JP2000249546A - Portable small-sized electronic measure - Google Patents

Portable small-sized electronic measure

Info

Publication number
JP2000249546A
JP2000249546A JP11051428A JP5142899A JP2000249546A JP 2000249546 A JP2000249546 A JP 2000249546A JP 11051428 A JP11051428 A JP 11051428A JP 5142899 A JP5142899 A JP 5142899A JP 2000249546 A JP2000249546 A JP 2000249546A
Authority
JP
Japan
Prior art keywords
range
distance measurement
emd
laser light
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11051428A
Other languages
Japanese (ja)
Inventor
Toshio Kashiwa
敏雄 柏
Yuji Kitamura
勇司 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Precision Inc
Original Assignee
Seiko Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc filed Critical Seiko Precision Inc
Priority to JP11051428A priority Critical patent/JP2000249546A/en
Publication of JP2000249546A publication Critical patent/JP2000249546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact small-sized electronic measure which is suitable for use in general homes and offices. SOLUTION: A portable small-sized electronic measure uses a light-wave phase difference system using laser light as an electronic range finding means EMD. The means EMD is housed in a case main body having a detecting window and provided with a display panel composed of switches (S1)-(S4) operated from the outside and a liquid panel 3 on one side so as to display ranged-found results, etc. In addition, the means EMD can be switched so as to use the front or rear end face of the case main body as a range finding reference by operating the switches (S1)-(S4) from the outside and, at the same time, the range- finding range of the means EMD is made switchable in accordance with the range-finding object or purpose. In order to minimize the power consumption of a battery power source to the necessary minimum, the driving condition of the laser light source 4 of the means EMD is changed in accordance with the switched range-finding range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、波動を伴う光波又は音波
による測距信号を用いた電子的測距手段を有する携帯式
小型電子メジャーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable small-sized electronic measure having an electronic distance measuring means using a distance signal of a light wave or a sound wave accompanied by a wave.

【0002】[0002]

【従来の技術】家庭やオフィス等において、ある位置か
ら他の位置までの2点間の距離を測定する場合は、一般
的には金属製又は布製の帯に目盛りを付したスケールを
ケース内に出し入れ自由に収納してなる巻尺が用いられ
ている。
2. Description of the Related Art In a home or office, when measuring the distance between two points from a certain position to another position, generally, a scale having a scale made of a metal or cloth band is placed in a case. A tape measure that is freely stored in and out is used.

【0003】また、土木測量等の分野では、波動を伴う
光波又は音波による測距信号を用いた電子的測距手段を
有する大型で高価な測量機器が既に実用化されている。
[0003] In the field of civil engineering surveying, large and expensive surveying instruments having an electronic distance measuring means using a measuring signal of a light wave or a sound wave accompanied by a wave have already been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】一般家庭等で使用され
る巻尺は、スケールがケース内に巻き取られた状態でコ
ンパクトに収納されているため、携帯及び使用等に便利
であるが、長い距離を測定しようとするときば、一人で
は測定し難かったり、測定点を継ぎ足しながら加算しな
ければならない場合があり、かつその測定結果には不正
確性も免れない。また、測定後にスケールを巻き取らね
ばならず、その作業が面倒である。
The tape measure used in ordinary households and the like is convenient to carry and use since the scale is compactly stored in a state in which the scale is wound up in a case. When trying to measure, there is a case where it is difficult to measure by itself, or it is necessary to add while adding measurement points, and the measurement result is inevitably inaccurate. Further, the scale must be wound up after the measurement, which is troublesome.

【0005】一方、土木測量等の分野で公知の波動を伴
う光波又は音波の測距信号(例えばレーザー光)を用い
た電子的測距測距手段を有する大型で高価な測量機器
は、測距基準は1つしかなく一般家庭での使用を考慮し
た設計は一切されておらず、それをただ一般家庭用に小
型化しても利便性に欠ける問題を有している。
On the other hand, a large and expensive surveying instrument having an electronic distance measuring means using a measuring signal of a light wave or a sound wave (for example, a laser beam) accompanied by a wave known in the field of civil engineering surveying, etc. There is only one criterion, and there is no design considering use in ordinary households. Even if it is simply reduced in size for ordinary households, it has a problem of lack of convenience.

