JP2000248967A - Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof - Google Patents

Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof

Info

Publication number
JP2000248967A
JP2000248967A JP11048120A JP4812099A JP2000248967A JP 2000248967 A JP2000248967 A JP 2000248967A JP 11048120 A JP11048120 A JP 11048120A JP 4812099 A JP4812099 A JP 4812099A JP 2000248967 A JP2000248967 A JP 2000248967A
Authority
JP
Japan
Prior art keywords
mover
valve
internal combustion
combustion engine
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11048120A
Other languages
Japanese (ja)
Inventor
Masanori Ichinose
昌則 一野瀬
Noriyuki Maekawa
典幸 前川
Atsushi Yokoyama
篤 横山
Atsuo Kishi
敦夫 岸
Kiichi Hoshi
喜一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP11048120A priority Critical patent/JP2000248967A/en
Publication of JP2000248967A publication Critical patent/JP2000248967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solenoid-operated valve system and a control method thereof, capable of gently seating a valve element with a small power consumption by effectively utilizing spring tension in a deceleration direction by a spring holding the valve element, without using deceleration by electromagnetic force and a buffer spring. SOLUTION: An excitation current of a suction side electromagnet for driving a valve element is supplied, after the valve element operation is started, for a period and at a magnitude enough for a mover leading to the electromagnet, thereafter supply of the excitation current is decreased or stopped immediately prior to the mover collides against the electromagnet, and supply of the exciting current for holding the mover is re-started after the lapse of prescribed time. At completion of necessary accelerating action immediately prior to seating, the excitation current of the electromagnet is decreased or stopped, and spring tension in a deceleration direction by a spring holding the valve element is effectively utilized, so as to slowly seat the valve element with a small power consumption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の吸気弁
または排気弁として機能する電磁式動弁、特に該電磁式
動弁の電磁式駆動装置およびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic valve which functions as an intake valve or an exhaust valve of an internal combustion engine, and more particularly to an electromagnetic drive device for the electromagnetic valve and a control method thereof.

【0002】[0002]

【従来の技術】従来より、内燃機関の吸気弁または排気
弁を電磁力によって開閉駆動することで、運転状態に応
じて開弁期間および弁開閉時期を任意に設定可能な電磁
式動弁が知られている。例えば、弁体と一体になって動
く可動子を一対のばねの釣り合いによって中間位置に保
持し、その摺動方向の両側に配置した電磁石に電流を流
すことによって可動子に電磁力を作用させ、可動子およ
び弁体をその中立位置から全開方向または全閉方向へ移
動させる構造の電磁式動弁が挙げられる。前述の電磁式
動弁によれば、例えば弁体を全閉状態から全開状態へ移
動させようとしたとき、前述のばねの付勢力に抗して全
閉状態に保持している全閉側の電磁石への励磁電流の供
給を停止すると、可動子および弁体はばね力によって全
開方向への移動を開始し、ばね−質量系の単振動による
運動をする。そのため、弁体の移動途中で摩擦や外力に
よって失われた運動エネルギーを全開側の電磁石による
電磁力によって供給するだけで弁体を全開位置まで移動
することができ、エネルギー効率の優れた動弁機構を構
成することができる。
2. Description of the Related Art Conventionally, there has been known an electromagnetic valve in which an intake valve or an exhaust valve of an internal combustion engine is opened and closed by electromagnetic force so that a valve opening period and a valve opening / closing timing can be arbitrarily set according to an operation state. Have been. For example, a movable element that moves integrally with the valve body is held at an intermediate position by a pair of springs, and an electromagnetic force is applied to the movable element by flowing a current through electromagnets arranged on both sides in the sliding direction. An electromagnetic valve having a structure in which a mover and a valve element are moved from a neutral position to a fully open direction or a fully closed direction is exemplified. According to the aforementioned electromagnetic valve, for example, when moving the valve body from the fully closed state to the fully open state, the fully closed side holding the fully closed state against the urging force of the spring described above. When the supply of the exciting current to the electromagnet is stopped, the mover and the valve element start moving in the fully open direction by the spring force, and move by the simple vibration of the spring-mass system. Therefore, the valve element can be moved to the fully open position only by supplying the kinetic energy lost due to friction or external force during the movement of the valve element by the electromagnetic force of the fully opened electromagnet, and the valve operating mechanism with excellent energy efficiency Can be configured.

【0003】しかしながら、前述の構成による場合、可
動子を引き付けるための電磁石の電磁力は、磁路の飽和
による影響などを除けば可動子のエアギャップの2乗に
反比例するため、電磁石に一定電流を供給すると可動子
が引き付け側の電磁石に接近するにつれて電磁力は急激
に増大し、可動子は電磁石に激しく衝突する。自動車な
どに搭載される内燃機関においては静粛性に対する要求
も高いことから、前述の衝突による衝撃音を低減する必
要がある。また、閉弁時においては弁体も弁座に激しく
衝突するため、弁座上で弁体が飛び跳ねる現象を生じ、
確実な閉弁が行われない可能性もある。衝撃音を低減す
るために弁体の減速制御が行われてきた。例えば、特開
平6−129219 号公報には、緩衝ばねを用いて弁体の減速
を機械的に行うことが示されており、特開平8−135416
号公報には弁体動作中に引き付け側の電磁石とは反対側
の電磁石にも通電し、弁体の減速制御を行うことが示さ
れている。また、特開平4−179806 号公報には、内燃機
関の吸排気バルブを電磁力によって駆動し開閉弁せしめ
る電磁駆動バルブにおいて、前記吸排気バルブに取付け
た強磁性体の鉄心と、該鉄心に対応し前記吸排気バルブ
の移動方向に順次に配置した複数の電磁石の磁極と、前
記内燃機関の運転状態に応じ配置した順序にしたがい順
次に磁極を磁化する電磁石への通電制御手段とを有する
電磁駆動バルブが記載されている。
However, in the above-described configuration, the electromagnetic force of the electromagnet for attracting the mover is inversely proportional to the square of the air gap of the mover except for the influence of saturation of the magnetic path. When the armature is supplied, the electromagnetic force rapidly increases as the armature approaches the attracting electromagnet, and the armature violently collides with the electromagnet. Since there is a high demand for quietness in an internal combustion engine mounted on an automobile or the like, it is necessary to reduce the impact noise due to the above-mentioned collision. Also, when the valve is closed, the valve body also collides violently with the valve seat, causing a phenomenon that the valve body jumps on the valve seat,
There is a possibility that the valve will not be reliably closed. In order to reduce the impact noise, deceleration control of the valve body has been performed. For example, JP-A-6-129219 discloses that a valve spring is mechanically decelerated using a buffer spring.
It is disclosed in Japanese Patent Application Publication No. JP-A-2003-110555 that the electromagnet on the side opposite to the attracting side electromagnet is also energized during the operation of the valve body to perform deceleration control of the valve body. Japanese Patent Application Laid-Open No. 4-179806 discloses an electromagnetically driven valve that drives an intake / exhaust valve of an internal combustion engine by an electromagnetic force to open and close the valve. An electromagnetic drive having a plurality of magnetic poles of electromagnets sequentially arranged in the moving direction of the intake and exhaust valves, and means for controlling energization of the electromagnets to sequentially magnetize the magnetic poles in the order arranged according to the operation state of the internal combustion engine; A valve is described.

【0004】[0004]

【発明が解決しようとする課題】緩衝ばねによる減速制
御にあっては、可動子を電磁石から引き離す方向に常に
緩衝ばねによるばね力が発生しているため、弁体の保持
期間において保持電流を多く供給する必要がある。反対
側の電磁石にも通電する減速制御にあっては、最も減速
が必要な着座直前の状態において電磁石と可動子のエア
ギャップが大きくなり、多大な励磁電流を供給する必要
がある。他の従来の減速制御にあっても前述したと同様
に保持電流あるいは励磁電流を多く必要とするばかりで
なく、装置の構造が複雑になるという問題もあった。
In deceleration control using a buffer spring, a spring force is always generated by the buffer spring in a direction in which the mover is separated from the electromagnet. Need to supply. In the deceleration control in which the electromagnet on the opposite side is also energized, the air gap between the electromagnet and the mover becomes large in a state immediately before seating, which requires the most deceleration, and it is necessary to supply a large exciting current. Other conventional deceleration controls not only require a large holding current or an exciting current, as described above, but also have a problem that the structure of the device becomes complicated.

【0005】本発明は、かかる点に鑑みて、弁体を保持
しているばねによる減速方向のばね力を効果的に利用
し、少ない消費電力で弁体を緩やかに着座させ、衝撃音
を低減することのできる電磁式動弁およびその制御方法
を提供することを目的とする。
In view of the above, the present invention makes effective use of the spring force in the deceleration direction of the spring holding the valve body, allows the valve body to be gently seated with low power consumption, and reduces impact noise. An object of the present invention is to provide an electromagnetic valve and a control method thereof.

【0006】[0006]

【課題を解決するための手段】本発明は、弁体の駆動の
ための吸引側電磁石に励磁電流を供給して弁体の吸引を
行い、その後可動子が電磁石に着座する直前で吸引側の
励磁電流の供給を減少もしくは停止するものである。そ
して、本発明は、所定の時間経過後に励磁電流を再度供
給開始することを1つの特徴とする。
According to the present invention, an exciting current is supplied to an attraction-side electromagnet for driving a valve element, and the valve element is attracted. Then, immediately before the movable element is seated on the electromagnet, the attraction side electromagnet is moved. The supply of the exciting current is reduced or stopped. The present invention is characterized in that the supply of the exciting current is started again after a predetermined time has elapsed.

【0007】本発明は、可動子が電磁石に着座する直前
で吸引側の励磁電流制御を行うために、可動子現在状態
量を求め、可動子の現在状態量に依存して励磁電流制御
を行っている。
According to the present invention, in order to perform excitation current control on the attraction side immediately before the mover is seated on the electromagnet, the current state quantity of the mover is obtained and the excitation current control is performed depending on the current state quantity of the mover. ing.

【0008】上記目的を達するため本発明は、内燃機関
の吸気弁または排気弁と、前記弁体と一体になって動く
可動子を一対のばねの釣り合いによって中間位置に保持
し、その摺動方向の両側に配置した電磁石に電流を流す
ことによって可動子に電磁力を作用させ、可動子および
弁体をその中立位置から全開方向または全閉方向へ移動
させる構造の電磁式動弁において、前記弁体の作動開始
後に、弁体の駆動のための吸引側電磁石の励磁電流を供
給し、その後可動子が電磁石に衝突する直前で励磁電流
の供給を減少もしくは停止し、所定の時間経過後に励磁
電流を再度供給開始することを特徴とする。
In order to achieve the above object, the present invention is to maintain an intake valve or an exhaust valve of an internal combustion engine and a mover which moves integrally with the valve body at an intermediate position by balancing a pair of springs, and in a sliding direction thereof. An electromagnetic force is applied to the mover by passing a current through electromagnets disposed on both sides of the electromagnetic valve to move the mover and the valve body from the neutral position to the fully open or fully closed direction. After starting the operation of the body, the excitation current of the attraction side electromagnet for driving the valve body is supplied, and then the supply of the excitation current is reduced or stopped immediately before the mover collides with the electromagnet. Is supplied again.

【0009】また、この電磁式動弁の制御方法は、前記
弁体の駆動のための吸引側電磁石の励磁電流は、可動子
が電磁石に到達するに足るだけの期間と大きさで供給す
ることを特徴とする。
Further, in this method of controlling an electromagnetic valve, the exciting current of the attraction-side electromagnet for driving the valve element is supplied for a period and an amount sufficient for the movable element to reach the electromagnet. It is characterized by.

【0010】また、この電磁式動弁の制御方法は、前記
再度供給開始する励磁電流は、電磁石に到達した可動子
の保持に必要な大きさで供給することを特徴とする。
[0010] In the control method for an electromagnetic valve, the exciting current to be supplied again is supplied in a magnitude necessary for holding the mover reaching the electromagnet.

【0011】また、この電磁式動弁の制御方法は、前記
可動子にはその位置を計測するための可動子位置計測手
段を設け、計測された可動子位置と予め用意した可動子
動作軌道とを比較し、前記弁体の駆動のための吸引側電
磁石の励磁電流は前記可動子動作軌道を可動子が超えた
時点で減少もしくは停止することを特徴とする。
Further, in this method of controlling an electromagnetic valve, the mover is provided with a mover position measuring means for measuring the position of the mover, and the measured mover position and a mover movement trajectory prepared in advance are determined. And the exciting current of the attraction-side electromagnet for driving the valve element is reduced or stopped when the mover exceeds the mover operation trajectory.

【0012】また、この電磁式動弁の制御方法は、前記
可動子動作軌道は、弁体の動作開始後の経過時間に対す
る目標位置として与えられることを特徴とする。
Further, in the method for controlling an electromagnetic valve, the moving path of the mover is provided as a target position with respect to an elapsed time after the operation of the valve element is started.

【0013】また、この制御方法は、前記可動子動作軌
道は、弁体の現在位置に対する目標速度として与えられ
ることを特徴とする。
Further, the control method is characterized in that the mover movement trajectory is given as a target speed with respect to a current position of the valve body.

【0014】また、この電磁式動弁の制御方法は、前記
可動子にはその位置を計測するための可動子位置計測手
段を設け、計測された可動子位置と、前記可動子位置か
ら算出した可動子の速度を用い、弁体および可動子の持
つ運動エネルギーと、それを支持するばねに蓄えられた
エネルギーを算出し、前記エネルギーの和が、可動子が
電磁石に到達するに必要なエネルギーを超えた時点で減
少もしくは停止することを特徴とする。
Further, in this method of controlling an electromagnetic valve, the mover is provided with a mover position measuring means for measuring the position of the mover, and the mover position is calculated from the measured mover position and the mover position. Using the speed of the mover, the kinetic energy of the valve element and the mover and the energy stored in the spring that supports it are calculated, and the sum of the energy is the energy required for the mover to reach the electromagnet. It is characterized in that it decreases or stops when it exceeds.

【0015】本発明は、具体的には次に掲げる装置およ
び方法を提供する。
The present invention specifically provides the following apparatus and method.

【0016】本発明は、内燃機関の吸気弁または排気弁
と一体になって動く可動子を一対のばねの釣り合いによ
って中間位置に保持し、その摺動方向の両側に配置した
電磁石に電流を流すことによって可動子に電磁力を作用
させ、可動子をその中立位置から全開方向または全閉方
向へ移動させる構造の電磁式動弁において、内燃機関の
運転状態信号をA/D変換するA/D変換部と、弁作動
に対し電磁石駆動力を減少させる指令を記憶する記憶部
と、A/D変換部からの信号を入力して可動子現在状態
量を求め、記憶部からの駆動力減少値を求めて可動子動
作指令について駆動減少演算する演算装置と、および該
演算装置からの該駆動減少演算に基づいて励磁作動を電
磁石に指令する内燃機関の吸気弁または排気弁を駆動す
る電磁式動弁を提供する。
According to the present invention, a movable element that moves integrally with an intake valve or an exhaust valve of an internal combustion engine is held at an intermediate position by balancing a pair of springs, and a current flows through electromagnets disposed on both sides in the sliding direction. In this way, an electromagnetic force is applied to the mover to move the mover from its neutral position to the fully open or fully closed direction, and the A / D converts the operating state signal of the internal combustion engine from analog to digital. A conversion unit, a storage unit for storing a command to reduce the electromagnet driving force for the valve operation, and a signal from the A / D conversion unit for inputting a current state quantity of the mover to obtain a driving force reduction value from the storage unit. And an electromagnetic device for driving an intake valve or an exhaust valve of an internal combustion engine for instructing an electromagnet to perform an excitation operation based on the drive reduction operation from the operation device. Offer a valve To.

【0017】本発明は、内燃機関の吸気弁または排気弁
と一体になって動く可動子を一対のばねの釣り合いによ
って中間位置に保持し、その摺動方向の両側に配置した
電磁石に電流を流すことによって可動子に電磁力を作用
させ、可動子をその中立位置から全開方向または全閉方
向へ移動させる電磁式動弁の制御方法において、可動子
現在状態量を求め、可動子現在状態量に基づいて、可動
子が電磁石に衝突する直前で励磁電流の供給を減少もし
くは停止する内燃機関の吸気弁または排気弁を駆動する
電磁式動弁の制御方法を提供する。
According to the present invention, a movable element that moves integrally with an intake valve or an exhaust valve of an internal combustion engine is held at an intermediate position by balancing a pair of springs, and a current flows through electromagnets disposed on both sides in the sliding direction. By applying an electromagnetic force to the mover by moving the mover from its neutral position to the fully open or fully closed direction, the method of controlling the electromagnetic valve operates to determine the current state quantity of the mover, The present invention provides a method for controlling an electromagnetic valve that drives an intake valve or an exhaust valve of an internal combustion engine that reduces or stops the supply of an exciting current immediately before a mover collides with an electromagnet.

【0018】[0018]

【発明の実施の形態】まず、本発明の第1の実施例を説
明する。図1は、本発明の第1の実施例の構成を示す図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a first embodiment of the present invention will be described. FIG. 1 is a diagram showing the configuration of the first exemplary embodiment of the present invention.

【0019】同図に示される電磁式動弁は、内燃機関の
吸排気弁1と可動子2が一体となって摺動するように配
置され、一対のばね5,6によるばね力の釣り合いによ
って摺動範囲の中間位置に保持される。可動子2の摺動
範囲の両端に対応する位置には全開側電磁石3および全
閉側電磁石4が配置され、これら電磁石3,4に電流を
流すことによって可動子2に電磁力(励磁作動指令2
4)を作用させ、可動子2および吸排気弁1を中立位置
から全開方向または全閉方向へ移動させることで、吸排
気弁の開閉を実現する。
The electromagnetic valve shown in FIG. 1 is arranged so that an intake / exhaust valve 1 and a mover 2 of an internal combustion engine slide integrally, and the spring force is balanced by a pair of springs 5 and 6. It is held at the middle position of the sliding range. A fully open electromagnet 3 and a fully closed electromagnet 4 are arranged at positions corresponding to both ends of the sliding range of the mover 2, and an electromagnetic force (excitation operation command) is applied to the mover 2 by applying a current to these electromagnets 3 and 4. 2
4) is operated to move the mover 2 and the intake / exhaust valve 1 from the neutral position in the fully open direction or the fully closed direction, thereby realizing opening and closing of the intake / exhaust valve.

【0020】内燃機関の状態を示すセンサ入力群はA/
D変換部7に入力され、演算装置8に渡される。演算装
置8ではセンサ入力値から電磁式動弁の動作タイミング
および励磁電流の供給時間や大きさを算出し、もしくは
記憶部9のテーブルから読み出し、所定のタイミングで
D/A変換部10,11に電流指令値(可動子動作指令
20)に基づく励磁作動指令24を出力する。変換され
た電流指令値は駆動回路12,13へ入力され、指令値
に応じた励磁電流を電磁石4,5に供給する。
The sensor input group indicating the state of the internal combustion engine is A /
The data is input to the D conversion unit 7 and passed to the arithmetic unit 8. The arithmetic unit 8 calculates the operation timing of the electromagnetic valve and the supply time and magnitude of the exciting current from the sensor input value, or reads out from the table of the storage unit 9 and sends it to the D / A conversion units 10 and 11 at a predetermined timing. An excitation operation command 24 based on the current command value (movable element operation command 20) is output. The converted current command value is input to the drive circuits 12 and 13 and supplies an exciting current corresponding to the command value to the electromagnets 4 and 5.

【0021】図2は、可動子の位置と電流指令値の関係
を示す図である。図で、(a)は全閉側電磁石への電流
指令値、(b)は可動子の位置、(c)は全開側電磁石
への電流指令値の時間変化を示す図である。図では、例
として全閉状態xcから全開状態xoへと動作させる場
合を示している。内燃機関に取り付けられたクランク角
センサの入力信号から算出した開閉弁タイミング、もし
くはECU(EngineControl Unit)から直接指示された
開閉弁タイミングに従い、電磁式動弁は動作を開始する
が、この時刻をt0とする。時刻t0の時点で全閉側電
磁石への電流の供給を停止すると、可動子および弁体は
ばねの付勢力によって全開方向へと運動を開始する。こ
の間に全開側電磁石への加速電流I1の供給が開始さ
れ、電磁力によって可動子はさらに全開方向へ加速され
る。可動子位置が中立位置xmを超えると、ばね力は減
速方向へと力の向きを変えるため、全開側電磁石への電
流の供給を停止すると可動子は減速を始める。そこで、
規定の時刻t1の時点で電流の供給を停止することで、
可動子が全開側電磁石に着座する速度を緩和することが
できる。このままではばねの逆向きの付勢力により可動
子および弁体は全閉側に戻ってしまうため、時刻t2の
時点で可動子を全開側に保持するための保持電流I2を
供給する。可動子は時刻t3で全開側電磁石に着座する
ため、時刻t4以降はばね力に対抗できる程度の電磁力
が得られる保持電流I3を供給すれば良い。すなわち、
時刻t0からt1の期間において電磁石に供給する励磁
電流I2によって可動子に作用する電磁力の時間積分、
言い換えれば電磁力により与えられる運動エネルギー
が、弁体の運動の際に摩擦などで失われるエネルギーと
等しくなるように設定すれば、可動子が電磁石に着座す
る際の速度をゼロに近づけることができる。また、弁体
の摺動部の潤滑油の状態や要求トルク変化によっても供
給すべきエネルギー量が変化するので、内燃機関の冷却
水の水温,油温やアクセル開度,弁の電流指令値などの
内燃機関の運転状態信号をセンサ入力群25の値から、
加速電流I1の大きさや印加期間t0〜t1を変化させ
るようにしても良い。
FIG. 2 is a diagram showing the relationship between the position of the mover and the current command value. In the figure, (a) is a diagram showing a current command value to the fully-closed electromagnet, (b) is a position of the mover, and (c) is a diagram showing a time change of a current command value to the fully-opened electromagnet. In the drawing, as an example, a case where the operation is performed from the fully closed state xc to the fully opened state xo is shown. The electromagnetic valve starts operating in accordance with the opening / closing valve timing calculated from the input signal of the crank angle sensor attached to the internal combustion engine or the opening / closing valve timing directly instructed by the ECU (Engine Control Unit). And When the current supply to the fully closed electromagnet is stopped at time t0, the mover and the valve element start moving in the fully open direction by the biasing force of the spring. During this time, the supply of the acceleration current I1 to the fully opened electromagnet is started, and the mover is further accelerated in the fully opened direction by the electromagnetic force. When the mover position exceeds the neutral position xm, the spring force changes the direction of the force in the deceleration direction. Therefore, when the supply of the current to the fully open electromagnet is stopped, the mover starts to decelerate. Therefore,
By stopping the current supply at the specified time t1,
The speed at which the mover sits on the fully open electromagnet can be reduced. In this state, the movable element and the valve element return to the fully closed side due to the biasing force of the spring in the opposite direction. Therefore, at time t2, the holding current I2 for holding the movable element to the fully open side is supplied. Since the mover is seated on the fully-opened electromagnet at time t3, it is sufficient to supply a holding current I3 that can provide an electromagnetic force sufficient to oppose the spring force after time t4. That is,
Time integration of the electromagnetic force acting on the mover by the exciting current I2 supplied to the electromagnet during the period from time t0 to t1;
In other words, if the kinetic energy provided by the electromagnetic force is set to be equal to the energy lost due to friction or the like during the movement of the valve body, the speed at which the mover sits on the electromagnet can be made close to zero. . In addition, the amount of energy to be supplied also changes depending on the state of the lubricating oil in the sliding portion of the valve body and the required torque, so that the coolant temperature of the internal combustion engine, the oil temperature, the accelerator opening, the valve current command value, etc. From the value of the sensor input group 25,
The magnitude of the acceleration current I1 and the application periods t0 to t1 may be changed.

【0022】図1において、センサ入力群25からの値
に基づき可動子現在状態量21を求め、記憶部9からの
可動子現在状態量に対する目標値24を求めて両者を比
較し、可動子駆動減少指令23を求め、この値を可動子
動作指令20に反映して励磁作動指令を得る。
In FIG. 1, the current state quantity 21 of the mover is obtained based on the value from the sensor input group 25, the target value 24 for the current state quantity of the mover is obtained from the storage unit 9, and both are compared. A decrease command 23 is obtained, and this value is reflected on the mover operation command 20 to obtain an excitation operation command.

【0023】次に、本発明の第2の実施例を説明する。
図3は、本発明の第2の実施例の構成を示す図である。
Next, a second embodiment of the present invention will be described.
FIG. 3 is a diagram showing the configuration of the second embodiment of the present invention.

【0024】内燃機関の状態を示すセンサ入力群および
可動子2の位置を計測する可動子位置計測手段14の出
力はA/D変換部7に入力され、演算装置8に渡され
る。この実施例の場合、可動子位置計測手段14の出力
が直接的に可動子現在状態量21を示すことになる。演
算装置8では可動子の位置情報と記憶装置9の可動子動
作軌道テーブルの値を比較し、その結果に応じてD/A
変換部10,11に電流指令値を出力する。変換された
電流指令値は駆動回路12,13へ入力され、指令値に
応じた励磁電流を電磁石3,4に供給する。
The sensor input group indicating the state of the internal combustion engine and the output of the mover position measuring means 14 for measuring the position of the mover 2 are input to the A / D converter 7 and passed to the arithmetic unit 8. In the case of this embodiment, the output of the mover position measuring means 14 directly indicates the current state quantity 21 of the mover. The arithmetic unit 8 compares the position information of the mover with the value of the mover movement trajectory table of the storage device 9, and according to the result, D / A
The current command value is output to the conversion units 10 and 11. The converted current command value is input to the drive circuits 12 and 13 and supplies an exciting current corresponding to the command value to the electromagnets 3 and 4.

【0025】記憶装置9に保持された可動子動作軌道
は、例えば可動子の着座速度がゼロになるように滑らか
に運動する際に実現される可動子2の理想的な位置の変
化を予め用意したものである。可動子2および吸排気弁
1の運動の際に摩擦などで運動エネルギーが失われるた
め、実際の可動子の軌道は記憶部に保持された軌道より
も遅れて動作する。ここで、電磁石3,4による電磁力
によって可動子は加速されるため、供給エネルギーが十
分に与えられた時点で記憶部9に保持された軌道(可動
子動作軌道)を追い越すことになる。この時点で加速電
流の供給を停止すれば、可動子が電磁石に着座する際の
速度をゼロに近づけることができる。制御方法は第1の
実施例の場合と同様である。
The movement path of the mover held in the storage device 9 prepares in advance the change of the ideal position of the mover 2 which is realized when the mover smoothly moves so that the seating speed of the mover becomes zero. It was done. Since the kinetic energy is lost due to friction or the like during the movement of the mover 2 and the intake / exhaust valve 1, the actual trajectory of the mover operates later than the trajectory stored in the storage unit. Here, since the mover is accelerated by the electromagnetic force of the electromagnets 3 and 4, it overtakes the trajectory (movement element operation trajectory) held in the storage unit 9 when the supply energy is sufficiently given. If the supply of the acceleration current is stopped at this point, the speed at which the mover is seated on the electromagnet can be made close to zero. The control method is the same as in the first embodiment.

【0026】次に、本発明の第3の実施例を説明する。Next, a third embodiment of the present invention will be described.

【0027】先に説明した第2の実施例において、記憶
部に保持された軌道を、弁体の動作開始後の経過時間に
対する目標位置として与えておくことが考えられる。こ
れによって、可動子現在状態量を求め、可動子現在状態
量に基づいて、可動子が電磁石に着座する直前で励磁電
流の供給を減少もしくは停止することができる。例えば
図4に示すように、可動子の着座速度がゼロになるよう
に滑らかに運動する際に実現される可動子の理想的な位
置の変化40を、経過時間毎のテーブルにしておいて、
記憶部9に記憶しておく。すなわち、時間軸を弁体と可
動子の質量とそれを保持するばねのばね定数によって物
理的に決定される固有振動の周期tfの1/2に合わ
せ、運動の軌道を摩擦減衰を考慮しないばね振り子振動
の軌跡である余弦曲線として予め計算しておけば良い。
実際の可動子の速度変化は、摩擦などによって減速され
るため、曲線41に示すような曲線を描く。ここで、電
磁力によって可動子は加速されるため、曲線41を辿っ
ていた軌跡は図中の矢印の方向に移動していき目標であ
る曲線40に追いつく。この時点で、すなわち可動子が
電磁石に着座する直前で加速電流の供給を停止れば、可
動子が電磁石に着座する際の速度をゼロに近づけること
ができる。
In the second embodiment described above, it is conceivable that the trajectory held in the storage unit is given as a target position with respect to the elapsed time after the start of the operation of the valve body. Thus, the movable element current state quantity is obtained, and the supply of the exciting current can be reduced or stopped immediately before the movable element is seated on the electromagnet based on the movable element current state quantity. For example, as shown in FIG. 4, the change 40 of the ideal position of the mover realized when the mover smoothly moves so that the seating speed of the mover becomes zero is stored in a table for each elapsed time.
It is stored in the storage unit 9. That is, the time axis is adjusted to 1/2 of the period tf of the natural vibration physically determined by the mass of the valve element and the mover and the spring constant of the spring holding the same, and the trajectory of the movement is determined without considering the frictional damping. What is necessary is just to calculate in advance as a cosine curve which is the locus of the pendulum vibration.
Since the actual speed change of the mover is decelerated by friction or the like, a curve as shown by a curve 41 is drawn. Here, since the mover is accelerated by the electromagnetic force, the locus following the curve 41 moves in the direction of the arrow in the figure to catch up with the target curve 40. At this time, that is, when the supply of the acceleration current is stopped immediately before the mover is seated on the electromagnet, the speed at which the mover is seated on the electromagnet can be made close to zero.

【0028】次に、本発明の第4の実施例を説明する。Next, a fourth embodiment of the present invention will be described.

【0029】先に説明した第2の実施例において、記憶
部に保持された軌道を、弁体の現在位置に対する目標速
度として与えておくことも考えられる。これによって、
可動子現在状態量を求め、可動子現在状態量に基づい
て、可動子が電磁石に着座する直前で励磁電流の供給を
減少もしくは停止することができる。例えば図5の曲線
50に示すように、可動子の着座速度がゼロになるよう
に滑らかに運動する際に実現される可動子の理想的な速
度の変化を、可動子位置毎のテーブルにしておく。すな
わち、位置の軸を可動子の移動範囲xc〜xoとし、速
度の変化を正弦曲線として予め計算しておけば良い。こ
の方法によれば、例えば経時変化によるばねのへたりや
製作時のばね定数のばらつき,可動部の質量のばらつき
などによって固有振動数がずれていたとしても、所望の
位置(xc)において速度がゼロとなるような運動を定
義することができる。位置−速度平面内における運動の
軌跡は次に説明するようになる。実際の可動子の速度変
化は、摩擦などによって減速されるため、曲線51に示
すような曲線を描く。ここで、電磁力によって可動子は
加速されるため、曲線51を辿っていた軌跡は図中の矢
印の方向に移動していき目標である曲線50に追いつ
く。この時点で、すなわち可動子が電磁石に着座する直
前で加速電流の供給を停止すれば、可動子が電磁石に着
座する際の速度をゼロに近づけることができる。
In the second embodiment described above, it is also conceivable to give the trajectory held in the storage unit as the target speed for the current position of the valve body. by this,
The mover current state quantity is obtained, and the supply of the exciting current can be reduced or stopped immediately before the mover is seated on the electromagnet based on the mover current state quantity. For example, as shown by a curve 50 in FIG. 5, the ideal change in the speed of the mover realized when the mover smoothly moves so that the seating speed of the mover becomes zero is converted into a table for each mover position. deep. That is, the position axis may be set as the moving range xc to xo of the mover, and the change in speed may be calculated in advance as a sine curve. According to this method, even if the natural frequency is deviated due to, for example, a spring set due to a change with time, a variation in a spring constant at the time of manufacture, or a variation in the mass of the movable portion, the speed is not changed at a desired position (xc). It is possible to define a motion that is zero. The trajectory of the movement in the position-velocity plane will be described next. Since the actual speed change of the mover is decelerated by friction or the like, a curve as shown by a curve 51 is drawn. Here, since the mover is accelerated by the electromagnetic force, the trajectory following the curve 51 moves in the direction of the arrow in the figure to catch up with the target curve 50. At this point, that is, when the supply of the acceleration current is stopped immediately before the mover is seated on the electromagnet, the speed at which the mover is seated on the electromagnet can be made close to zero.

【0030】次に、本発明の第5の実施例を説明する。
図6は、本発明の第5の実施例の演算手順を示す図であ
り、図7はタイムチャートを示す図である。また、図3
が示す構成は、本発明の第5の実施例に使用可能であ
る。
Next, a fifth embodiment of the present invention will be described.
FIG. 6 is a diagram showing a calculation procedure according to the fifth embodiment of the present invention, and FIG. 7 is a diagram showing a time chart. FIG.
Can be used in the fifth embodiment of the present invention.

【0031】図3において、内燃機関の状態を示すセン
サ入力群および可動子2の位置を計測する可動子位置計
測手段14の出力はA/D変換部7に入力され、演算装
置8に渡される。演算装置8では可動子の位置情報と位
置情報から算出した速度情報を基に、吸排気弁1および
可動子2の持つ総運動エネルギーを計算する。その結果
と着座に必要な最低エネルギーを比較し、最低エネルギ
ーを超えるまでD/A変換部10,11に電流指令値を
出力する。変換された電流指令値は駆動回路12,13
へ入力され、指令値に応じた励磁電流を電磁石3,4に
供給する。
In FIG. 3, the sensor input group indicating the state of the internal combustion engine and the output of the mover position measuring means 14 for measuring the position of the mover 2 are input to the A / D converter 7 and passed to the arithmetic unit 8. . The arithmetic unit 8 calculates the total kinetic energy of the intake / exhaust valve 1 and the mover 2 based on the position information of the mover and the speed information calculated from the position information. The result is compared with the minimum energy required for sitting, and the current command value is output to the D / A converters 10 and 11 until the minimum energy is exceeded. The converted current command values are supplied to drive circuits 12 and 13
Is supplied to the electromagnets 3 and 4 according to the command value.

【0032】次にエネルギー比較の具体的な演算手順を
説明する。計測された可動子の位置入力60から、ばね
に蓄えられたエネルギー61を算出する。ばねに蓄えら
れたエネルギー61は中立位置xmにおいてゼロとな
り、可動子の移動範囲の両端で最大となる。並行して、
計測された可動子の位置入力60から速度算出手段62
において可動子の速度を算出する。速度算出の方法とし
ては、簡単には可動子位置の微分演算を行えば良い。デ
ィジタル計算機による離散化処理の場合であれば、位置
の変化分をサンプリング周期で割れば速度が求められ
る。他にはばね振り子の運動モデルを計算機内部に定義
し、状態観測器を用いた速度推定器を構成する方法も考
えられる。次に速度算出手段62で算出した速度を用
い、弁体および可動子の持つ運動エネルギー63を算出
する。図7に示すように、算出されたこれら2つのエネ
ルギーの和が、電磁式動弁が振り子運動系内に蓄えた総
エネルギーとなる。一方、可動子が反対側の電磁石に到
達するに必要なエネルギー64は可動子の移動範囲の両
端でばねに蓄えられるエネルギーのみであり、速度ゼロ
で着座するために運動エネルギー分もゼロとなる。ここ
で、電磁式動弁が振り子運動系内に蓄えた総エネルギー
と可動子が反対側の電磁石に到達するに必要なエネルギ
ーをコンパレータ65で比較し、総エネルギーが必要エ
ネルギーを超えれば0、超えなければ1を出力する。コ
ンパレータ65の出力にゲイン66を掛けた値を電流指
令値として駆動回路に出力する。総エネルギーが必要エ
ネルギーを超えた時点で、すなわち可動子が電磁石に着
座する直前で加速電流の指令値として0が出力され、電
流供給を停止すれば、その時点で持っていた運動エネル
ギーは全てばねを縮めるためのエネルギーに変換され、
着座時の可動子の速度はゼロになる。この方法によれ
ば、制御器内部に時間テーブルや軌道パターンのテーブ
ルを用意することなく電流供給を停止する時刻を決定す
ることができる。また、直接的にエネルギー量として比
較を行うため、考慮していない外乱により可動子および
弁体の可減速が行われたとしても、適切な速度制御を行
うことができるという利点もある。
Next, a specific calculation procedure of the energy comparison will be described. The energy 61 stored in the spring is calculated from the measured position input 60 of the mover. The energy 61 stored in the spring becomes zero at the neutral position xm and becomes maximum at both ends of the movable range of the mover. In parallel,
From the measured position input 60 of the mover, the speed calculating means 62
Calculates the speed of the mover. As a method of calculating the speed, a differential operation of the position of the mover may be simply performed. In the case of discretization processing by a digital computer, the speed can be obtained by dividing the change in position by the sampling period. Alternatively, a method of defining a motion model of a spring pendulum in a computer and configuring a speed estimator using a state observer is also conceivable. Next, the kinetic energy 63 of the valve element and the mover is calculated using the speed calculated by the speed calculation means 62. As shown in FIG. 7, the calculated sum of these two energies is the total energy stored by the electromagnetic valve in the pendulum motion system. On the other hand, the energy 64 required for the mover to reach the electromagnet on the opposite side is only the energy stored in the spring at both ends of the moving range of the mover, and the kinetic energy is also zero because the mover is seated at zero speed. Here, the total energy stored in the pendulum motion system by the electromagnetic valve and the energy required for the mover to reach the electromagnet on the opposite side are compared by the comparator 65. If the total energy exceeds the required energy, it is 0, exceeding Otherwise, 1 is output. A value obtained by multiplying the output of the comparator 65 by the gain 66 is output to the drive circuit as a current command value. When the total energy exceeds the required energy, that is, immediately before the mover is seated on the electromagnet, 0 is output as the command value of the acceleration current, and if the current supply is stopped, all the kinetic energy held at that time will be spring-loaded. Is converted to energy to reduce
The speed of the mover when seated becomes zero. According to this method, the time at which the current supply is stopped can be determined without preparing a time table or a table of the trajectory pattern inside the controller. In addition, since the comparison is directly performed as the energy amount, there is an advantage that appropriate speed control can be performed even if the movable element and the valve element can be decelerated or decelerated by a disturbance that is not considered.

【0033】以上説明した電磁式動弁の制御方法は、通
常の弁動作における着座速度の低減に適用できることは
もちろん、機関始動時に弁体を中立位置から全閉位置に
移動させる初期化動作時の着座速度の低減にも好適であ
る。前述のように、電磁力を印加しない状態では可動子
および弁体は一体のばねの釣り合いによって中間位置に
保持されるが、内燃機関の始動時には吸排気弁を全閉位
置に移動する初期化動作が必要となる。一般的に初期化
動作には、電磁石に大電流を供給して一気に全閉側に引
き上げる方法や、可動部の固有振動周期に一致した周期
で交互に電磁力を発生させ、共振により徐々に可動子位
置を全閉側に引き上げていく方法が用いられる。定常動
作中における電磁力は前述のように運動エネルギーの損
失分を補うために用いられるのに対し、初期化動作時に
はいずれの方式においても電磁石と可動子のエアギャッ
プが大きな状態から電磁力を発生する必要があるため、
定常動作に比較して大電流を必要とする。この場合の弁
体や可動子の着座衝撃は通常よりもさらに大きくならざ
るを得ず、着座速度の低減がより重要な課題となる。本
発明の電磁式動弁の制御方法は減速のための大電流を必
要としないため、電力をより必要とする初期化動作時に
おいても好適な方法である。
The control method of the electromagnetic valve described above can be applied not only to the reduction of the seating speed in the normal valve operation but also to the initialization operation for moving the valve body from the neutral position to the fully closed position at the time of starting the engine. It is also suitable for reducing the seating speed. As described above, the movable element and the valve element are held at the intermediate position by the balance of the integral spring when no electromagnetic force is applied, but the initialization operation for moving the intake / exhaust valve to the fully closed position when the internal combustion engine is started. Is required. Generally, the initializing operation involves supplying a large current to the electromagnet and pulling it up to the fully closed side at once, or generating an electromagnetic force alternately at a period that matches the natural vibration period of the movable part, and gradually moving by resonance A method of raising the child position to the fully closed side is used. While the electromagnetic force during steady operation is used to compensate for the loss of kinetic energy as described above, the electromagnetic force is generated when the air gap between the electromagnet and the mover is large in any of the methods during the initialization operation. You need to
Requires large current compared to steady state operation. In this case, the seating impact of the valve element and the mover must be larger than usual, and reducing the seating speed is a more important issue. Since the electromagnetic valve control method of the present invention does not require a large current for deceleration, it is a suitable method even during an initialization operation that requires more power.

【0034】可動子現在状態を予め設定した位置に設定
しておいても効果がある。
It is also effective to set the mover current state to a preset position.

【0035】本発明の他の実施例によれば、内燃機関の
吸気弁または排気弁と一体になって動く可動子を一対の
ばねの釣り合いによって中間位置に保持し、その摺動方
向の両側に配置した電磁石に電流を流すことによって可
動子に電磁力を作用させ、可動子をその中立位置から全
開方向または全閉方向へ移動させる電磁式動弁の制御方
法に可動子位置を求め、可動子が電磁石に着座する1m
m以上2mm以下の範囲で予め設定した位置を超えたこ
とを条件として、それまでに可動子を動作させていた方
向の励磁電流の供給を減少もしくは停止せしめる内燃機
関の吸気弁または排気弁を駆動する電磁式動弁の制御方
法が提供される。
According to another embodiment of the present invention, a movable element which moves integrally with an intake valve or an exhaust valve of an internal combustion engine is held at an intermediate position by a pair of springs, and is provided on both sides in the sliding direction. An electromagnetic force is applied to the mover by flowing a current through the arranged electromagnet, and the mover position is determined by a method of controlling an electromagnetic valve that moves the mover from its neutral position in the fully open or fully closed direction. 1m sitting on electromagnet
Drive the intake or exhaust valve of the internal combustion engine to reduce or stop the supply of the exciting current in the direction in which the mover has been operated, provided that the position exceeds a preset position within the range of m to 2 mm. A method for controlling an electromagnetic valve is provided.

【0036】更に可動子が電磁石に着座する1mm以上
2mm以下の範囲で予め設定した位置を超えたことの条
件に加えて、その他の可動子現在状態量を求めて前記励
磁電流の制御を行う内燃機関の吸気弁または排気弁を駆
動する電磁弁動弁の制御方法としてもよい。
Further, in addition to the condition that the movable element has exceeded a preset position within a range of 1 mm or more and 2 mm or less in which the movable element is seated on the electromagnet, the internal current for controlling the exciting current by obtaining other current state quantities of the movable element. A method of controlling an electromagnetic valve that drives an intake valve or an exhaust valve of an engine may be used.

【0037】このような構成することによって装置全体
をコンパクト化することができる。
With this configuration, the entire apparatus can be made compact.

【0038】[0038]

【発明の効果】本発明によれば、電磁力による減速や緩
衝ばねを使用することなく、着座直前の必要な加速動作
が完了した時点で電磁石の励磁電流を減少もしくは停止
し、弁体を保持しているばねによる減速方向のばね力を
効果的に利用することにより、少ない消費電力で弁体を
緩やかに着座させることができるという効果がある。
According to the present invention, the exciting current of the electromagnet is reduced or stopped at the time when the necessary acceleration operation immediately before the seating is completed without using the deceleration by the electromagnetic force or using the buffer spring, and the valve body is held. By effectively utilizing the spring force in the deceleration direction by the spring being operated, there is an effect that the valve body can be gently seated with little power consumption.

【0039】また本発明によれば、電磁石の励磁電流を
減少もしくは停止する時刻を決定するために可動子の位
置を利用することで、考慮していない外乱により可動子
および弁体の可減速が行われたとしても、適切な速度制
御を行うことができるという利点がある。
Further, according to the present invention, by using the position of the mover to determine the time at which the exciting current of the electromagnet is reduced or stopped, the movable member and the valve body can be decelerated or decelerated by an unconsidered disturbance. Even if performed, there is an advantage that appropriate speed control can be performed.

【0040】さらに本発明によれば、直接的にエネルギ
ー量として比較を行うことで、制御器内部に時間テーブ
ルや軌道パターンのテーブルを用意することなく電流供
給を停止する時刻を決定することができるという利点が
ある。
Further, according to the present invention, the time at which the current supply is stopped can be determined without preparing a time table or a trajectory pattern table inside the controller by directly comparing the amount of energy. There is an advantage.

【0041】さらに本発明によれば、減速のための大電
流を必要としないため、機関始動時に弁体を中立位置か
ら全閉位置に移動させる初期化動作時においても適切な
速度制御を行うことができるという利点がある。
Further, according to the present invention, since a large current for deceleration is not required, appropriate speed control can be performed even during an initialization operation for moving the valve body from the neutral position to the fully closed position when the engine is started. There is an advantage that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電磁式動弁の制御方法の一実施形態を
示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a control method of an electromagnetic valve according to the present invention.

【図2】本発明の電磁式動弁の制御方法による可動子の
位置と電流指令値の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a position of a mover and a current command value according to a method of controlling an electromagnetic valve according to the present invention.

【図3】本発明の電磁式動弁の制御方法の他の実施形態
を示す構成図である。
FIG. 3 is a configuration diagram showing another embodiment of the control method of the electromagnetic valve according to the present invention.

【図4】本発明の電磁式動弁の制御方法に用いる可動子
動作軌道の一例である。
FIG. 4 is an example of an armature operation trajectory used in the method of controlling an electromagnetic valve according to the present invention.

【図5】本発明の電磁式動弁の制御方法に用いる可動子
動作軌道の他の例である。
FIG. 5 is another example of the moving path of the mover used in the control method of the electromagnetic valve according to the present invention.

【図6】本発明の電磁式動弁の制御方法におけるエネル
ギー比較の具体的な演算手順を説明する図である。
FIG. 6 is a diagram illustrating a specific calculation procedure of energy comparison in the method of controlling an electromagnetic valve according to the present invention.

【図7】他の実施例のタイムチャート図である。FIG. 7 is a time chart of another embodiment.

【符号の説明】[Explanation of symbols]

1…吸排気弁、2…可動子、3…全開側電磁石、4…全
閉側電磁石、5…下ばね、6…上ばね、7…A/D変換
部、8…演算装置、9…記憶装置、10,11…D/A
変換部、12,13…駆動回路、14…可動子位置計測
手段。
DESCRIPTION OF SYMBOLS 1 ... Intake / exhaust valve, 2 ... Movable element, 3 ... Fully open side electromagnet, 4 ... Fully closed side electromagnet, 5 ... Lower spring, 6 ... Upper spring, 7 ... A / D conversion part, 8 ... Calculation device, 9 ... Storage Apparatus, 10, 11 ... D / A
Conversion units, 12, 13 ... Drive circuit, 14 ... Mover position measurement means.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 7/18 H01F 7/18 S (72)発明者 前川 典幸 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 横山 篤 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 岸 敦夫 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 星 喜一 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 Fターム(参考) 3G092 AA11 DA01 DA02 DA07 DF05 DG02 DG09 EA02 EA14 EA17 EC09 FA14 HA13X HA13Z 3H106 DA07 DA25 DB02 DB12 DB26 DB32 DC02 DC17 DD03 EE22 FB07 KK17 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 7/18 H01F 7/18 S (72) Inventor Noriyuki Maekawa 502 Kandamachi, Tsuchiura-shi, Ibaraki Pref. Inside the Ritsumeikan Machinery Research Laboratory (72) Inventor Atsushi Yokoyama 502, Kandachicho, Tsuchiura-shi, Ibaraki Prefecture Inside the Ritsumeikan Machinery Research Laboratory Co., Ltd. Inside the Equipment Division (72) Inventor Kiichi Hoshi 2477 Takaba, Hitachinaka-shi, Ibaraki F-term in Hitachi Car Engineering Co., Ltd. DB26 DB32 DC02 DC17 DD03 EE22 FB07 KK17

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸気弁または排気弁と一体にな
って動く可動子を一対のばねの釣り合いによって中間位
置に保持し、その摺動方向の両側に配置した電磁石に電
流を流すことによって可動子に電磁力を作用させ、可動
子をその中立位置から全開方向または全閉方向へ移動さ
せる構造の電磁式動弁において、 内燃機関の運転状態信号をA/D変換するA/D変換部
と、 弁作動に対し電磁石駆動力を減少させる指令を記憶する
記憶部と、 A/D変換部からの信号を入力して可動子現在状態量を
求め、記憶部からの駆動力減少値を求めて可動子動作指
令について駆動減少演算する演算装置と、および該演算
装置からの該駆動減少演算に基づいて励磁作動を電磁石
に指令することを特徴とする内燃機関の吸気弁または排
気弁を駆動する電磁式動弁。
1. A movable element that moves integrally with an intake valve or an exhaust valve of an internal combustion engine is held at an intermediate position by a pair of springs, and a current flows through electromagnets disposed on both sides in the sliding direction. An A / D converter for A / D converting an operating state signal of an internal combustion engine in an electromagnetic valve having a structure in which an electromagnetic force is applied to a mover to move the mover from a neutral position to a fully open or fully closed direction. And a storage unit for storing a command for reducing the driving force of the electromagnet with respect to the valve operation. A signal from the A / D conversion unit is input to obtain a current state quantity of the mover, and a driving force reduction value from the storage unit is obtained. An operation device for performing a drive reduction operation on a mover operation command, and instructing an electromagnet to perform an excitation operation based on the drive reduction operation from the operation device, thereby driving an intake valve or an exhaust valve of the internal combustion engine. Electromagnetic Valve.
【請求項2】請求項1において、 前記可動子現在状態量は、演算で求められた可動子の位
置であることを特徴とする内燃機関の吸気弁または排気
弁を駆動する電磁式動弁。
2. The electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine according to claim 1, wherein the movable element current state quantity is a position of the movable element calculated by calculation.
【請求項3】請求項1または2において、 前記可動子現在状態量は、可動子の検出位置であること
を特徴とする内燃機関の吸気弁または排気弁を駆動する
電磁式動弁。
3. The electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine according to claim 1, wherein the movable element current state quantity is a detection position of the movable element.
【請求項4】請求項1において、 前記可動子現在状態量は、可動子の移動速度であること
を特徴とする内燃機関の吸気弁または排気弁を駆動する
電磁式動弁。
4. The electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine according to claim 1, wherein the movable element current state quantity is a moving speed of the movable element.
【請求項5】請求項1において、 駆動力減少演算は、吸気弁または排気弁および可動子の
総運動エネルギーに基づくものであることを特徴とする
内燃機関の吸気弁または排気弁を駆動する電磁式動弁。
5. The electromagnetic system for driving an intake valve or an exhaust valve of an internal combustion engine according to claim 1, wherein the driving force reduction calculation is based on the total kinetic energy of the intake valve or the exhaust valve and the mover. Type valve.
【請求項6】請求項1から5のいずれかにおいて、 可動子駆動力減少演算に基づいた励磁作動の所定時間経
過後に、もしくは可動子が所定位置に到達したことをも
って励磁電流を再度供給することを特徴とする内燃機関
の吸気弁または排気弁を駆動する電磁式動弁。
6. An exciting current is supplied again after a lapse of a predetermined time of an exciting operation based on a mover driving force reduction calculation or when the mover reaches a predetermined position. An electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine.
【請求項7】内燃機関の吸気弁または排気弁と一体にな
って動く可動子を一対のばねの釣り合いによって中間位
置に保持し、その摺動方向の両側に配置した電磁石に電
流を流すことによって可動子に電磁力を作用させ、可動
子をその中立位置から全開方向または全閉方向へ移動さ
せる電磁式動弁の制御方法において、 可動子現在状態量を求め、可動子現在状態量に基づい
て、可動子が電磁石に着座する直前で励磁電流の供給を
減少もしくは停止することを特徴とする内燃機関の吸気
弁または排気弁を駆動する電磁式動弁の制御方法。
7. A movable element which moves integrally with an intake valve or an exhaust valve of an internal combustion engine is held at an intermediate position by a pair of springs, and a current is supplied to electromagnets disposed on both sides in the sliding direction. In a method of controlling an electromagnetic valve in which an electromagnetic force is applied to a mover to move the mover from its neutral position in a fully open direction or a fully closed direction, a mover current state quantity is obtained, and the mover current state quantity is determined based on the mover current state quantity. A method of controlling an electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine, wherein the supply of the exciting current is reduced or stopped immediately before the mover is seated on the electromagnet.
【請求項8】請求項7において、 可動子駆動力減少演算に基づいた励磁作動の所定の時間
経過後に、もしくは可動子が所定位置に到達したことを
もって励磁電流を再度供給開始することを特徴とする内
燃機関の吸気弁または排気弁を駆動する電磁式動弁の制
御方法。
8. The apparatus according to claim 7, wherein the excitation current is started to be supplied again after a predetermined time of the excitation operation based on the mover driving force reduction calculation or when the mover reaches a predetermined position. For controlling an electromagnetic valve that drives an intake valve or an exhaust valve of an internal combustion engine.
【請求項9】請求項7において、 前記再度供給開始する励磁電流は、電磁石に到達した可
動子の保持に必要な大きさで供給することを特徴とする
内燃機関の吸気弁もしくは排気弁を駆動する電磁式動弁
の制御方法。
9. An internal combustion engine according to claim 7, wherein the exciting current to be supplied again is supplied with a magnitude necessary for holding the mover reaching the electromagnet. Control method of the electromagnetic valve.
【請求項10】請求項7において、 前記可動子の位置を計測し、計測された可動子位置と予
め用意した可動子動作軌道とを比較し、前記弁体の駆動
のための吸引側電磁石の励磁電流は前記可動子動作軌道
を可動子が超えた時点で減少もしくは停止することを特
徴とする内燃機関の吸気弁または排気弁を駆動する電磁
式動弁の制御方法。
10. The attraction-side electromagnet for driving the valve element according to claim 7, wherein the position of the mover is measured, and the measured mover position is compared with a previously prepared mover operating trajectory. A method of controlling an electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine, wherein the exciting current decreases or stops when the mover exceeds the mover operation trajectory.
【請求項11】請求項10において、 前記可動子動作軌道は、弁体の動作開始後の経過時間に
対する目標位置として与えられることを特徴とする内燃
機関の吸気弁または排気弁を駆動する電磁式動弁の制御
方法。
11. The electromagnetic type driving an intake valve or an exhaust valve of an internal combustion engine according to claim 10, wherein the mover operation trajectory is given as a target position with respect to an elapsed time after the operation of the valve element starts. Valve control method.
【請求項12】請求項10において、 前記可動子動作軌道は、弁体の現在位置に対する目標速
度として与えられることを特徴とする内燃機関の吸気弁
または排気弁を駆動する電磁式動弁の制御方法。
12. The control of an electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine according to claim 10, wherein the mover operation trajectory is given as a target speed with respect to a current position of the valve element. Method.
【請求項13】請求項9において、 前記可動子の位置を計測し、計測された可動子位置と、
前記可動子位置から算出した可動子の速度を用い、弁体
および可動子の持つ運動エネルギーと、それを支持する
ばねに蓄えられたエネルギーを算出し、前記エネルギー
の和が、可動子が電磁石に到達するに必要なエネルギー
を超えた時点で減少もしくは停止することを特徴とする
内燃機関の吸気弁または排気弁を駆動する電磁式動弁の
制御方法。
13. The mover according to claim 9, wherein the position of the mover is measured,
Using the speed of the mover calculated from the position of the mover, the kinetic energy of the valve element and the mover and the energy stored in the spring that supports it are calculated. A method of controlling an electromagnetic valve for driving an intake valve or an exhaust valve of an internal combustion engine, wherein the control is reduced or stopped when the energy required to reach the energy is exceeded.
【請求項14】内燃機関の吸気弁または排気弁と一体に
なって動く可動子を一対のばねの釣り合いによって中間
位置に保持し、その摺動方向の両側に配置した電磁石に
電流を流すことによって可動子に電磁力を作用させ、可
動子をその中立位置から全開方向または全閉方向へ移動
させる電磁式動弁の制御方法に可動子位置を求め、 可動子が電磁石に着座する1mm以上2mm以下の範囲
で予め設定した位置を超えたことを条件として、それま
でに可動子を動作させていた方向の励磁電流の供給を減
少もしくは停止せしめることを特徴とする内燃機関の吸
気弁または排気弁を駆動する電磁式動弁の制御方法。
14. A movable element that moves integrally with an intake valve or an exhaust valve of an internal combustion engine is held at an intermediate position by a pair of springs, and a current is supplied to electromagnets disposed on both sides in the sliding direction. An electromagnetic force is applied to the mover to determine the position of the mover in a control method of an electromagnetic valve that moves the mover from its neutral position in the fully open or fully closed direction, and the mover is seated on the electromagnet in a range of 1 mm to 2 mm. The intake valve or the exhaust valve of the internal combustion engine, characterized in that the supply of the exciting current in the direction in which the mover was operated is reduced or stopped on condition that the position exceeds a preset position in the range of Control method of the driven electromagnetic valve.
【請求項15】請求項14において、 可動子が電磁石に着座する1mm以上2mm以下の範囲
で予め設定した位置を超えたことの条件に加えて、その
他の可動子現在状態量を求めて前記励磁電流の制御を行
うことを特徴とする内燃機関の吸気弁または排気弁を駆
動する電磁式動弁の制御方法。
15. The excitation according to claim 14, wherein in addition to the condition that the mover has exceeded a preset position within a range of 1 mm or more and 2 mm or less in which the mover is seated on the electromagnet, other current state quantities of the mover are obtained. A method for controlling an electromagnetic valve that drives an intake valve or an exhaust valve of an internal combustion engine, wherein the method controls current.
JP11048120A 1999-02-25 1999-02-25 Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof Pending JP2000248967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11048120A JP2000248967A (en) 1999-02-25 1999-02-25 Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11048120A JP2000248967A (en) 1999-02-25 1999-02-25 Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof

Publications (1)

Publication Number Publication Date
JP2000248967A true JP2000248967A (en) 2000-09-12

Family

ID=12794480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11048120A Pending JP2000248967A (en) 1999-02-25 1999-02-25 Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof

Country Status (1)

Country Link
JP (1) JP2000248967A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054759A (en) * 2000-08-14 2002-02-20 Nissan Motor Co Ltd Controller for solenoid valve
US7055539B2 (en) 2002-08-26 2006-06-06 Toyota Jidosha Kabushiki Kaisha Electromagnetic valve control device and method
WO2009084357A1 (en) 2007-12-28 2009-07-09 Yamatake Corporation Measuring apparatus
JP2012074972A (en) * 2010-09-29 2012-04-12 Ebara Corp Electromagnet controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002054759A (en) * 2000-08-14 2002-02-20 Nissan Motor Co Ltd Controller for solenoid valve
US7055539B2 (en) 2002-08-26 2006-06-06 Toyota Jidosha Kabushiki Kaisha Electromagnetic valve control device and method
WO2009084357A1 (en) 2007-12-28 2009-07-09 Yamatake Corporation Measuring apparatus
US8248264B2 (en) 2007-12-28 2012-08-21 Azbil Corporation Measuring apparatus
JP2012074972A (en) * 2010-09-29 2012-04-12 Ebara Corp Electromagnet controller

Similar Documents

Publication Publication Date Title
US6681728B2 (en) Method for controlling an electromechanical actuator for a fuel air charge valve
Wang et al. Modeling and control of electromechanical valve actuator
KR100456901B1 (en) Control apparatus and method of electromagnetic valve
Parlikar et al. Design and experimental implementation of an electromagnetic engine valve drive
JP3508636B2 (en) Control device for electromagnetically driven intake and exhaust valves
Mianzo et al. Output Feedback $ H_ {\infty} $ Preview Control of an Electromechanical Valve Actuator
JP2002081329A (en) Driving control device of engine valve
EP1098072A1 (en) A method for the control of electromagnetic actuators for the actuation of intake and exhaust valves in internal combustion engines
JP3800896B2 (en) Control device for electromagnetic actuator
JP2000248967A (en) Solenoid-operated valve system drive intake or exhaust valve of internal combustion engine and control method thereof
JP3614092B2 (en) Valve clearance estimation device and control device for electromagnetically driven valve
JP3707354B2 (en) Control device for electromagnetically driven valve
US6741441B2 (en) Electromagnetic actuator system and method for engine valves
Wong et al. Modeling and simulation of a dual-mode electrohydraulic fully variable valve train for four-stroke engines
KR100482528B1 (en) Control apparatus of electromagnetic drive valve
KR100493769B1 (en) Sliding mode controlling apparatus and sliding mode controlling method
JP2001349461A (en) Control device for electromagnetically operated valve
JP4089614B2 (en) Variable feedback gain energization control method for electromagnetically driven valve
JP3617413B2 (en) Control device for electromagnetically driven valve
Montanari et al. Trajectory generation for camless internal combustion engine valve control
Mohamed Design and experimental investigation on an electromagnetic engine valve train
JP2001221022A (en) Control device for solenoid drive valve
JP3671793B2 (en) Control device for electromagnetically driven valve
JP2001221360A (en) Control device of solenoid driven valve
EP1455058A2 (en) Electromagnetic valve drive system and method