is,
At this time, the frequency of the piezoelectric element 3 is detected by the oscillation system means 10 and a frequency signal is sent to the frequency-voltage conversion means 12. The frequency-voltage conversion means 12 converts the transmitted frequency signal into a corresponding voltage signal, and
Send to

【0037】該比較制御手段は送られて来た電圧信号と
予め与えられている参照信号とを比較し、その差が0に
なるように制御信号、即ち、前記圧電素子3を前記カン
チレバー1の固有振動数で振動させるための制御信号を
前記フィルター14を介して前記Z移動素子制御手段1
9に送る。該Z移動素子制御手段19は送られて来た制
御信号に基づいてZ移動素子6をZ方向に移動させる。
同時に、前記制御信号は制御装置15のメモリ(図示せ
ず)に記憶される。
The comparison control means compares the received voltage signal with a reference signal given in advance, and controls the control signal so that the difference becomes zero, that is, the piezoelectric element 3 is controlled by the cantilever 1. A control signal for oscillating at a natural frequency is transmitted through the filter 14 to the Z moving element control means 1.
Send to 9. The Z moving element control means 19 moves the Z moving element 6 in the Z direction based on the control signal sent.
At the same time, the control signal is stored in a memory (not shown) of the control device 15.

【0038】この様にして、試料上の所定の走査領域内
の各走査ポイントにおいて、原子間力の測定と磁気力測
定が行なわれる。
In this manner, the measurement of the atomic force and the measurement of the magnetic force are performed at each scanning point within a predetermined scanning area on the sample.

【0039】尚、前記実施例では、発振系手段10と電
極11の間に反転回路21を設け、磁気力を測定する時
に、原子間力測定時に印加されていた交流電圧を反転し
て電極11とカンチレバー1間に印加する様に成した。
即ち、交流電圧の位相を180゜シフトして電極11と
カンチレバー1間に印加する様に成したが、要は、原子
間力測定から磁気力測定に移る時に、カンチレバー1先
端部の振動を出来るだけ速やかに減衰させて所定振幅で
振動させる様にすればよいので、発振系手段10と電極
11の間に位相シフト回路を設け、カンチレバー1先端
部の振動の減衰を速めるような任意の位相分ずらした交
流電圧を印加するようにしても良い。
In the above embodiment, an inverting circuit 21 is provided between the oscillating system means 10 and the electrode 11 so that, when measuring the magnetic force, the AC voltage applied at the time of measuring the atomic force is inverted and the electrode 11 is inverted. And between the cantilever 1.
That is, the phase of the AC voltage is shifted by 180 ° to be applied between the electrode 11 and the cantilever 1, but the point is that the tip of the cantilever 1 can be vibrated when the transition from the measurement of the atomic force to the measurement of the magnetic force. A phase shift circuit is provided between the oscillating system means 10 and the electrode 11 so that the vibration of the tip of the cantilever 1 can be attenuated at an arbitrary phase. A shifted AC voltage may be applied.

【0040】又、前記実施例では、探針と試料間に働く
原子間力測定と磁気力測定の2つのモードを振動体の振
幅を切り換えて行う例を示したが、この様なモードに限
定されない。又、2つのモードに限定されない。例え
ば、探針と試料間に働く静電力測定等も考えられる。
In the above-described embodiment, an example is shown in which the two modes of the measurement of the atomic force acting between the probe and the sample and the measurement of the magnetic force are performed by switching the amplitude of the vibrating body. Not done. Also, the mode is not limited to the two modes. For example, electrostatic force measurement between the probe and the sample can be considered.

【0041】以上説明したように、探針と試料を接近さ
せた状態で探針と試料との相対的位置を変化させ、且
つ、探針を備えた振動体をその固有振動数付近で振動さ
せ、前記振動体の振動数の変位を測定するようにした走
査プローブ顕微鏡で、前記変位に基づいて探針と試料間
に働く原子間力の測定と、探針と試料間に働く磁気力の
測定を前記振動体の振幅を切り換えて行うように成した
走査プローブ顕微鏡において、前記振動体の振幅を切り
換える時に位相の異なった加振信号に基づいて振動体を
振動させたので、原子間力測定から磁気力測定に移る時
に、振動体の振幅が極めて速やかに磁気測定用に切り替
わる。
As described above, the relative position between the probe and the sample is changed while the probe and the sample are brought close to each other, and the vibrator provided with the probe is vibrated near its natural frequency. A scanning probe microscope configured to measure a displacement of a frequency of the vibrating body, measuring an atomic force acting between a probe and a sample based on the displacement, and measuring a magnetic force acting between the probe and the sample based on the displacement. In the scanning probe microscope configured to perform by switching the amplitude of the vibrating body, because the vibrating body was vibrated based on excitation signals having different phases when switching the amplitude of the vibrating body, from the atomic force measurement When moving to magnetic force measurement, the amplitude of the vibrating body switches very quickly for magnetic measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の走査プローブ顕微鏡の一例の概略を示
している。
FIG. 1 schematically shows an example of a conventional scanning probe microscope.

【図2】 本発明の走査プローブ顕微鏡の一例を示して
いる。
FIG. 2 shows an example of the scanning probe microscope of the present invention.

