JP2000241834A - Liquid crystal display device using minute refractive display method - Google Patents

Liquid crystal display device using minute refractive display method

Info

Publication number
JP2000241834A
JP2000241834A JP11046108A JP4610899A JP2000241834A JP 2000241834 A JP2000241834 A JP 2000241834A JP 11046108 A JP11046108 A JP 11046108A JP 4610899 A JP4610899 A JP 4610899A JP 2000241834 A JP2000241834 A JP 2000241834A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
scanning
pixel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11046108A
Other languages
Japanese (ja)
Other versions
JP4154789B2 (en
Inventor
Hiroyoshi Mekawa
博義 女川
Hiroyuki Okada
裕之 岡田
Masashi Ishimaru
雅司 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP04610899A priority Critical patent/JP4154789B2/en
Publication of JP2000241834A publication Critical patent/JP2000241834A/en
Application granted granted Critical
Publication of JP4154789B2 publication Critical patent/JP4154789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid crystal display device which uses refraction or diffraction. SOLUTION: The liquid crystal display device consists of a pair of substrates, plural scanning electrodes and signal wirings disposed in a matrix on one of the transparent substrates so that region between the transparent substrates is divided into plural pixel regions by the scanning wirings and signal wirings, plural counter wirings which are disposed on the other transparent substrate and which are parallel to the scanning electrodes and a pair of alignment controlling material layers and a liquid crystal compsn. layer laminated between the pixel regions. The display device has such a structure that the scanning wirings and counter wirings on the pair of transparent substrates in each pixel region are staggered and that these staggered wiring are not overlapped with each other in the normal direction of the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶表示装置に係
り、特に偏光板を使用しない表示装置や投写型・反射型
の表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a display device using no polarizing plate and a projection / reflection display device.

【0002】[0002]

【従来の技術】従来の液晶表示装置としては、旋光性を
利用したツイストネマティック(TN)モード、光干渉
性を利用した複屈折制御(ECB)モードやスーパーツ
イストネマティック(STN)モードが良く知られてい
るが、いずれのモードも偏光板が1枚ないし2枚必要で
あり、そのために充分なコントラストや視野角が得られ
ず、また応答速度が遅いという欠点を有している。広視
野角を改善する目的で、互い違い電極を有する液晶表示
装置がSID International Symposium Digest ofTechnic
al Papers,vol.XX1X,p.718,(1998)で報告されている。
この液晶表示装置は広視野角であるけれども応答速度が
遅いという欠点を有している。また、ジグザグ電極を有
する液晶表示素子がIDW Proceedings of The Fourth In
ternational Display Workshops,p.175,(1997)で報告さ
れている。この液晶表示装置は広視野角で応答速度が速
いが、輝度が低く駆動電圧が高いという欠点を有してい
る。
2. Description of the Related Art As a conventional liquid crystal display device, a twisted nematic (TN) mode using optical rotation, a birefringence control (ECB) mode using optical coherence, and a super twisted nematic (STN) mode are well known. However, each mode requires one or two polarizing plates, and therefore has a drawback that a sufficient contrast and viewing angle cannot be obtained and a response speed is slow. SID International Symposium Digest of Technic
al Papers, vol.XX1X, p.718, (1998).
Although this liquid crystal display device has a wide viewing angle, it has a disadvantage that the response speed is slow. In addition, a liquid crystal display device having a zigzag electrode is an IDW Proceedings of The Fourth In
ternational Display Workshops, p.175, (1997). This liquid crystal display device has a wide viewing angle and a high response speed, but has a drawback of low luminance and high drive voltage.

【0003】[0003]

【発明が解決しようとする課題】複屈折制御(ECB)
モードやスーパーツイストネマティック(STN)モー
ドのいずれもコントラストが低く、さらに応答速度が遅
いことにより動画表示に不向きであるという欠点があっ
た。ツイストネマティック(TN)モードは応答速度は
速いが、視野角が非常に狭いという難点があった。ツイ
ストネマティック(TN)モード、複屈折制御(EC
B)モードやスーパーツイストネマティック(STN)
モードのいずれも偏光板が1枚ないし2枚必要であるた
めに、偏光板で透過光若しくは反射光は一部吸収されて
しまう。よって表示装置の輝度の低下が起こり、コント
ラストも低下してしまう。輝度を補うためにバックライ
トを強くするがそのために消費電力も大きくなってしま
っていた。また、複屈折制御(ECB)モードやスーパ
ーツイストネマティック(STN)モードは複屈折によ
り着色してしまうので光学補償フィルムなどが必要とな
り、光学設計が大変な上にコストアップの要因になって
いた。本発明の第一の目的は屈折または回折現象を利用
して高コントラストや高速応答あるいは広視野角を実現
する液晶表示装置を提供することにある。第二の目的は
偏光板を減らすことにより高輝度化を実現する液晶表示
装置を提供することにある。
SUMMARY OF THE INVENTION Birefringence control (ECB)
Both the mode and the super twisted nematic (STN) mode have drawbacks in that they have low contrast and are not suitable for displaying moving images due to their low response speed. In the twisted nematic (TN) mode, the response speed is fast, but the viewing angle is very narrow. Twisted nematic (TN) mode, birefringence control (EC)
B) Mode and Super Twisted Nematic (STN)
In each of the modes, one or two polarizing plates are required, so that transmitted light or reflected light is partially absorbed by the polarizing plates. Therefore, the brightness of the display device is reduced, and the contrast is also reduced. The backlight was strengthened to compensate for the brightness, but the power consumption was also increased. Further, the birefringence control (ECB) mode and the super twisted nematic (STN) mode are colored by birefringence, so that an optical compensating film or the like is required, so that the optical design is difficult and the cost is increased. A first object of the present invention is to provide a liquid crystal display device that achieves high contrast, high-speed response, or a wide viewing angle by utilizing refraction or diffraction. A second object is to provide a liquid crystal display device that achieves high luminance by reducing the number of polarizing plates.

【0004】[0004]

【課題を解決するための手段】本発明の第1の発明は、
図1に示したように一対の基板が配置され、基板のうち
一方の透明基板上に複数の走査電極と信号配線がマトリ
クス状に配設されて透明基板間の領域が各走査配線と各
信号配線により複数の画素領域に分割されており、もう
一方の透明基板上に複数の対向配線が走査電極と平行に
配設されており、各画素領域間に一対の配向制御物質層
と液晶組成物層が積層されている液晶表示素子におい
て、各画素領域の1対の透明基板の各走査配線と対向配
線がジグザグ状であり、かつ、それぞれが基板の法線方
向に対して重ならない構造を持つことを特徴とする液晶
表示素子に関する。
Means for Solving the Problems A first invention of the present invention is:
As shown in FIG. 1, a pair of substrates are arranged, a plurality of scanning electrodes and signal wirings are arranged in a matrix on one of the transparent substrates, and the area between the transparent substrates is each scanning wiring and each signal wiring. A plurality of pixel regions are divided by wiring, and a plurality of opposing wirings are arranged on the other transparent substrate in parallel with the scanning electrodes, and a pair of alignment control material layers and a liquid crystal composition are provided between each pixel region. In a liquid crystal display element in which layers are stacked, each scanning wiring and a counter wiring of a pair of transparent substrates in each pixel region are in a zigzag shape, and each has a structure in which they do not overlap in the normal direction of the substrate. The present invention relates to a liquid crystal display device characterized by the above-mentioned.

【0005】第2の発明は、図2に示したように第1の
発明に記載の液晶表示素子に1枚の偏光板が配置されて
いることを特徴とする液晶表示素子に関する。第3の発
明は、図3に示したように第1の発明に記載の液晶表示
素子に1枚の偏光板とλ/4波長板が併せて配置されて
いることを特徴とする液晶表示素子に関する。第4の発
明は、図4に示したように第1の発明に記載の液晶表示
素子が2枚の偏光板の間に挟み込まれるように配置され
ていることを特徴とする液晶表示素子に関する。
[0005] A second invention relates to a liquid crystal display device characterized in that one polarizing plate is arranged in the liquid crystal display device according to the first invention as shown in FIG. According to a third invention, as shown in FIG. 3, a liquid crystal display element according to the first invention is provided with a single polarizing plate and a λ / 4 wavelength plate. About. The fourth invention relates to a liquid crystal display device characterized in that the liquid crystal display device according to the first invention is arranged so as to be sandwiched between two polarizing plates as shown in FIG.

【0006】第5の発明は、図5に示したように第1の
発明に記載の液晶表示素子が1枚の偏光板と反対側に反
射板を配置した構造に配置されていることを特徴とする
液晶表示素子に関する。第6の発明は、2枚の偏光板が
直線偏光配置、パラレルニコルに配置されていることを
特徴とする第4発明に記載の液晶表示素子に関する。第
7の発明は、2枚の偏光板が直線偏光配置、クロスニコ
ルに配置されていることを特徴とする第4発明に記載の
液晶表示素子に関する。第8の発明は、各画素領域の各
走査電極と対向電極のジグザグの角度(θ)が60゜な
いし120゜であることを特徴とする上記第1〜5の発
明に記載の液晶表示素子に関する。
According to a fifth aspect of the present invention, as shown in FIG. 5, the liquid crystal display element according to the first aspect of the present invention is arranged in a structure in which a reflection plate is disposed on the side opposite to one polarizing plate. And a liquid crystal display element. A sixth invention relates to the liquid crystal display device according to the fourth invention, wherein two polarizing plates are arranged in a linearly polarized light arrangement and in a parallel Nicol state. A seventh invention relates to the liquid crystal display device according to the fourth invention, wherein two polarizing plates are arranged in a linearly polarized light arrangement and crossed Nicols. The eighth invention relates to the liquid crystal display device according to the first to fifth inventions, wherein the zigzag angle (θ) between each scanning electrode and the counter electrode in each pixel region is 60 ° to 120 °. .

【0007】第9の発明は、各画素領域の各走査電極と
対向電極の幅(W)がそれぞれ独立して5〜35μmで
あることを特徴とする上記第1〜5の発明に記載の液晶
表示素子に関する。第10の発明は、各画素領域の各走
査電極同士あるいは各対向電極同士の間隔(L)がそれ
ぞれ20〜200μmであることを特徴とする上記第1
〜5の発明に記載の液晶表示素子に関する。第11の発
明は、液晶組成物層の厚み(D)が3〜30μmである
ことを特徴とする上記第1〜5の発明に記載の液晶表示
素子に関する。
A ninth aspect of the present invention is the liquid crystal according to the first to fifth aspects, wherein the width (W) of each scanning electrode and the counter electrode in each pixel region is independently 5 to 35 μm. It relates to a display element. According to a tenth aspect, the distance (L) between each scanning electrode or each counter electrode in each pixel region is 20 to 200 μm.
The present invention also relates to the liquid crystal display devices according to the present invention. An eleventh invention relates to the liquid crystal display device according to the first to fifth inventions, wherein the thickness (D) of the liquid crystal composition layer is 3 to 30 μm.

【0008】本発明の液晶表示装置は図1に示すような
もので構成されている。一対のガラス基板(1)が配置
され、基板のうち一方の透明基板(2)上に複数の走査
電極(5)と信号配線(6)がマトリクス状に配設され
て透明基板間の領域が各走査配線と各信号配線により複
数の画素領域に分割されており、もう一方の透明基板
(2)上に複数の対向配線(7)が走査電極と平行に配
設されており、各画素領域間に一対の配向制御物質層
(3)と液晶組成物層(4)が積層されている。この一
画素の平面図と断面図を図6に示した。セル厚(D)の
画素において電極幅(W)の走査配線と対向配線が重な
らないように、走査電極同士、対向電極同士を電極間隔
(W)を取って配置している。各走査配線と各信号配線
にそれぞれ信号が印加されるに際して、各走査配線に走
査信号が印加される毎に、各画素領域に属する一対の信
号配線には電位差の異なる信号が印加される。各信号配
線に電位差の異なる信号が印加されると、この電位差に
従った電界が各画素領域の液晶に作用し、液晶分子が透
明基板面に対してある仰角でもって起き上がる。これに
より各画素領域の液晶の配向を図7のように制御するこ
とができる。このとき液晶組成物が基板に対して斜めに
配向することから屈折または回折現象を生じ、光の伝搬
路の制御が可能となる。
[0008] The liquid crystal display device of the present invention is configured as shown in FIG. A pair of glass substrates (1) are arranged, a plurality of scanning electrodes (5) and signal wirings (6) are arranged in a matrix on one of the transparent substrates (2), and the area between the transparent substrates is reduced. Each scanning line and each signal line are divided into a plurality of pixel regions. On the other transparent substrate (2), a plurality of opposing lines (7) are arranged in parallel with the scanning electrodes. A pair of alignment control material layers (3) and a liquid crystal composition layer (4) are laminated between them. FIG. 6 shows a plan view and a cross-sectional view of this one pixel. In the pixel having the cell thickness (D), the scanning electrodes and the opposing electrodes are arranged at an electrode interval (W) so that the scanning wiring having the electrode width (W) does not overlap with the opposing wiring. When a signal is applied to each scanning wiring and each signal wiring, a signal having a different potential difference is applied to a pair of signal wirings belonging to each pixel region each time a scanning signal is applied to each scanning wiring. When a signal having a different potential difference is applied to each signal wiring, an electric field according to the potential difference acts on the liquid crystal in each pixel region, and the liquid crystal molecules rise at a certain elevation angle with respect to the transparent substrate surface. Thereby, the orientation of the liquid crystal in each pixel region can be controlled as shown in FIG. At this time, since the liquid crystal composition is obliquely oriented with respect to the substrate, a refraction or diffraction phenomenon occurs, and the light transmission path can be controlled.

【0009】[0009]

【発明の実施の形態】本発明の光学配置としてはおおよ
そ3つの配置が考えられる。まず偏光板を用いない回折
配置があり、ランダム光を入射して電界で誘起された液
晶分子による光回折効果を利用して出射光を取り出すも
のである。2つめに1枚の偏光板とλ/4波長板を併せ
て配置する円偏光配置があり、円偏光配置は円偏光を入
射して電界で誘起された液晶分子による光回折効果を利
用して出射光を取り出すものである。3つめに1枚ない
し2枚の偏光板を用いる直線偏光配置がある。直線偏光
の入射方向については直線偏光の光伝搬軸方向を入射側
ガラス基板の液晶配向方向と一致させる(平行入射)方
式と直交させる(垂直入射)方式がある。
BEST MODE FOR CARRYING OUT THE INVENTION There are approximately three optical arrangements of the present invention. First, there is a diffraction arrangement that does not use a polarizing plate, in which random light is incident and outgoing light is extracted using the light diffraction effect of liquid crystal molecules induced by an electric field. Secondly, there is a circularly polarized light arrangement in which one polarizing plate and a λ / 4 wavelength plate are arranged together. The circularly polarized light arrangement utilizes the light diffraction effect of liquid crystal molecules induced by an electric field upon incidence of circularly polarized light. This is to extract the emitted light. Third, there is a linear polarization arrangement using one or two polarizing plates. Regarding the incident direction of the linearly polarized light, there are a method in which the direction of the light propagation axis of the linearly polarized light matches the liquid crystal alignment direction of the incident side glass substrate (parallel incidence) and a method in which the direction is perpendicular (vertical incidence).

【0010】さらに偏光板については入射光の異常光に
よる回折効果を誘起する1枚偏光板配置と入射光の異常
光による回折効果を誘起した上に出射光の常光を遮る2
枚偏光板配置に区別される。液晶組成物層の配向がアン
チパラレル(AP)配向またはツイストネマティック
(TN)配向のいずれでも、平行入射のときは屈折現象
が優勢であり、垂直入射のときは回折現象が優勢であ
る。例えば、2枚偏光板を用いた直線偏光配置で、入射
光が平行入射し、かつ液晶の配向がTN配向の場合、電
圧無印加時で光はまず入射光側の偏光板で、ある偏光軸
の光に換わる。
[0010] Further, regarding the polarizing plate, a single polarizing plate arrangement for inducing a diffraction effect due to the extraordinary light of the incident light, a diffraction effect due to the extraordinary light of the incident light, and blocking the ordinary light of the outgoing light 2
It is distinguished by the polarizing plate arrangement. Regardless of the orientation of the liquid crystal composition layer, either the anti-parallel (AP) orientation or the twisted nematic (TN) orientation, the refraction phenomenon is dominant at parallel incidence and the diffraction phenomenon is dominant at vertical incidence. For example, in a linear polarization arrangement using two polarizing plates, when the incident light is parallel incident and the liquid crystal is in the TN alignment, when no voltage is applied, the light first enters the polarizing plate on the incident light side, and a certain polarization axis It is replaced by light.

【0011】そして入射側の液晶の配向軸と入射光の偏
光軸が一致するため光は透過する。TN配向であるため
液晶分子に沿って偏光軸は90゜ねじ曲げられ、セルを
通過し、反対側の偏光板に届く。このとき、2枚の偏光
板がパラレルニコルであれば、出射光の偏光軸と出射光
側の偏光板の偏光軸は90゜ずれるので、出射光は透過
せずにノーマリーブラックモードとなる。逆に2枚の偏
光板がクロスニコルであれば、出射光の偏光軸と出射光
側の偏光板の偏光軸は一致するので、出射光は偏光板を
通過しノーマリーホワイトモードとなる。例えば、ノー
マリーホワイトモードで電圧を印加すると、液晶が立ち
上がり始め、液晶配向変形に伴い光屈折が見られるよう
になる。そして電圧上昇に従って出射光の屈折角は徐々
に大きくなる。図7のように液晶が斜め約45゜に配向
したときに屈折角は最大となる。
The light is transmitted because the orientation axis of the liquid crystal on the incident side coincides with the polarization axis of the incident light. Due to the TN orientation, the polarization axis is twisted by 90 ° along the liquid crystal molecules, passes through the cell, and reaches the opposite polarizer. At this time, if the two polarizing plates are parallel Nicols, the polarization axis of the outgoing light and the polarizing axis of the polarizing plate on the outgoing light side are shifted by 90 °, so that the outgoing light is not transmitted and a normally black mode is set. Conversely, if the two polarizing plates are crossed Nicols, the polarization axis of the outgoing light coincides with the polarization axis of the outgoing light-side polarizing plate, so that the outgoing light passes through the polarizing plate and becomes a normally white mode. For example, when a voltage is applied in the normally white mode, the liquid crystal starts to rise, and light refraction can be seen with the liquid crystal alignment deformation. The refraction angle of the emitted light gradually increases as the voltage increases. As shown in FIG. 7, the refraction angle is maximized when the liquid crystal is oriented obliquely at about 45 °.

【0012】液晶の配向がAP配向の場合は、偏光板1
枚か偏光板2枚でパラレルニコルの場合にコントラスト
が良好である。TN配向の場合は、偏光板1枚か偏光板
2枚でクロスニコルの場合にコントラストが良好であ
る。従来のモードでは、1枚乃至2枚の偏光板を使用す
ることで、コントラストが著しく低下していた。しか
し、本願発明の方法を使用すると偏光板を使用しない場
合は勿論のこと、偏光板を1枚乃至2枚使用しても高コ
ントラストを実現できるのである。各画素領域の各走査
電極と対向電極のジグザグの角度(θ)は60゜ないし
120゜であるのが望ましい。好ましくは各画素領域の
各走査電極と対向電極のジグザグの角度(θ)は80゜
ないし100゜であるのが望ましい。特に各走査電極と
対向電極のジグザグの角度(θ)が90゜のときに屈折
光の強度が最大となる。
When the orientation of the liquid crystal is the AP orientation, the polarizing plate 1
The contrast is good in the case of parallel Nicols with one or two polarizing plates. In the case of the TN orientation, the contrast is good in the case of crossed Nicols with one polarizing plate or two polarizing plates. In the conventional mode, by using one or two polarizing plates, the contrast was significantly reduced. However, when the method of the present invention is used, high contrast can be realized not only when no polarizing plate is used but also when one or two polarizing plates are used. The zigzag angle (θ) between each scanning electrode and the counter electrode in each pixel area is preferably 60 ° to 120 °. Preferably, the zigzag angle (θ) between each scanning electrode and the counter electrode in each pixel region is 80 ° to 100 °. In particular, when the zigzag angle (θ) between each scanning electrode and the counter electrode is 90 °, the intensity of the refracted light becomes maximum.

【0013】各画素領域の各走査電極と対向電極の幅
(W)はそれぞれ独立して5〜35μmであることが望
ましい。好ましくは各画素領域の各走査電極と対向電極
の幅(W)はそれぞれ独立して10〜25μmであるこ
とが望ましい。電極の幅が5μm未満であると電界がう
まく発生しないで液晶分子がうまく配列しないので好ま
しくない。また、電極の幅が35μmより大きくなると
開口率が著しく低下し、好ましくない。
It is desirable that the width (W) of each scanning electrode and counter electrode in each pixel region is independently 5 to 35 μm. Preferably, the width (W) of each scanning electrode and counter electrode in each pixel region is independently 10 to 25 μm. If the width of the electrode is less than 5 μm, an electric field is not generated well and liquid crystal molecules are not well aligned, which is not preferable. On the other hand, when the width of the electrode is larger than 35 μm, the aperture ratio is significantly reduced, which is not preferable.

【0014】各画素領域の各走査電極同士あるいは各対
向電極同士の間隔(L)はそれぞれ20〜200μmで
あることが望ましい。好ましくは各画素領域の各走査電
極同士あるいは各対向電極同士の間隔(L)はそれぞれ
40〜150μmであることが望ましい。電極の間隔が
20μm未満であると開口率が著しく低下し、好ましく
ない。また、電極の間隔が200μmより大きくなると
電圧が印加されたとき液晶分子が十分に立ち上がらない
ので好ましくない。
It is desirable that the distance (L) between each scanning electrode or each counter electrode in each pixel region is 20 to 200 μm. Preferably, the interval (L) between each scanning electrode or each counter electrode in each pixel region is preferably 40 to 150 μm. If the distance between the electrodes is less than 20 μm, the aperture ratio is significantly reduced, which is not preferable. On the other hand, if the distance between the electrodes is larger than 200 μm, the liquid crystal molecules do not sufficiently rise when a voltage is applied, which is not preferable.

【0015】液晶組成物層の厚み(D)は3〜30μm
であることが望ましい。好ましくは液晶組成物層の厚み
(D)は3〜25μmであることが望ましい。液晶組成
物層の厚みが3μm未満であるとセルギャップの制御が
困難になり歩留まりが著しく悪化するので好ましくな
い。また、液晶組成物層の厚みが30μmより大きくな
ると電圧が印加されたとき液晶分子が十分に立ち上がら
ないので好ましくない。
The thickness (D) of the liquid crystal composition layer is 3 to 30 μm.
It is desirable that Preferably, the thickness (D) of the liquid crystal composition layer is 3 to 25 μm. If the thickness of the liquid crystal composition layer is less than 3 μm, it is not preferable because the control of the cell gap becomes difficult and the yield remarkably deteriorates. Further, when the thickness of the liquid crystal composition layer is larger than 30 μm, the liquid crystal molecules do not sufficiently rise when a voltage is applied, which is not preferable.

【0016】液晶は誘電率異方性(Δε)は電圧印加後
に斜め45゜の配向状態を得るという基本目的からは正
でも負でも良く、初期配向状態としてはホモジニアス配
向、TN配向、ホメオトロピック配向のいずれでも良
い。配向制御物質としてはポリイミドタイプ配向膜、可
溶性ポリイミドタイプ配向膜、ポリアミド酸タイプ配向
膜が好ましい。また、配向制御物質層は金属やSiO2
を蒸着したものでも問題はない。ホモジニアス配向やホ
メオトロピック配向では、条件によって屈折と回折がど
ちらか一方もしくは両方同時に起こる。屈折光と回折光
の使い分けは偏光板の有無、配向の種類、入射光の偏光
方向等を変えることで可能となる。
The liquid crystal may have a dielectric anisotropy (Δε) of either positive or negative for the basic purpose of obtaining an oblique 45 ° orientation after voltage application, and the initial orientation is a homogeneous orientation, a TN orientation, a homeotropic orientation. Either may be used. As the alignment controlling substance, a polyimide type alignment film, a soluble polyimide type alignment film, and a polyamic acid type alignment film are preferable. The orientation control material layer is made of metal or SiO 2
There is no problem even if it is vapor-deposited. In a homogeneous alignment or a homeotropic alignment, refraction and diffraction occur in one or both depending on conditions. Refracted light and diffracted light can be selectively used by changing the presence or absence of a polarizing plate, the type of orientation, the polarization direction of incident light, and the like.

【0017】[0017]

【作用】前記した手段によれば、映像情報に従って各走
査配線と各信号配線にそれぞれ信号が印加されるに際し
て、各走査配線に走査信号が印加される毎に、各画素領
域に属する一対の信号配線には電位差の異なる信号が印
加される。各信号配線に電位差の異なる信号が印加され
ると、この電位差に従った電界が各画素領域の液晶に作
用し、液晶分子が透明基板面に対してある仰角でもって
起き上がる。これにより各画素領域の液晶の配向を図7
のように制御することができる。このとき液晶組成物が
基板に対して斜めに配向することから屈折または回折現
象を生じ、光の伝搬路の制御が可能となる。
According to the above-mentioned means, when a signal is applied to each scanning wiring and each signal wiring in accordance with video information, each time a scanning signal is applied to each scanning wiring, a pair of signals belonging to each pixel region are applied. Signals having different potential differences are applied to the wiring. When a signal having a different potential difference is applied to each signal wiring, an electric field according to the potential difference acts on the liquid crystal in each pixel region, and the liquid crystal molecules rise at a certain elevation angle with respect to the transparent substrate surface. As a result, the orientation of the liquid crystal in each pixel region is changed as shown in FIG.
Can be controlled as follows. At this time, since the liquid crystal composition is obliquely oriented with respect to the substrate, a refraction or diffraction phenomenon occurs, and the light transmission path can be controlled.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 (実施例1)配向膜はTN配向で偏光板は使用していな
い。そのときの構成を図2に示した。電極幅(W)は1
5μm、電極間隔(L)は55μm、セル厚(D)は2
5μm、電極のジグザグの角度(θ)は90゜とした。
液晶組成物としては透明点が103℃、屈折率異方性
(Δn)が0.219、誘電率異方性(Δε)が29.
1のものを用い、配向膜はPSI-G-4001(チッソ社製,pret
ilt=4゜)を用いた。電圧−透過率測定は光源にHe−N
eレーザー、検出器にフォトダイオード、リニアアン
プ、ディジタルマルチメーター(ADVANTEST、R6451
A)を用いて、任意波形発生器(HP、33120A)で
1KHzの矩形波を印加した。ノーマリーホワイトモー
ドで、透過率90%のところをしきい値電圧(V90)とし
た。しきい値電圧(V90)は1.38V、コントラスト比
は40:1であった。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) The orientation film was of TN orientation and no polarizing plate was used. FIG. 2 shows the configuration at that time. The electrode width (W) is 1
5 μm, electrode spacing (L) is 55 μm, cell thickness (D) is 2
5 μm and the zigzag angle (θ) of the electrode was 90 °.
The liquid crystal composition has a clearing point of 103 ° C., a refractive index anisotropy (Δn) of 0.219, and a dielectric anisotropy (Δε) of 29.
1 and the alignment film was PSI-G-4001 (manufactured by Chisso, pret
ilt = 4 ゜). The voltage-transmittance measurement was performed using He-N as the light source.
e-laser, detector, photodiode, linear amplifier, digital multimeter (ADVANTEST, R6451)
Using A), a 1 KHz rectangular wave was applied with an arbitrary waveform generator (HP, 33120A). The threshold voltage (V90) at the 90% transmittance in the normally white mode. The threshold voltage (V90) was 1.38 V and the contrast ratio was 40: 1.

【0019】(実施例2)配向膜はアンチパラレル配向
で、2枚の偏光板は直線偏光配置、かつ、パラレルニコ
ルとした。そのときの構成を図5に示した。その他は実
施例1と同様とした。しきい値電圧(V90)は1.02
V、コントラスト比は462:1であった。
(Example 2) The alignment film was antiparallel oriented, and two polarizing plates were arranged in linearly polarized light and parallel Nicols. The configuration at that time is shown in FIG. Others were the same as Example 1. The threshold voltage (V90) is 1.02
V, the contrast ratio was 462: 1.

【0020】(実施例3)配向膜はTN配向で、2枚の
偏光板は直線偏光配置、かつ、クロスニコルとした。そ
のときの構成を図5に示した。その他は実施例1と同様
とした。しきい値電圧(V90)は2.10V、コントラス
ト比は168:1であった。
Example 3 The alignment film was of TN orientation, and two polarizing plates were arranged in a linearly polarized light and crossed Nicols. The configuration at that time is shown in FIG. Others were the same as Example 1. The threshold voltage (V90) was 2.10 V and the contrast ratio was 168: 1.

【0021】[0021]

【発明の効果】以上詳述したように、本発明によれば、
各画素領域の液晶分子が透明基板面に対してある仰角で
もって起き上がるときの液晶の配向から生じる屈折また
は回折現象を利用して高コントラストや高速応答あるい
は広視野角化を実現する液晶表示装置を提供する。ま
た、偏光板を減らすことにより高輝度化を実現する液晶
表示装置を提供することにある。
As described in detail above, according to the present invention,
A liquid crystal display device that achieves high contrast, high-speed response, or a wide viewing angle by utilizing the refraction or diffraction phenomenon caused by the orientation of liquid crystal when liquid crystal molecules in each pixel region rise at a certain elevation angle with respect to the transparent substrate surface. provide. Another object of the present invention is to provide a liquid crystal display device that achieves high luminance by reducing the number of polarizing plates.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に記載した表示装置の説明図である。FIG. 1 is an explanatory diagram of a display device described in claim 1;

【図2】請求項2に記載した表示装置の説明図である。FIG. 2 is an explanatory diagram of a display device described in claim 2;

【図3】請求項3に記載した表示装置の説明図である。FIG. 3 is an explanatory diagram of a display device described in claim 3;

【図4】請求項4に記載した表示装置の説明図である。FIG. 4 is an explanatory diagram of a display device described in claim 4;

【図5】請求項11に記載した表示装置の説明図であ
る。
FIG. 5 is an explanatory diagram of a display device according to claim 11;

【図6】画素の平面図および断面図である。FIG. 6 is a plan view and a cross-sectional view of a pixel.

【図7】電圧印加時の液晶分子の説明図である。FIG. 7 is an explanatory diagram of liquid crystal molecules when a voltage is applied.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明基板 3 配向制御物質層 4 液晶組成物層 5 走査配線 6 信号配線 7 対向配線 8 偏光板 9 λ/4波長板 10 反射板 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent substrate 3 Alignment control material layer 4 Liquid crystal composition layer 5 Scanning wiring 6 Signal wiring 7 Counter wiring 8 Polarizing plate 9 λ / 4 wavelength plate 10 Reflector

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H088 EA44 HA02 HA03 HA06 HA17 HA18 HA21 JA05 JA10 JA11 KA02 KA05 MA02 MA07 2H092 GA13 GA20 GA26 PA02 PA07 PA11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H088 EA44 HA02 HA03 HA06 HA17 HA18 HA21 JA05 JA10 JA11 KA02 KA05 MA02 MA07 2H092 GA13 GA20 GA26 PA02 PA07 PA11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 一対の基板が配置され、基板のうち一方
の透明基板上に複数の走査電極と信号配線がマトリクス
状に配設されて透明基板間の領域が各走査配線と各信号
配線により複数の画素領域に分割されており、もう一方
の透明基板上に複数の対向配線が走査電極と平行に配設
されており、各画素領域間に一対の配向制御物質層と液
晶組成物層が積層されている液晶表示素子において、各
画素領域の1対の透明基板の各走査配線と対向配線がジ
グザグ状であり、かつ、それぞれが基板の法線方向に対
して重ならない構造を持つことを特徴とする液晶表示素
子。
A pair of substrates are arranged, a plurality of scanning electrodes and signal wirings are arranged in a matrix on one of the transparent substrates, and a region between the transparent substrates is formed by each scanning wiring and each signal wiring. It is divided into a plurality of pixel regions, a plurality of opposing wirings are arranged on the other transparent substrate in parallel with the scanning electrodes, and a pair of alignment control material layer and liquid crystal composition layer are provided between each pixel region. In the stacked liquid crystal display element, each of the scanning wiring and the counter wiring of the pair of transparent substrates in each pixel region has a zigzag shape, and each has a structure in which they do not overlap in the normal direction of the substrate. Characteristic liquid crystal display element.
【請求項2】 請求項1に記載の液晶表示素子に1枚の
偏光板が配置されていることを特徴とする液晶表示素
子。
2. A liquid crystal display element according to claim 1, wherein one polarizing plate is arranged on the liquid crystal display element according to claim 1.
【請求項3】 請求項1に記載の液晶表示素子に1枚の
偏光板とλ/4波長板が併せて配置されていることを特
徴とする液晶表示素子。
3. A liquid crystal display device according to claim 1, wherein one polarizing plate and a λ / 4 wavelength plate are arranged together with the liquid crystal display device according to claim 1.
【請求項4】 請求項1に記載の液晶表示素子が2枚の
偏光板の間に挟み込まれるように配置されていることを
特徴とする液晶表示素子。
4. A liquid crystal display device according to claim 1, wherein the liquid crystal display device is disposed so as to be sandwiched between two polarizing plates.
【請求項5】 請求項1に記載の液晶表示素子が1枚の
偏光板と反対側に反射板を配置した構造に配置されてい
ることを特徴とする液晶表示素子。
5. A liquid crystal display device according to claim 1, wherein the liquid crystal display device is arranged in a structure in which a reflection plate is arranged on a side opposite to one polarizing plate.
【請求項6】 2枚の偏光板が直線偏光配置、パラレル
ニコルに配置されていることを特徴とする請求項4に記
載の液晶表示素子。
6. The liquid crystal display device according to claim 4, wherein the two polarizing plates are arranged in a linear polarization arrangement and a parallel Nicol arrangement.
【請求項7】 2枚の偏光板が直線偏光配置、クロスニ
コルに配置されていることを特徴とする請求項4に記載
の液晶表示素子。
7. The liquid crystal display device according to claim 4, wherein the two polarizing plates are arranged in linearly polarized light and crossed Nicols.
【請求項8】 各画素領域の各走査電極と対向電極のジ
グザグの角度(θ)が60゜ないし120゜であること
を特徴とする請求項1〜5に記載の液晶表示素子。
8. The liquid crystal display device according to claim 1, wherein a zigzag angle (θ) between each scanning electrode and the counter electrode in each pixel region is 60 ° to 120 °.
【請求項9】 各画素領域の各走査電極と対向電極の幅
(W)がそれぞれ独立して5〜35μmであることを特
徴とする請求項1〜5に記載の液晶表示素子。
9. The liquid crystal display device according to claim 1, wherein the width (W) of each scanning electrode and the counter electrode in each pixel region is independently 5 to 35 μm.
【請求項10】 各画素領域の各走査電極同士あるいは
各対向電極同士の間隔(L)がそれぞれ20〜200μ
mであることを特徴とする請求項1〜5に記載の液晶表
示素子。
10. The distance (L) between each scanning electrode or each counter electrode in each pixel region is 20 to 200 μm.
The liquid crystal display device according to claim 1, wherein m is m.
【請求項11】 液晶組成物層の厚み(D)が3〜25
μmであることを特徴とする請求項1〜5に記載の液晶
表示素子。
11. The thickness (D) of the liquid crystal composition layer is 3 to 25.
The liquid crystal display device according to claim 1, wherein the thickness is μm.
JP04610899A 1999-02-24 1999-02-24 Liquid crystal display element using micro refraction display system Expired - Lifetime JP4154789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04610899A JP4154789B2 (en) 1999-02-24 1999-02-24 Liquid crystal display element using micro refraction display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04610899A JP4154789B2 (en) 1999-02-24 1999-02-24 Liquid crystal display element using micro refraction display system

Publications (2)

Publication Number Publication Date
JP2000241834A true JP2000241834A (en) 2000-09-08
JP4154789B2 JP4154789B2 (en) 2008-09-24

Family

ID=12737807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04610899A Expired - Lifetime JP4154789B2 (en) 1999-02-24 1999-02-24 Liquid crystal display element using micro refraction display system

Country Status (1)

Country Link
JP (1) JP4154789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101704A (en) * 2002-09-06 2004-04-02 Ricoh Co Ltd Optical path shifting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885256B (en) * 2012-12-21 2017-04-26 上海天马微电子有限公司 Pixel unit and array substrate of edge-switching mode liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101704A (en) * 2002-09-06 2004-04-02 Ricoh Co Ltd Optical path shifting element

Also Published As

Publication number Publication date
JP4154789B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4080245B2 (en) Liquid crystal display
US6678027B2 (en) Fringe field switching mode LCD
JP5323013B2 (en) Liquid crystal display
US20010005251A1 (en) Fringe field switching mode LCD
JPH0349412B2 (en)
JP4714187B2 (en) Liquid crystal display device
JP2000029010A (en) Liquid crystal display device
JP3292591B2 (en) Liquid crystal display device
JPH11212073A (en) Liquid crystal display device
US6075582A (en) LCD with zig-zag electrodes on both substrates
JP3289386B2 (en) Color liquid crystal display
JP2000047194A (en) Liquid crystal display device
JP4154789B2 (en) Liquid crystal display element using micro refraction display system
JP4714188B2 (en) Liquid crystal display device
JPH03103823A (en) Liquid crystal display device
KR100752143B1 (en) reflection type liquid crystal display device with a cholesteric liquid crystal color filter
KR20030061584A (en) 2-domain ffs-va mode liquid crystal display device
JP2007249244A (en) Liquid crystal display device
JP3628094B2 (en) Liquid crystal display element and optical anisotropic element
JP2007272252A (en) Liquid crystal display device
JP2005265953A (en) Liquid crystal display element
KR100389089B1 (en) High reflectivity liquid crystal display cell
JP3090020B2 (en) Liquid crystal display device
JP3477504B2 (en) Liquid crystal display
KR100280636B1 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term