【0006】[0006]

【課題を解決するための手段】そこで本発明では、波動
を伴う光波又は音波による測距信号を用いた電子的測距
手段を有するものを一般家庭やオフィス等での使用に供
するように小型化する場合に、その使用の態様を考慮
し、使い易くて実用性のある携帯式小型電子メジャーを
提供せんとするものであり、測距手段のモードを切換え
ることによりケースの前端面または後端面を測距基準と
して切り換えがきるようにしてある。
SUMMARY OF THE INVENTION Accordingly, in the present invention, a device having an electronic distance measuring means using a distance measuring signal by a light wave or a sound wave accompanied by a wave is miniaturized so as to be used in a general home or office. In this case, it is an object of the present invention to provide a portable small electronic measure that is easy to use and practical in consideration of the mode of use, and switches the mode of the distance measuring means to change the front end face or the rear end face of the case. Switching can be performed as a distance measurement reference.

【0007】[0007]

【発明の実施の形態】本発明の携帯式小型電子メジャー
は、検出窓が設けてあるケース本体の内部にレーザー光
を用いた電子的測距手段を備えたものであり、この電子
的測距手段は外部操作によりケース本体の前端面又は後
端面を測距基準とするように切換え可能としてあるとこ
ろに主たる特徴がある。上記電子的測距手段は、好まし
くは、外部操作により測距範囲を切換え可能である。さ
らに好ましくは、切り換えられる測距範囲に応じて電子
的測距手段の駆動条件が異ならせてある。さらに好まし
くは、上記ケース本体には、測距結果等を表示する表示
パネルが設けてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A portable small-sized electronic measure according to the present invention has an electronic distance measuring means using laser light inside a case body provided with a detection window. The main feature is that the means can be switched by an external operation so that the front end face or the rear end face of the case body is used as a distance measurement reference. The electronic distance measuring means is preferably capable of switching a distance measuring range by an external operation. More preferably, the driving conditions of the electronic distance measuring means are changed according to the range of distance to be switched. More preferably, the case main body is provided with a display panel for displaying a distance measurement result and the like.

【0008】[0008]

【実施例】図1に示すように、片手で持てるハンディサ
イズの直方体の形状をしたケース本体1内には、波動を
伴う光波又は音波の測距信号を用いる電子的測距手段E
MD(図2参照)が収納されており、この実施例では光
波の1例としてレーザー光が測距信号として採用されて
おり、その前端面1aにはこの測距信号を測定対象に向
けて照射可能とするために透光板で仕切られた検出窓2
が設けてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a case body 1 in the shape of a handy-sized rectangular parallelepiped which can be held by one hand has an electronic distance measuring means E using a light wave or sound wave distance measuring signal accompanied by wave motion.
An MD (see FIG. 2) is housed therein. In this embodiment, a laser beam is employed as a distance measurement signal as an example of a light wave, and the distance measurement signal is applied to a front end face 1a of the laser beam toward a measurement object. Detection window 2 separated by translucent plate to make it possible
Is provided.

【0009】ケース本体1の一側部1bには、電源スイ
ッチS1、モード切換えスイッチS2、測距範囲切換ス
イッチS3及び測距開始スイッチS4からなるスイッチ
群と液晶パネルからなる表示パネル3とが設けてある。
各スイッチS1〜S4自身又はケース本体1の一側部1
bの各スイッチS1〜S4の近傍には、後で詳細に説明
するそれぞれのスイッチの機能を示す表記(いずれも図
示略)がされている。
On one side 1b of the case body 1, a switch group including a power switch S1, a mode changeover switch S2, a distance measurement range changeover switch S3 and a distance measurement start switch S4, and a display panel 3 including a liquid crystal panel are provided. It is.
Each switch S1 to S4 itself or one side 1 of the case body 1
In the vicinity of each of the switches S1 to S4 of b, a notation (not shown) indicating the function of each switch, which will be described in detail later, is provided.

【0010】[0010]

【電子的測距手段EMDの説明】図2に示すように、こ
の実施例における電子的測距手段EMDは、波動を伴う
測距信号として、光波の一例であるレーザー光を使用す
るものであり、当該レーザー光を半透鏡等の光学分光器
を用いて透過光と反射光との位相差から距離を算出する
光波測距方式を採用してあり、理論的にはミクロン単位
での測距が可能である。
[Explanation of electronic distance measuring means EMD] As shown in FIG. 2, the electronic distance measuring means EMD in this embodiment uses a laser beam as an example of a light wave as a distance measuring signal accompanied by a wave. The laser beam is measured using a light spectroscope such as a semi-transparent mirror to calculate the distance from the phase difference between the transmitted light and the reflected light. It is possible.

【0011】レーザー光を発するレーザー光源4として
は、コンパクトで低電圧駆動が可能な半導体レーザー発
振器を採用してあり、レーザー光の発振周波数(波長)
を切り換える変調回路を含む駆動回路5によって駆動さ
れるようになっている。
As the laser light source 4 for emitting laser light, a semiconductor laser oscillator that is compact and can be driven at a low voltage is employed, and the oscillation frequency (wavelength) of the laser light is used.
Is driven by a driving circuit 5 including a modulation circuit for switching the switching.

【0012】レーザー光源4の前方には、光学分光器
(一例としては例えば半透鏡)6が設けてある。光学分
光器6は、レーザー光源4より照射されたレーザー光の
うちの一部L1を検出器7に向けて反射させ、残りを透
過させる。光学分光器6を透過したレーザー光はそのま
ま直進して測距対象8に設けられた反射板9にて反射
し、この反射光は光学分光器6にて再び反射され、この
反射光L2が検出器10に入射されるようになってい
る。
An optical spectroscope (for example, a semi-transparent mirror) 6 is provided in front of the laser light source 4. The optical spectroscope 6 reflects a part L1 of the laser light emitted from the laser light source 4 toward the detector 7 and transmits the rest. The laser light transmitted through the optical spectroscope 6 goes straight as it is and is reflected by a reflector 9 provided on the object 8 to be measured. The reflected light is reflected again by the optical spectroscope 6, and the reflected light L2 is detected. The light is incident on the vessel 10.

【0013】反射光L1、L2の入射を受けて各検出器
7,10はそれを電気信号に変換し、この電気信号が位
相検出演算回路11に供給される。位相検出演算回路1
1は、各検出器7,10から供給される電気信号に基づ
いて、レーザー光源4から発射されたレーザー光が各検
出器7,10に達するまでの距離の差によって生じる位
相差(又は時間差)を検出し、この検出された値に対応
する信号を制御回路12に出力する。
Each of the detectors 7 and 10 receives the reflected lights L1 and L2 and converts them into an electric signal. The electric signal is supplied to a phase detection operation circuit 11. Phase detection arithmetic circuit 1
Reference numeral 1 denotes a phase difference (or time difference) caused by a difference in a distance until the laser light emitted from the laser light source 4 reaches each of the detectors 7 and 10 based on an electric signal supplied from each of the detectors 7 and 10. And outputs a signal corresponding to the detected value to the control circuit 12.

【0014】制御回路12は、一連の検出動作をシーケ
ンシャルに遂行するためのプログラムを記憶してある図
示しない記憶回路(ROM)を含んでおり、また前述の
電源スイッチS1、モード切換えスイッチS2、測距範
囲切換えスイッチS3及び測距開始スイッチS4が接続
してある。
The control circuit 12 includes a storage circuit (ROM) (not shown) that stores a program for sequentially performing a series of detection operations. The control circuit 12 also includes a power switch S1, a mode switch S2, and a measurement switch. A distance range changeover switch S3 and a distance measurement start switch S4 are connected.

【0015】電源スイッチS1は、勿論この装置の電池
電源(図示せず。)をオン・オフするスイッチであり、
これをオン状態にしない限り測距不能であり、表示パネ
ル3も動作しない。
The power switch S1 is, of course, a switch for turning on / off a battery power supply (not shown) of the apparatus.
Unless this is turned on, distance measurement is impossible, and the display panel 3 does not operate.

【0016】モード切換スイッチS2は、測距基準を前
端面1aにするのか又は後端面1cにするのかを切り換
えるスイッチである。普通は前端面1aが測距基準とな
るように使用するが、例えば壁面間又は床面と天井との
間の測距を行うような場合には、後端面1cを一方の壁
面に当接しなければならないので、このような測距の状
況に応じて、後端面1cを測距基準とすることができる
ように切り換え可能としてある。この切換えはモード切
換スイッチS2を押す度に交互に行われるようになって
いる。
The mode changeover switch S2 is a switch for switching whether the distance measurement reference is set to the front end face 1a or the rear end face 1c. Normally, the front end face 1a is used as a distance measurement reference. However, for example, when distance measurement is performed between wall surfaces or between a floor surface and a ceiling, the rear end surface 1c must be in contact with one wall surface. Since the distance measurement has to be performed, it is possible to switch such that the rear end face 1c can be used as a distance measurement reference in accordance with such a distance measurement situation. This switching is performed alternately each time the mode switch S2 is pressed.

【0017】測距範囲切換スイッチS3は、測距範囲を
例えば10m以内(測距範囲A)と30m以内(測距範
囲B)に切り換えるようにしてあり、このスイッチを押
す度に測距範囲が交互に切り替わるようになっている。
この測距範囲によってレーザー光源4は異なる駆動条件
で駆動されるが、これについては後で説明する。
The distance measurement range switch S3 switches the distance measurement range, for example, within 10 m (distance measurement range A) and within 30 m (distance measurement range B). Each time this switch is pressed, the distance measurement range is switched. It is designed to switch alternately.
The laser light source 4 is driven under different driving conditions depending on the distance measurement range, which will be described later.

【0018】測距開始スイッチS4は、測距動作を開始
させるスイッチであり、このスイッチを1回押すだけで
所定の測距動作がシ−ケンシャルに実行されるようにな
っている。
The distance measurement start switch S4 is a switch for starting a distance measurement operation, and a predetermined distance measurement operation is sequentially performed by pressing this switch once.

【0019】これらの各スイッチS1〜S4の状態はい
ずれも表示パネル3に表示され、測距前のモード選択状
況や測距範囲の選択状況が容易に視認可能になってい
る。
The state of each of the switches S1 to S4 is displayed on the display panel 3 so that the mode selection state before the distance measurement and the selection state of the distance measurement range can be easily visually recognized.

【0020】ところで、測距範囲はレーザー光源4から
発射されるレーザー光の強度によって左右され、また測
距精度はレーザー光源4から発射されるレーザー光の波
長によって左右される。すなわち、測距範囲を広くする
ためにレーザー光の強度を強くすると消費電力は多くな
り、また、測距精度を良くするためにレーザー光の波長
を短くしても消費電力は多くなる。電池を電源とする場
合は、消費電力を極力少なくすることが必要であり、こ
の観点から、一般家庭での使用を主なターゲットとする
本発明に係わる携帯式小型電子メジャーでは、レーザー
光の強度とレーザー光の波長を実用上十分な範囲に押さ
えている。すなわち、一般家庭用途であれば、せいぜい
30mの測距範囲があれば十分であり、測距精度も1m
m単位が要求される場合と、1cm単位や5mm単位程
度で十分な場合とがあり、一般に測距すべき距離が10
mを超えるようなときは後者の測距精度で十分な場合が
多い。
Incidentally, the range of the distance measurement depends on the intensity of the laser light emitted from the laser light source 4, and the accuracy of the distance measurement depends on the wavelength of the laser light emitted from the laser light source 4. That is, if the intensity of the laser beam is increased to widen the range of measurement, power consumption increases, and even if the wavelength of the laser beam is shortened to improve the accuracy of distance measurement, the power consumption increases. When a battery is used as a power source, it is necessary to reduce power consumption as much as possible. From this viewpoint, the portable small electronic measure according to the present invention, which is mainly targeted for use in ordinary households, has a high intensity of laser light. And the wavelength of the laser beam is kept within a practically sufficient range. That is, for general household use, a distance measurement range of at most 30 m is sufficient, and the distance measurement accuracy is 1 m.
There are cases where m units are required and cases where 1 cm or 5 mm units are sufficient.
When the distance exceeds m, the latter ranging accuracy is often sufficient.

【0021】以上のような使われ方を考慮して、本発明
では、測距範囲Aを選択したときは、レーザー光源4は
測距範囲Aをカバーするに十分なレーザー光強度を発射
するように駆動され、またその発振周波数は少なくとも
1mmの測距精度を出せる周波数で駆動されるようにな
っており、測距範囲Bを選択したときは、レーザー光源
4は測距範囲Aのときのレーザー光強度よりも強いが測
距範囲Bをカバーするに十分なレーザー光強度を発射す
るように駆動され、また、そのときの発振周波数は1c
mの測距精度を出せるに十分な周波数、つまり測距範囲
Aのときの発振周波数よりも低い周波数(測距範囲Aの
ときの波長よりも長い波長)で駆動されるように設定し
てある。
In consideration of the above usage, according to the present invention, when the distance measuring range A is selected, the laser light source 4 emits a laser beam intensity sufficient to cover the distance measuring range A. And the oscillation frequency is at a frequency that can provide a distance measurement accuracy of at least 1 mm. When the distance measurement range B is selected, the laser It is driven so as to emit a laser light intensity higher than the light intensity but sufficient to cover the distance measurement range B, and the oscillation frequency at that time is 1c
It is set so as to be driven at a frequency sufficient to provide a distance measurement accuracy of m, that is, a frequency lower than the oscillation frequency in the distance measurement range A (wavelength longer than the wavelength in the distance measurement range A). .

【0022】[0022]

【使用法及び動作の説明】例えば、5m前後の壁間の測
距を1mmの精度で測距したい場合には、準備操作とし
て電源スイッチS1をオンした後に、モード切換えスイ
ッチS2を押して表示パネル3を見ながら測距基準を後
端面1cに設定する。次に測距範囲切換スイッチS3を
押して同様に表示パネル3を見ながら該当する測距範囲
Aを設定する。
[Explanation of usage and operation] For example, when it is desired to measure the distance between walls of about 5 m with an accuracy of 1 mm, the power switch S1 is turned on as a preparatory operation, and then the mode switch S2 is pressed to display the display panel 3. Is set to the rear end face 1c while observing. Next, the user presses the distance measurement range switch S3 and sets the corresponding distance measurement range A while looking at the display panel 3 in the same manner.

【0023】この準備操作が終了後、ケース本体1の後
端面1cを一方の壁面に当接し、測距対象となる他方の
壁面に前端面1aを向けて予めセットしてある反射板9
に光軸を合わせ、測距開始スイッチS4を押す。これに
より制御回路12内の記憶回路に記憶してあるプログラ
ムにしたがって一連の測距動作がシーケンシャルに遂行
される。
After the preparation operation is completed, the rear end face 1c of the case body 1 is brought into contact with one wall surface, and the reflection plate 9 set in advance with the front end face 1a facing the other wall surface to be measured.
And press the distance measurement start switch S4. As a result, a series of distance measurement operations are sequentially performed according to the program stored in the storage circuit in the control circuit 12.

【0024】駆動回路5を介してレーザー光源4が励起
されてこのレーザー光源4から所定周波数(所定波長)
のレーザー光が発射される。このレーザー光は、その一
部が光学分光器6にて上方に90°に反射され、この反
射光L1が検出器7に入射されるとともに、残りの光は
光学分光器6を透過して反射板9(測距対象8)に当っ
て反射し、この光は光学分光器6によって今度は下方に
90°に反射され、その反射光L2は他方の検出器10
に入射される。
The laser light source 4 is excited via the drive circuit 5 and is supplied from the laser light source 4 at a predetermined frequency (a predetermined wavelength).
Laser light is emitted. A part of the laser light is reflected upward by 90 ° by the optical spectroscope 6, and the reflected light L1 is incident on the detector 7, and the remaining light is transmitted through the optical spectroscope 6 and reflected. The light is reflected by the plate 9 (the object 8 to be measured), and this light is reflected downward by 90 ° by the optical spectroscope 6, and the reflected light L 2 is reflected by the other detector 10.
Is incident on.

【0025】各検出器7、10は、反射光L1、L2の
入射を受けてそれに対応した電気信号を位相検出演算回
路11にそれぞれ出力し、位相検出演算回路11はこの
2つの電気信号より位相差を算出し、その算出結果を制
御回路12に出力する。
Each of the detectors 7 and 10 receives the reflected lights L1 and L2 and outputs an electric signal corresponding to the incident light to the phase detection operation circuit 11, and the phase detection operation circuit 11 outputs a signal based on the two electric signals. The phase difference is calculated, and the calculation result is output to the control circuit 12.

【0026】制御回路12では検出された位相差に基づ
いて測距基準から測距対象までの距離を演算して、その
結果が表示パネル3に表示される。次の測距を行うので
あれば、その測距条件に対応して準備操作をして同様の
手順で測距を行う。全ての測距を終了するのであれば電
源スイッチS1をオフにする。
The control circuit 12 calculates the distance from the distance measurement reference to the object to be measured based on the detected phase difference, and the result is displayed on the display panel 3. If the next distance measurement is to be performed, a preparation operation is performed according to the distance measurement conditions, and the distance measurement is performed in the same procedure. If all distance measurement is to be ended, the power switch S1 is turned off.

【0027】なお、上記実施例では、測距開始スイッチ
S4の1回の押圧により1回の測距動作を行うようにし
ているが、測距精度を高めるために測距開始スイッチS
4の1回の押圧により複数回(例えば5回)の測距動作
つまりレーザー光源4の励起を行うようにし、各測距動
作毎の演算距離の平均値、又は最大値と最小値を除いた
残りの3つの演算距離の平均値を表示パネル3の表示す
るようにしてもよい。
In the above embodiment, one distance measurement operation is performed by one pressing of the distance measurement start switch S4. However, in order to improve the distance measurement accuracy, the distance measurement start switch S4 is used.
A single pressing of 4 causes a plurality of distance measurement operations (for example, five times), that is, excitation of the laser light source 4, and excludes the average value or the maximum value and the minimum value of the calculated distance for each distance measurement operation. The average value of the remaining three calculation distances may be displayed on the display panel 3.

【0028】また、測距対象8につけた反射板9は必ず
しも必要なものではない。
The reflector 9 attached to the object 8 is not always necessary.

【0029】さらに、測距信号としては、レーザー光に
代えて紫外線光又は発光ダイオード(LED)等による
赤外線光を採用してもよい。この場合には、レーザー光
に比して光拡散が多くなるので光学分光器6の下流側に
投光レンズを設けて集光させる措置が講じられることも
ある。
Further, as the distance measurement signal, ultraviolet light or infrared light from a light emitting diode (LED) may be employed instead of laser light. In this case, since the light diffusion is larger than that of the laser light, a measure may be taken to provide a light projecting lens downstream of the optical spectroscope 6 to condense the light.

【0030】測距方式については、光波位相差方式に代
えて光波干渉方式を採用することも可能であり、光波に
代えて音波を採用することも可能である。音波としては
超音波が最適である。
As for the distance measuring method, a light wave interference method can be used instead of the light wave phase difference method, and a sound wave can be used instead of the light wave. Ultrasonic waves are optimal as sound waves.

【0031】[0031]

【発明の効果】本発明の携帯用小型電子メジャーによれ
ば、測距基準を前端面又は後端面に切り替えることがで
きるため、一般家庭やオフィス等における測距において
そのときの状況に応じた使い分けができ大変便利であ
る。また、測距範囲が切り換え可能であり、選択する測
距範囲に応じて電子的測距手段の駆動条件(特にはレー
ザー光の強度と波長)が異ならせてあるので、測距すべ
き距離及び必要な測距精度に応じて使い分けでき、電池
電源の電力消費を必要最低限に抑えることがことができ
る。
According to the portable small-sized electronic measure of the present invention, the distance measurement reference can be switched to the front end face or the rear end face. It is very convenient. In addition, the distance measurement range is switchable, and the driving conditions (particularly, the intensity and wavelength of the laser beam) of the electronic distance measurement means are changed according to the selected distance measurement range. It can be used properly according to the required ranging accuracy, and the power consumption of the battery power supply can be suppressed to the minimum necessary.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の外観斜視図である。FIG. 1 is an external perspective view of one embodiment.

【図2】一実施例における電子的測距手段の構成を示す
ブロック図である。
FIG. 2 is a block diagram illustrating a configuration of an electronic distance measuring unit according to one embodiment.

【符号の説明】[Explanation of symbols]

1 ケース本体 1a、1c 測距基準(ケース本体の前端面と後端
面) 2 検出窓 3 表示パネル 4 レーザー光源 EMD 電子的測距手段 S1〜S4 スイッチ
DESCRIPTION OF SYMBOLS 1 Case main body 1a, 1c Distance measuring reference (front end surface and rear end surface of case main body) 2 Detection window 3 Display panel 4 Laser light source EMD Electronic distance measuring means S1 to S4 Switch

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA06 DD02 FF11 FF13 FF31 GG04 LL00 LL12 NN01 NN06 NN08 QQ23 QQ42 SS03 SS13 2F068 AA06 FF12 FF19 PP00 5J083 AA02 AC31 AD04 BA01 CA02 EB04 5J084 AA05 AD02 BA03 BA32 BB24 CA03 CA70 EA31  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA06 DD02 FF11 FF13 FF31 GG04 LL00 LL12 NN01 NN06 NN08 QQ23 QQ42 SS03 SS13 2F068 AA06 FF12 FF19 PP00 5J083 AA02 AC31 AD04 BA01 CA02 EB04 EA04 BA03 EA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 検出窓が設けてあるケース本体の内部に
は、波動を伴う光波又は音波による測距信号を用いた電
子的測距手段が備わっており、上記電子的測距手段は、
外部操作により上記ケースの前端面又は後端面を測距基
準とするように切換え可能であることを特徴とする携帯
式小型電子メジャー。
An electronic distance measuring means using a distance measuring signal by a light wave or a sound wave accompanied by a wave is provided inside a case main body provided with a detection window, and the electronic distance measuring means comprises:
A portable small electronic measure, which can be switched by an external operation so that a front end face or a rear end face of the case is used as a distance measurement reference.
【請求項2】 請求項1において、測距範囲が外部操作
により切換え可能であることを特徴とする携帯式小型電
子メジャー。
2. The portable small electronic measure according to claim 1, wherein the distance measurement range can be switched by an external operation.
【請求項3】 請求項2において、切り換えられる測距
範囲に応じて電子的測距手段の駆動条件が異ならせてあ
ることを特徴とする携帯式小型電子メジャー。
3. The portable small electronic measure according to claim 2, wherein the driving condition of the electronic distance measuring means is changed according to the range to be switched.
【請求項4】 請求項1乃至3のいずれかにおいて、ケ
ース本体には、測距結果等を表示する表示パネルが設け
てあることを特徴とする携帯式小型電子メジャー。
4. The portable small electronic measure according to claim 1, wherein a display panel for displaying a distance measurement result and the like is provided on the case main body.
JP11051428A 1999-02-26 1999-02-26 Portable small-sized electronic measure Pending JP2000249546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11051428A JP2000249546A (en) 1999-02-26 1999-02-26 Portable small-sized electronic measure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11051428A JP2000249546A (en) 1999-02-26 1999-02-26 Portable small-sized electronic measure

Publications (1)

Publication Number Publication Date
JP2000249546A true JP2000249546A (en) 2000-09-14

Family

ID=12886670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11051428A Pending JP2000249546A (en) 1999-02-26 1999-02-26 Portable small-sized electronic measure

Country Status (1)

Country Link
JP (1) JP2000249546A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333501A (en) * 2003-05-09 2004-11-25 Hilti Ag Hand-held type photoelectric ranging system
JP2005536754A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical distance measuring device and optical distance measuring method
JP2009507235A (en) * 2005-09-05 2009-02-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electro-optical measuring device
JP2012118077A (en) * 2010-11-30 2012-06-21 Hilti Ag Range finder
JP2012521572A (en) * 2009-03-25 2012-09-13 ファロ テクノロジーズ インコーポレーテッド Devices that optically scan and measure the environment
JP2013540999A (en) * 2010-09-13 2013-11-07 マイクロ‐エプシロン オプトロニク ゲーエムベーハー Distance measuring system
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
JP2015092152A (en) * 2013-10-01 2015-05-14 株式会社トプコン Measuring method and measuring device
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
JP2019140872A (en) * 2018-02-15 2019-08-22 株式会社東芝 Portable type cable length measurement/cutting tool
CN113359145A (en) * 2021-06-03 2021-09-07 郑州航空工业管理学院 Target accurate positioning method in pulse laser ranging and application thereof
JP2022527914A (en) * 2019-03-29 2022-06-07 オムロン株式会社 Visual indicator for presence detection system

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536754A (en) * 2002-08-28 2005-12-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical distance measuring device and optical distance measuring method
JP4614685B2 (en) * 2003-05-09 2011-01-19 ヒルティ アクチエンゲゼルシャフト Handheld photoelectric rangefinder
JP2004333501A (en) * 2003-05-09 2004-11-25 Hilti Ag Hand-held type photoelectric ranging system
JP2009507235A (en) * 2005-09-05 2009-02-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electro-optical measuring device
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
JP2012521572A (en) * 2009-03-25 2012-09-13 ファロ テクノロジーズ インコーポレーテッド Devices that optically scan and measure the environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699036B2 (en) 2010-07-29 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2013540999A (en) * 2010-09-13 2013-11-07 マイクロ‐エプシロン オプトロニク ゲーエムベーハー Distance measuring system
US9453728B2 (en) 2010-09-13 2016-09-27 Micro-Epsilon Optronic Gmbh Optical measurement system for determining distances
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
JP2012118077A (en) * 2010-11-30 2012-06-21 Hilti Ag Range finder
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US11112501B2 (en) 2012-10-05 2021-09-07 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US11815600B2 (en) 2012-10-05 2023-11-14 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US11035955B2 (en) 2012-10-05 2021-06-15 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10739458B2 (en) 2012-10-05 2020-08-11 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
JP2015092152A (en) * 2013-10-01 2015-05-14 株式会社トプコン Measuring method and measuring device
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
JP2019140872A (en) * 2018-02-15 2019-08-22 株式会社東芝 Portable type cable length measurement/cutting tool
JP2022527914A (en) * 2019-03-29 2022-06-07 オムロン株式会社 Visual indicator for presence detection system
JP7371698B2 (en) 2019-03-29 2023-10-31 オムロン株式会社 Visual indicators for presence detection systems
CN113359145A (en) * 2021-06-03 2021-09-07 郑州航空工业管理学院 Target accurate positioning method in pulse laser ranging and application thereof
CN113359145B (en) * 2021-06-03 2023-05-16 郑州航空工业管理学院 Target accurate positioning method in pulse laser ranging and application thereof

Similar Documents

Publication Publication Date Title
JP2000249546A (en) Portable small-sized electronic measure
US7372771B2 (en) Electronic distance measuring apparatus
US7639346B2 (en) Non-contact measurement device
KR101016565B1 (en) Device and method for distance measurement
WO2012059339A1 (en) Gas detector
JPH09257476A (en) Laser irradiation equipment and target equipment
WO2011078838A1 (en) Non-contact measurement device
JP6417594B2 (en) Biological information measuring device
KR100758261B1 (en) Electronic distance measuring apparatus using laser and supersonic waves
JP2996300B2 (en) Portable gloss measuring device
JP2003269955A (en) Measurement device of distance or the like
JP5923952B2 (en) Pulse wave measuring device and pulse wave sensor
JPH05323029A (en) Distance measuring method by light wave range finder
JP2003302209A (en) Optical length measuring apparatus
JP6137375B2 (en) Pulse wave sensor and pulse wave measuring device
KR20150025380A (en) Portable device and method of measuring distance using the same
JPH05126565A (en) Optical displacement measuring instrument
KR101782509B1 (en) A Device for Measuring a Length Using Ultrasound
KR200361183Y1 (en) Electronic distance measuring apparatus using laser and supersonic waves
JP2004101343A (en) Distance measuring machine
JP4781552B2 (en) Light wave distance meter
CN211375064U (en) Tool for measuring
JPH0518646Y2 (en)
KR0148447B1 (en) Measuring equipment and method of distance using laser beam scanner
JP2011099800A (en) Optical communication light-emitting apparatus and light-measuring instrument