【図3】 従来の走査プローブ顕微鏡における交流電
圧の波形を示している。
FIG. 3 shows a waveform of an AC voltage in a conventional scanning probe microscope.

【図4】 本発明の走査プローブ顕微鏡における交流電
圧の波形を示している。
FIG. 4 shows a waveform of an AC voltage in the scanning probe microscope of the present invention.

【符号の説明】[Explanation of symbols]

1…カンチレバー 2…探針 3…圧電素子 4…試料 5…スキャナー 6…Z移動素子 7…XY移動素子 8…走査信号発生手段 9…Z移動素子制御手段 10…発振系手段 11…電極 12…周波数−電圧変換手段 13…比較制御手段 14…フィルター 15…制御手段 16…表示手段 20A,20B…スイッチング回路 21…反転回路 DESCRIPTION OF SYMBOLS 1 ... Cantilever 2 ... Probe 3 ... Piezoelectric element 4 ... Sample 5 ... Scanner 6 ... Z moving element 7 ... XY moving element 8 ... Scanning signal generation means 9 ... Z moving element control means 10 ... Oscillation system means 11 ... Electrode 12 ... Frequency-voltage conversion means 13 Comparison control means 14 Filter 15 Control means 16 Display means 20A, 20B Switching circuit 21 Inverting circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 探針と試料を接近させた状態で探針と試
料との相対的位置を変化させ、且つ、探針を備えた振動
体をその固有振動数付近で振動させるようにした走査プ
ローブ顕微鏡であって、前記振動体の振幅を切り換えて
少なくとも2種類の測定モードでの測定を行うように成
した走査プローブ顕微鏡において、前記振動体の振幅を
切り換える時に異なった加振信号に基づいて振動体を振
動させたことを特徴とする走査プローブ顕微鏡。
1. A scanning method in which a relative position between a probe and a sample is changed in a state where the probe and the sample are close to each other, and a vibrator provided with the probe is vibrated near its natural frequency. In a probe microscope, a scanning probe microscope configured to perform measurement in at least two kinds of measurement modes by switching the amplitude of the vibrating body, based on different excitation signals when switching the amplitude of the vibrating body. A scanning probe microscope characterized by vibrating a vibrating body.
【請求項2】 前記測定モードが原子間力測定モードと
磁気力測定モードであることを特徴とする請求項1記載
の走査プローブ顕微鏡。
2. The scanning probe microscope according to claim 1, wherein the measurement modes are an atomic force measurement mode and a magnetic force measurement mode.
【請求項3】 前記振動体の振幅を切り換える時に反転
した加振信号に基づいて振動体を振動させたことを特徴
とする請求項1記載の走査プローブ顕微鏡。
3. The scanning probe microscope according to claim 1, wherein the vibrating body is vibrated based on an excitation signal inverted when switching the amplitude of the vibrating body.
JP05314999A 1999-03-01 1999-03-01 Scanning probe microscope Expired - Fee Related JP3809893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05314999A JP3809893B2 (en) 1999-03-01 1999-03-01 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05314999A JP3809893B2 (en) 1999-03-01 1999-03-01 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2000249713A true JP2000249713A (en) 2000-09-14
JP3809893B2 JP3809893B2 (en) 2006-08-16

Family

ID=12934787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05314999A Expired - Fee Related JP3809893B2 (en) 1999-03-01 1999-03-01 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3809893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181687A (en) * 2000-12-15 2002-06-26 Seiko Instruments Inc Scanning probe microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181687A (en) * 2000-12-15 2002-06-26 Seiko Instruments Inc Scanning probe microscope
JP4510277B2 (en) * 2000-12-15 2010-07-21 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope

Also Published As

Publication number Publication date
JP3809893B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US6005246A (en) Scanning probe microscope
US6323483B1 (en) High bandwidth recoiless microactuator
EP0410131A1 (en) Near-field Lorentz force microscopy
JPH06213910A (en) Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
JP3594927B2 (en) Physical property measurement method and scanning probe microscope
EP2048487B1 (en) Scanning probe microscope
JPH11160333A (en) Scanning probe microscope
JP2002228572A (en) Noncontact interatomic force microscope and observation method using the same
JPH05126517A (en) Scanning mechanism and scanning-type microscope using it and recording reproduction device using it
JP2005140782A (en) Vibration scanning type probe microscope
JP4816414B2 (en) Scanning probe microscope
US7278296B2 (en) Scanning probe microscope
JP3131517B2 (en) Scanning probe microscope equipment
JP2000249713A (en) Scanning probe microscope
JP4024451B2 (en) Scanning Kelvin probe microscope
JP2002116132A (en) Signal detection apparatus, scanning atomic force microscope constructed of it, and signal detection method
JP3406236B2 (en) Scanning probe microscope measuring method and apparatus
JP3216093B2 (en) Scanning probe microscope
JP3588701B2 (en) Scanning probe microscope and its measuring method
JP3935350B2 (en) Distance control method and scanning probe microscope using the same
JP3219194B2 (en) Scanning probe microscope
JP2004226238A (en) Device for observing surface shape of sample
JPH06323845A (en) Thin film force detection probe for scanning force microscope
JP2002022637A (en) Scanning probe microscope
JPH09264897A (en) Scanning probe microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees